Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
f0e797e5
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f0e797e5
编写于
1月 03, 2018
作者:
Y
yangyaming
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Doc fix and enhancement for lstm_unit python wrapper.
上级
39502e6e
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
66 addition
and
60 deletion
+66
-60
python/paddle/v2/fluid/layers/nn.py
python/paddle/v2/fluid/layers/nn.py
+66
-60
未找到文件。
python/paddle/v2/fluid/layers/nn.py
浏览文件 @
f0e797e5
...
@@ -151,7 +151,7 @@ def embedding(input, size, is_sparse=False, param_attr=None, dtype='float32'):
...
@@ -151,7 +151,7 @@ def embedding(input, size, is_sparse=False, param_attr=None, dtype='float32'):
Args:
Args:
input(Variable): Input to the function
input(Variable): Input to the function
size(tuple|list|None): Shape of the look up table parameter
size(tuple|list|None): Shape of the look up table parameter
is_sparse(bool): Boolean flag that specifying whether the input is sparse
is_sparse(bool): Boolean flag that specifying whether the input is sparse
param_attr(ParamAttr): Parameters for this layer
param_attr(ParamAttr): Parameters for this layer
dtype(np.dtype|core.DataType|str): The type of data : float32, float_16, int etc
dtype(np.dtype|core.DataType|str): The type of data : float32, float_16, int etc
...
@@ -366,9 +366,9 @@ def cross_entropy(input, label, **kwargs):
...
@@ -366,9 +366,9 @@ def cross_entropy(input, label, **kwargs):
1) One-hot cross-entropy:
1) One-hot cross-entropy:
`soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
`soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
.. math::
.. math::
Y[i] = -\log(X[i, Label[i]])
Y[i] = -\log(X[i, Label[i]])
2) Soft-label cross-entropy:
2) Soft-label cross-entropy:
...
@@ -386,15 +386,15 @@ def cross_entropy(input, label, **kwargs):
...
@@ -386,15 +386,15 @@ def cross_entropy(input, label, **kwargs):
As a special case of 2), when each row of 'label' has only one
As a special case of 2), when each row of 'label' has only one
non-zero element which is equal to 1, soft-label cross-entropy degenerates
non-zero element which is equal to 1, soft-label cross-entropy degenerates
to a one-hot cross-entropy with one-hot label representation.
to a one-hot cross-entropy with one-hot label representation.
Args:
Args:
input (Variable|list): a 2-D tensor with shape [N x D], where N is the
input (Variable|list): a 2-D tensor with shape [N x D], where N is the
batch size and D is the number of classes. This input is a probability
batch size and D is the number of classes. This input is a probability
computed by the previous operator, which is almost always the result
computed by the previous operator, which is almost always the result
of a softmax operator.
of a softmax operator.
label (Variable|list): the ground truth which is a 2-D tensor. When
label (Variable|list): the ground truth which is a 2-D tensor. When
`soft_label` is set to `False`, `label` is a tensor<int64> with shape
`soft_label` is set to `False`, `label` is a tensor<int64> with shape
[N x 1]. When `soft_label` is set to `True`, `label` is a
[N x 1]. When `soft_label` is set to `True`, `label` is a
tensor<float/double> with shape [N x D].
tensor<float/double> with shape [N x D].
soft_label (bool, via `**kwargs`): a flag indicating whether to interpretate
soft_label (bool, via `**kwargs`): a flag indicating whether to interpretate
the given labels as soft labels, default `False`.
the given labels as soft labels, default `False`.
...
@@ -403,7 +403,7 @@ def cross_entropy(input, label, **kwargs):
...
@@ -403,7 +403,7 @@ def cross_entropy(input, label, **kwargs):
A 2-D tensor with shape [N x 1], the cross entropy loss.
A 2-D tensor with shape [N x 1], the cross entropy loss.
Raises:
Raises:
`ValueError`: 1) the 1st dimension of `input` and `label` are not equal; 2) when \
`ValueError`: 1) the 1st dimension of `input` and `label` are not equal; 2) when
\
`soft_label == True`, and the 2nd dimension of `input` and `label` are not
\
`soft_label == True`, and the 2nd dimension of `input` and `label` are not
\
equal; 3) when `soft_label == False`, and the 2nd dimension of `label` is not 1.
equal; 3) when `soft_label == False`, and the 2nd dimension of `label` is not 1.
...
@@ -727,9 +727,9 @@ def conv2d(input,
...
@@ -727,9 +727,9 @@ def conv2d(input,
def
sequence_pool
(
input
,
pool_type
,
**
kwargs
):
def
sequence_pool
(
input
,
pool_type
,
**
kwargs
):
"""
"""
This function add the operator for sequence pooling.
This function add the operator for sequence pooling.
It pools features of all time-steps of each instance, and is applied
It pools features of all time-steps of each instance, and is applied
on top of the input using pool_type mentioned in the parameters.
on top of the input using pool_type mentioned in the parameters.
It supports four pool_type:
It supports four pool_type:
...
@@ -758,7 +758,7 @@ def sequence_pool(input, pool_type, **kwargs):
...
@@ -758,7 +758,7 @@ def sequence_pool(input, pool_type, **kwargs):
Args:
Args:
input(variable): The input variable which is a LoDTensor.
input(variable): The input variable which is a LoDTensor.
pool_type (string): The pooling type of sequence_pool.
pool_type (string): The pooling type of sequence_pool.
It supports average, sum, sqrt and max.
It supports average, sum, sqrt and max.
Returns:
Returns:
...
@@ -768,7 +768,7 @@ def sequence_pool(input, pool_type, **kwargs):
...
@@ -768,7 +768,7 @@ def sequence_pool(input, pool_type, **kwargs):
.. code-block:: python
.. code-block:: python
x = fluid.layers.data(name='x', shape=[7, 1],
x = fluid.layers.data(name='x', shape=[7, 1],
dtype='float32', lod_level=1)
dtype='float32', lod_level=1)
avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
...
@@ -816,7 +816,7 @@ def sequence_first_step(input, **kwargs):
...
@@ -816,7 +816,7 @@ def sequence_first_step(input, **kwargs):
.. code-block:: python
.. code-block:: python
x = fluid.layers.data(name='x', shape=[7, 1],
x = fluid.layers.data(name='x', shape=[7, 1],
dtype='float32', lod_level=1)
dtype='float32', lod_level=1)
x_first_step = fluid.layers.sequence_first_step(input=x)
x_first_step = fluid.layers.sequence_first_step(input=x)
"""
"""
...
@@ -849,7 +849,7 @@ def sequence_last_step(input, **kwargs):
...
@@ -849,7 +849,7 @@ def sequence_last_step(input, **kwargs):
.. code-block:: python
.. code-block:: python
x = fluid.layers.data(name='x', shape=[7, 1],
x = fluid.layers.data(name='x', shape=[7, 1],
dtype='float32', lod_level=1)
dtype='float32', lod_level=1)
x_last_step = fluid.layers.sequence_last_step(input=x)
x_last_step = fluid.layers.sequence_last_step(input=x)
"""
"""
...
@@ -1168,25 +1168,26 @@ def lstm_unit(x_t,
...
@@ -1168,25 +1168,26 @@ def lstm_unit(x_t,
.. math::
.. math::
i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} +
W_{c_i}c_{t-1} +
b_i)
i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} +
W_{c_f}c_{t-1} +
b_f)
f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t
+
W_{h_c}h_{t-1} + b_c)
c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t
+
W_{h_c}h_{t-1} + b_c)
o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} +
W_{c_o}c_t +
b_o)
o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
h_t & = o_t tanh(c_t)
h_t & = o_t tanh(c_t)
The inputs of lstm unit includes :math:`x_t`, :math:`h_{t-1}` and
The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
:math:`c_{t-1}`. The implementation separates the linear transformation
:math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
and non-linear transformation apart. Here, we take :math:`i_t` as an
should be same. The implementation separates the linear transformation and
example. The linear transformation is applied by calling a `fc` layer and
non-linear transformation apart. Here, we take :math:`i_t` as an example.
the equation is:
The linear transformation is applied by calling a `fc` layer and the
equation is:
.. math::
.. math::
L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} +
W_{c_i}c_{t-1} +
b_i
L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
The non-linear transformation is applied by calling `lstm_unit_op` and the
The non-linear transformation is applied by calling `lstm_unit_op` and the
equation is:
equation is:
...
@@ -1213,14 +1214,15 @@ def lstm_unit(x_t,
...
@@ -1213,14 +1214,15 @@ def lstm_unit(x_t,
Raises:
Raises:
ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
\
ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
\
not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
\
not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
\
and **cell_t_prev** not be the same.
and **cell_t_prev** not be the same or the 2nd dimensions of
\
**hidden_t_prev** and **cell_t_prev** not be the same.
Examples:
Examples:
.. code-block:: python
.. code-block:: python
x_t = fluid.layers.fc(input=x_t_data, size=10)
x_t = fluid.layers.fc(input=x_t_data, size=10)
prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=
2
0)
prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=
3
0)
prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
hidden_t_prev=prev_hidden,
hidden_t_prev=prev_hidden,
...
@@ -1239,7 +1241,11 @@ def lstm_unit(x_t,
...
@@ -1239,7 +1241,11 @@ def lstm_unit(x_t,
if
x_t
.
shape
[
0
]
!=
hidden_t_prev
.
shape
[
0
]
or
x_t
.
shape
[
if
x_t
.
shape
[
0
]
!=
hidden_t_prev
.
shape
[
0
]
or
x_t
.
shape
[
0
]
!=
cell_t_prev
.
shape
[
0
]:
0
]
!=
cell_t_prev
.
shape
[
0
]:
raise
ValueError
(
"The 1s dimension of x_t, hidden_t_prev and "
raise
ValueError
(
"The 1s dimensions of x_t, hidden_t_prev and "
"cell_t_prev must be the same."
)
if
hidden_t_prev
.
shape
[
1
]
!=
cell_t_prev
.
shape
[
1
]:
raise
ValueError
(
"The 2nd dimensions of hidden_t_prev and "
"cell_t_prev must be the same."
)
"cell_t_prev must be the same."
)
if
bias_attr
is
None
:
if
bias_attr
is
None
:
...
@@ -1268,17 +1274,17 @@ def lstm_unit(x_t,
...
@@ -1268,17 +1274,17 @@ def lstm_unit(x_t,
def
reduce_sum
(
input
,
dim
=
None
,
keep_dim
=
False
):
def
reduce_sum
(
input
,
dim
=
None
,
keep_dim
=
False
):
"""
"""
Computes the sum of tensor elements over the given dimension.
Computes the sum of tensor elements over the given dimension.
Args:
Args:
input (Variable): The input variable which is a Tensor or LoDTensor.
input (Variable): The input variable which is a Tensor or LoDTensor.
dim (int|None): The dimension along which the sum is performed. If
dim (int|None): The dimension along which the sum is performed. If
:attr:`None`, sum all elements of :attr:`input` and return a
:attr:`None`, sum all elements of :attr:`input` and return a
Tensor variable with a single element, otherwise must be in the
Tensor variable with a single element, otherwise must be in the
range :math:`[-rank(input), rank(input))`. If :math:`dim < 0`,
range :math:`[-rank(input), rank(input))`. If :math:`dim < 0`,
the dimension to reduce is :math:`rank + dim`.
the dimension to reduce is :math:`rank + dim`.
keep_dim (bool): Whether to reserve the reduced dimension in the
keep_dim (bool): Whether to reserve the reduced dimension in the
output Tensor. The result tensor will have one fewer dimension
output Tensor. The result tensor will have one fewer dimension
than the :attr:`input` unless :attr:`keep_dim` is true.
than the :attr:`input` unless :attr:`keep_dim` is true.
Returns:
Returns:
...
@@ -1312,17 +1318,17 @@ def reduce_sum(input, dim=None, keep_dim=False):
...
@@ -1312,17 +1318,17 @@ def reduce_sum(input, dim=None, keep_dim=False):
def
reduce_mean
(
input
,
dim
=
None
,
keep_dim
=
False
):
def
reduce_mean
(
input
,
dim
=
None
,
keep_dim
=
False
):
"""
"""
Computes the mean of tensor elements over the given dimension.
Computes the mean of tensor elements over the given dimension.
Args:
Args:
input (Variable): The input variable which is a Tensor or LoDTensor.
input (Variable): The input variable which is a Tensor or LoDTensor.
dim (int|None): The dimension along which the mean is computed. If
dim (int|None): The dimension along which the mean is computed. If
:attr:`None`, compute the mean over all elements of :attr:`input`
:attr:`None`, compute the mean over all elements of :attr:`input`
and return a Tensor variable with a single element, otherwise
and return a Tensor variable with a single element, otherwise
must be in the range :math:`[-rank(input), rank(input))`. If
must be in the range :math:`[-rank(input), rank(input))`. If
:math:`dim < 0`, the dimension to reduce is :math:`rank + dim`.
:math:`dim < 0`, the dimension to reduce is :math:`rank + dim`.
keep_dim (bool): Whether to reserve the reduced dimension in the
keep_dim (bool): Whether to reserve the reduced dimension in the
output Tensor. The result tensor will have one fewer dimension
output Tensor. The result tensor will have one fewer dimension
than the :attr:`input` unless :attr:`keep_dim` is true.
than the :attr:`input` unless :attr:`keep_dim` is true.
Returns:
Returns:
...
@@ -1356,22 +1362,22 @@ def reduce_mean(input, dim=None, keep_dim=False):
...
@@ -1356,22 +1362,22 @@ def reduce_mean(input, dim=None, keep_dim=False):
def
reduce_max
(
input
,
dim
=
None
,
keep_dim
=
False
):
def
reduce_max
(
input
,
dim
=
None
,
keep_dim
=
False
):
"""
"""
Computes the maximum of tensor elements over the given dimension.
Computes the maximum of tensor elements over the given dimension.
Args:
Args:
input (Variable): The input variable which is a Tensor or LoDTensor.
input (Variable): The input variable which is a Tensor or LoDTensor.
dim (int|None): The dimension along which the maximum is computed.
dim (int|None): The dimension along which the maximum is computed.
If :attr:`None`, compute the maximum over all elements of
If :attr:`None`, compute the maximum over all elements of
:attr:`input` and return a Tensor variable with a single element,
:attr:`input` and return a Tensor variable with a single element,
otherwise must be in the range :math:`[-rank(input), rank(input))`.
otherwise must be in the range :math:`[-rank(input), rank(input))`.
If :math:`dim < 0`, the dimension to reduce is :math:`rank + dim`.
If :math:`dim < 0`, the dimension to reduce is :math:`rank + dim`.
keep_dim (bool): Whether to reserve the reduced dimension in the
keep_dim (bool): Whether to reserve the reduced dimension in the
output Tensor. The result tensor will have one fewer dimension
output Tensor. The result tensor will have one fewer dimension
than the :attr:`input` unless :attr:`keep_dim` is true.
than the :attr:`input` unless :attr:`keep_dim` is true.
Returns:
Returns:
Variable: The reduced Tensor variable.
Variable: The reduced Tensor variable.
Examples:
Examples:
.. code-block:: python
.. code-block:: python
...
@@ -1400,22 +1406,22 @@ def reduce_max(input, dim=None, keep_dim=False):
...
@@ -1400,22 +1406,22 @@ def reduce_max(input, dim=None, keep_dim=False):
def
reduce_min
(
input
,
dim
=
None
,
keep_dim
=
False
):
def
reduce_min
(
input
,
dim
=
None
,
keep_dim
=
False
):
"""
"""
Computes the minimum of tensor elements over the given dimension.
Computes the minimum of tensor elements over the given dimension.
Args:
Args:
input (Variable): The input variable which is a Tensor or LoDTensor.
input (Variable): The input variable which is a Tensor or LoDTensor.
dim (int|None): The dimension along which the minimum is computed.
dim (int|None): The dimension along which the minimum is computed.
If :attr:`None`, compute the minimum over all elements of
If :attr:`None`, compute the minimum over all elements of
:attr:`input` and return a Tensor variable with a single element,
:attr:`input` and return a Tensor variable with a single element,
otherwise must be in the range :math:`[-rank(input), rank(input))`.
otherwise must be in the range :math:`[-rank(input), rank(input))`.
If :math:`dim < 0`, the dimension to reduce is :math:`rank + dim`.
If :math:`dim < 0`, the dimension to reduce is :math:`rank + dim`.
keep_dim (bool): Whether to reserve the reduced dimension in the
keep_dim (bool): Whether to reserve the reduced dimension in the
output Tensor. The result tensor will have one fewer dimension
output Tensor. The result tensor will have one fewer dimension
than the :attr:`input` unless :attr:`keep_dim` is true.
than the :attr:`input` unless :attr:`keep_dim` is true.
Returns:
Returns:
Variable: The reduced Tensor variable.
Variable: The reduced Tensor variable.
Examples:
Examples:
.. code-block:: python
.. code-block:: python
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录