Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
f064ead6
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
f064ead6
编写于
8月 01, 2022
作者:
R
Roc
提交者:
GitHub
8月 01, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[CI] CI for Distributed (#44085)
上级
16c7c96e
变更
14
隐藏空白更改
内联
并排
Showing
14 changed file
with
1719 addition
and
0 deletion
+1719
-0
CMakeLists.txt
CMakeLists.txt
+1
-0
python/paddle/fluid/tests/unittests/CMakeLists.txt
python/paddle/fluid/tests/unittests/CMakeLists.txt
+27
-0
python/paddle/fluid/tests/unittests/common.py
python/paddle/fluid/tests/unittests/common.py
+60
-0
python/paddle/fluid/tests/unittests/dygraph_hybrid_dp.py
python/paddle/fluid/tests/unittests/dygraph_hybrid_dp.py
+67
-0
python/paddle/fluid/tests/unittests/dygraph_hybrid_dpppmp.py
python/paddle/fluid/tests/unittests/dygraph_hybrid_dpppmp.py
+213
-0
python/paddle/fluid/tests/unittests/dygraph_hybrid_fp16.py
python/paddle/fluid/tests/unittests/dygraph_hybrid_fp16.py
+225
-0
python/paddle/fluid/tests/unittests/dygraph_hybrid_recompute.py
.../paddle/fluid/tests/unittests/dygraph_hybrid_recompute.py
+212
-0
python/paddle/fluid/tests/unittests/mn_dygraph_group_sharded_stage3.py
.../fluid/tests/unittests/mn_dygraph_group_sharded_stage3.py
+301
-0
python/paddle/fluid/tests/unittests/mn_dygraph_sharding_stage2.py
...addle/fluid/tests/unittests/mn_dygraph_sharding_stage2.py
+251
-0
python/paddle/fluid/tests/unittests/multinode_dist_test.sh
python/paddle/fluid/tests/unittests/multinode_dist_test.sh
+107
-0
python/paddle/fluid/tests/unittests/test_collective_multi_nodes.py
...ddle/fluid/tests/unittests/test_collective_multi_nodes.py
+120
-0
python/paddle/fluid/tests/unittests/test_multinode_dygraph_hybrid_dp.py
...fluid/tests/unittests/test_multinode_dygraph_hybrid_dp.py
+40
-0
python/paddle/fluid/tests/unittests/test_multinode_dygraph_hybrid_dpppmp.py
...d/tests/unittests/test_multinode_dygraph_hybrid_dpppmp.py
+50
-0
python/paddle/fluid/tests/unittests/test_multinode_dygraph_sharding.py
.../fluid/tests/unittests/test_multinode_dygraph_sharding.py
+45
-0
未找到文件。
CMakeLists.txt
浏览文件 @
f064ead6
...
...
@@ -243,6 +243,7 @@ include(simd)
option
(
WITH_AVX
"Compile PaddlePaddle with AVX intrinsics"
${
AVX_FOUND
}
)
option
(
WITH_PYTHON
"Compile PaddlePaddle with python interpreter"
ON
)
option
(
WITH_TESTING
"Compile PaddlePaddle with unit testing"
OFF
)
option
(
WITH_MULTINODE_TESTING
"Test multinode apis and ops"
OFF
)
option
(
WITH_MKL
"Compile PaddlePaddle with MKL support."
${
AVX_FOUND
}
)
option
(
WITH_SYSTEM_BLAS
"Use system blas library"
OFF
)
option
(
WITH_DISTRIBUTE
"Compile with distributed support"
OFF
)
...
...
python/paddle/fluid/tests/unittests/CMakeLists.txt
浏览文件 @
f064ead6
...
...
@@ -7,6 +7,12 @@ set(GC_ENVS FLAGS_eager_delete_tensor_gb=0.0 FLAGS_fast_eager_deletion_mode=1
FLAGS_memory_fraction_of_eager_deletion=1.0
)
set
(
dist_ENVS http_proxy=
""
https_proxy=
""
)
file
(
GLOB MULTINODE_DIST_TEST_OPS
RELATIVE
"
${
CMAKE_CURRENT_SOURCE_DIR
}
"
"test_multinode_*.py"
)
string
(
REPLACE
".py"
""
MULTINODE_DIST_TEST_OPS
"
${
MULTINODE_DIST_TEST_OPS
}
"
)
file
(
GLOB DIST_TEST_OPS
RELATIVE
"
${
CMAKE_CURRENT_SOURCE_DIR
}
"
...
...
@@ -78,6 +84,11 @@ list(APPEND DIST_TEST_OPS test_collective_batch_isend_irecv)
list
(
APPEND DIST_TEST_OPS test_collective_reduce_scatter
)
set
(
MIXED_DIST_TEST_OPS
${
DIST_TEST_OPS
}
)
#remove distribute unittests.
foreach
(
TEST_OP
${
MULTINODE_DIST_TEST_OPS
}
)
list
(
APPEND MIXED_DIST_TEST_OPS
${
TEST_OP
}
)
endforeach
()
list
(
APPEND MIXED_DIST_TEST_OPS test_dgc_op
)
list
(
APPEND MIXED_DIST_TEST_OPS test_dgc_momentum_op
)
list
(
APPEND MIXED_DIST_TEST_OPS test_dgc_optimizer
)
...
...
@@ -135,6 +146,7 @@ list(APPEND MIXED_DIST_TEST_OPS test_auto_parallel_reshard_mppp)
list
(
APPEND MIXED_DIST_TEST_OPS test_auto_parallel_reshard_dpmppp
)
list
(
APPEND MIXED_DIST_TEST_OPS test_auto_parallel_cost_model
)
list
(
APPEND MIXED_DIST_TEST_OPS test_tcp_store
)
list
(
APPEND MIXED_DIST_TEST_OPS test_dygraph_hybrid_dp
)
foreach
(
TEST_OP
${
MIXED_DIST_TEST_OPS
}
)
list
(
REMOVE_ITEM TEST_OPS
${
TEST_OP
}
)
endforeach
()
...
...
@@ -958,6 +970,21 @@ if(WITH_DISTRIBUTE)
PADDLE_BINARY_DIR=
${
PADDLE_BINARY_DIR
}
)
endif
()
# add new dist test
if
(
WITH_DISTRIBUTE AND WITH_MULTINODE_TESTING
)
foreach
(
TEST_OP
${
MULTINODE_DIST_TEST_OPS
}
)
bash_test_modules
(
${
TEST_OP
}
START_BASH
multinode_dist_test.sh
LABELS
"RUN_TYPE=EXCLUSIVE"
ENVS
"PADDLE_DIST_UT_PORT=
${
dist_ut_port
}
"
)
endforeach
()
endif
()
# port range (20000, 23000) is reserved for dist-ops
foreach
(
TEST_OP
${
DIST_TEST_OPS
}
)
bash_test_modules
(
...
...
python/paddle/fluid/tests/unittests/common.py
0 → 100644
浏览文件 @
f064ead6
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
paddle.distributed
import
fleet
def
init_parallel_env
(
mode
,
global_batch_size
,
seed
=
1024
):
'''
Args:
mode:(str) DP1-MP1-PP1-SH1-O1
'''
def
parse_mode
(
mode
):
assert
"DP"
==
mode
[:
2
]
assert
"-MP"
in
mode
assert
"-PP"
in
mode
assert
"-SH"
in
mode
assert
"-O"
in
mode
modes
=
mode
.
split
(
"-"
)
DP
=
int
(
modes
[
0
][
2
:])
MP
=
int
(
modes
[
1
][
2
:])
PP
=
int
(
modes
[
2
][
2
:])
SH
=
int
(
modes
[
3
][
2
:])
Ostage
=
int
(
modes
[
4
][
1
:])
return
DP
,
MP
,
PP
,
SH
,
Ostage
DP
,
MP
,
PP
,
SH
,
Ostage
=
parse_mode
(
mode
)
strategy
=
fleet
.
DistributedStrategy
()
strategy
.
hybrid_configs
=
{
"dp_degree"
:
DP
,
"mp_degree"
:
MP
,
"pp_degree"
:
PP
,
"sharding_degree"
:
SH
}
accumulate_steps
=
1
if
PP
>
1
:
strategy
.
pipeline_configs
=
{
"accumulate_steps"
:
accumulate_steps
,
"micro_batch_size"
:
global_batch_size
//
DP
//
accumulate_steps
}
# set control in tensor parallel
strategy
.
tensor_parallel_configs
=
{
"tensor_init_seed"
:
seed
}
fleet
.
init
(
is_collective
=
True
,
strategy
=
strategy
)
return
fleet
.
get_hybrid_communicate_group
()
python/paddle/fluid/tests/unittests/dygraph_hybrid_dp.py
0 → 100644
浏览文件 @
f064ead6
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
import
argparse
import
os
import
sys
import
signal
import
time
import
socket
from
contextlib
import
closing
from
six
import
string_types
import
math
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.profiler
as
profiler
import
paddle.fluid.unique_name
as
nameGen
from
paddle.fluid
import
core
import
paddle.distributed.fleet
as
fleet
from
paddle.fluid.incubate.fleet.base
import
role_maker
import
unittest
from
multiprocessing
import
Process
import
paddle.fluid.layers
as
layers
from
functools
import
reduce
from
test_collective_multi_nodes
import
TestCollectiveAPIRunnerBase
,
runtime_main
class
TestDygrapgHybridDP
(
TestCollectiveAPIRunnerBase
):
def
__init__
(
self
):
pass
def
check_pass
(
self
,
*
args
,
**
kwargs
):
from
common
import
init_parallel_env
import
paddle
from
paddle.distributed
import
fleet
hcg
=
init_parallel_env
(
"DP16-MP1-PP1-SH1-O1"
,
2
)
import
numpy
as
np
dp_group
=
hcg
.
get_data_parallel_group
()
np
.
random
.
seed
(
1024
)
data
=
np
.
random
.
random
((
10
*
dp_group
.
nranks
,
100
)).
reshape
(
(
dp_group
.
nranks
,
-
1
,
100
))
data_part
=
paddle
.
to_tensor
(
data
[
dp_group
.
rank
])
paddle
.
distributed
.
collective
.
all_reduce
(
data_part
)
data_reduced
=
data_part
data_sumed
=
np
.
sum
(
data
,
axis
=
0
)
assert
np
.
allclose
(
data_sumed
,
data_reduced
.
numpy
(),
rtol
=
1e-8
,
atol
=
1e-8
)
if
__name__
==
"__main__"
:
runtime_main
(
TestDygrapgHybridDP
,
"dp"
)
python/paddle/fluid/tests/unittests/dygraph_hybrid_dpppmp.py
0 → 100644
浏览文件 @
f064ead6
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
import
argparse
import
os
import
sys
import
signal
import
time
import
socket
from
contextlib
import
closing
from
six
import
string_types
import
math
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.profiler
as
profiler
import
paddle.fluid.unique_name
as
nameGen
from
paddle.fluid
import
core
import
paddle.distributed.fleet
as
fleet
from
paddle.fluid.incubate.fleet.base
import
role_maker
import
unittest
from
multiprocessing
import
Process
import
paddle.fluid.layers
as
layers
from
functools
import
reduce
from
test_collective_multi_nodes
import
TestCollectiveAPIRunnerBase
,
runtime_main
from
paddle
import
nn
import
numpy
as
np
def
weight_init
(
mp
,
shape
,
col
=
True
,
seed
=
1024
):
np
.
random
.
seed
(
seed
)
w
=
np
.
random
.
normal
(
0
,
0.02
,
size
=
shape
)
if
mp
is
None
:
_w
=
w
else
:
if
col
:
step
=
shape
[
1
]
//
mp
.
nranks
_w
=
w
[:,
mp
.
rank
*
step
:
mp
.
rank
*
step
+
step
]
else
:
step
=
shape
[
0
]
//
mp
.
nranks
_w
=
w
[
mp
.
rank
*
step
:
mp
.
rank
*
step
+
step
,
:]
return
paddle
.
fluid
.
initializer
.
NumpyArrayInitializer
(
_w
)
class
Criterion
(
nn
.
Layer
):
def
__init__
(
self
):
super
(
Criterion
,
self
).
__init__
()
self
.
loss_func
=
nn
.
MSELoss
(
reduction
=
"mean"
)
def
forward
(
self
,
pred
,
label
):
loss
=
self
.
loss_func
(
pred
,
label
)
return
loss
class
ModelPipeline
(
fleet
.
meta_parallel
.
PipelineLayer
):
def
__init__
(
self
,
hcg
):
paddle
.
seed
(
1024
)
dp_linear
=
nn
.
Linear
(
32
,
128
)
self
.
layers_pp
=
[]
self
.
topology
=
hcg
.
topology
()
self
.
layers_pp
.
append
(
dp_linear
)
mp
=
hcg
.
get_model_parallel_group
()
for
i
in
range
(
6
):
if
mp
is
not
None
and
mp
.
nranks
>
1
:
mp_linear_1
=
fleet
.
meta_parallel
.
ColumnParallelLinear
(
128
,
512
,
weight_attr
=
weight_init
(
mp
,
(
128
,
512
),
True
,
1204
+
i
),
has_bias
=
True
,
gather_output
=
False
)
mp_linear_2
=
fleet
.
meta_parallel
.
RowParallelLinear
(
512
,
128
,
weight_attr
=
weight_init
(
mp
,
(
512
,
128
),
False
,
2012
+
i
),
has_bias
=
True
,
input_is_parallel
=
True
)
else
:
mp_linear_1
=
nn
.
Linear
(
128
,
512
,
weight_attr
=
weight_init
(
None
,
(
128
,
512
),
True
,
1204
+
i
))
mp_linear_2
=
nn
.
Linear
(
512
,
128
,
weight_attr
=
weight_init
(
None
,
(
512
,
128
),
True
,
2012
+
i
))
act
=
nn
.
ReLU6
()
layer_seq
=
nn
.
Sequential
(
mp_linear_1
,
mp_linear_2
,
act
)
self
.
layers_pp
.
append
(
layer_seq
)
out
=
nn
.
Linear
(
128
,
32
)
self
.
layers_pp
.
append
(
out
)
super
(
ModelPipeline
,
self
).
__init__
(
layers
=
self
.
layers_pp
,
loss_fn
=
Criterion
(),
topology
=
self
.
topology
)
class
Model
(
nn
.
Layer
):
def
__init__
(
self
,
hcg
):
super
(
Model
,
self
).
__init__
()
paddle
.
seed
(
1024
)
dp_linear
=
nn
.
Linear
(
32
,
128
)
self
.
layers_pp
=
[]
self
.
layers_pp
.
append
(
dp_linear
)
mp
=
hcg
.
get_model_parallel_group
()
if
hcg
else
None
for
i
in
range
(
6
):
if
mp
is
not
None
and
mp
.
nranks
>
1
:
mp_linear_1
=
fleet
.
meta_parallel
.
ColumnParallelLinear
(
128
,
512
,
weight_attr
=
weight_init
(
mp
,
(
128
,
512
),
True
,
1204
+
i
),
has_bias
=
True
,
gather_output
=
False
)
mp_linear_2
=
fleet
.
meta_parallel
.
RowParallelLinear
(
512
,
128
,
weight_attr
=
weight_init
(
mp
,
(
512
,
128
),
False
,
2012
+
i
),
has_bias
=
True
,
input_is_parallel
=
True
)
else
:
mp_linear_1
=
nn
.
Linear
(
128
,
512
,
weight_attr
=
weight_init
(
None
,
(
128
,
512
),
True
,
1204
+
i
))
mp_linear_2
=
nn
.
Linear
(
512
,
128
,
weight_attr
=
weight_init
(
None
,
(
512
,
128
),
True
,
2012
+
i
))
act
=
nn
.
ReLU6
()
layer_seq
=
nn
.
Sequential
(
mp_linear_1
,
mp_linear_2
,
act
)
self
.
layers_pp
.
append
(
layer_seq
)
out
=
nn
.
Linear
(
128
,
32
)
self
.
layers_pp
.
append
(
out
)
self
.
layers
=
nn
.
Sequential
(
*
self
.
layers_pp
)
def
forward
(
self
,
x
):
return
self
.
layers
(
x
)
class
TestDygrapgHybridDPPPMP
(
TestCollectiveAPIRunnerBase
):
def
__init__
(
self
):
pass
def
check_pass
(
self
,
*
args
,
**
kwargs
):
from
common
import
init_parallel_env
import
paddle
from
paddle.distributed
import
fleet
hcg
=
init_parallel_env
(
"DP4-MP2-PP2-SH1-O1"
,
64
)
pp_degree
=
hcg
.
get_pipe_parallel_world_size
()
import
numpy
as
np
crit
=
Criterion
()
if
pp_degree
<=
1
:
model
=
Model
(
hcg
)
else
:
model
=
ModelPipeline
(
hcg
)
model_base
=
Model
(
None
)
optimizer
=
paddle
.
optimizer
.
Adam
(
learning_rate
=
0.01
,
parameters
=
model
.
parameters
())
optimizer_base
=
paddle
.
optimizer
.
Adam
(
learning_rate
=
0.01
,
parameters
=
model_base
.
parameters
())
model
=
fleet
.
distributed_model
(
model
)
optimizer
=
fleet
.
distributed_optimizer
(
optimizer
)
loss_hybrid_arr
=
[]
loss_base_arr
=
[]
x
=
paddle
.
to_tensor
(
np
.
random
.
random
((
16
,
32
))).
astype
(
"float32"
)
y
=
paddle
.
to_tensor
(
np
.
random
.
random
((
16
,
32
))).
astype
(
"float32"
)
for
_
in
range
(
5
):
if
pp_degree
>
1
:
loss
=
model
.
train_batch
([
x
,
y
],
optimizer
=
optimizer
)
else
:
output
=
model
(
x
)
loss
=
crit
(
output
,
y
)
loss
.
backward
()
optimizer
.
step
()
optimizer
.
clear_grad
()
# baseline loss
output_base
=
model_base
(
x
)
loss_base
=
crit
(
output_base
,
y
)
loss_base
.
backward
()
optimizer_base
.
step
()
optimizer_base
.
clear_grad
()
loss_base_arr
.
append
(
loss_base
.
numpy
())
loss_hybrid_arr
.
append
(
loss
.
numpy
())
assert
np
.
allclose
(
loss_base_arr
,
loss_hybrid_arr
,
rtol
=
1e-5
,
atol
=
1e-5
)
if
__name__
==
"__main__"
:
runtime_main
(
TestDygrapgHybridDPPPMP
,
"dpppmp"
)
python/paddle/fluid/tests/unittests/dygraph_hybrid_fp16.py
0 → 100644
浏览文件 @
f064ead6
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
import
argparse
import
os
import
sys
import
signal
import
time
import
socket
from
contextlib
import
closing
from
six
import
string_types
import
math
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.profiler
as
profiler
import
paddle.fluid.unique_name
as
nameGen
from
paddle.fluid
import
core
import
paddle.distributed.fleet
as
fleet
from
paddle.fluid.incubate.fleet.base
import
role_maker
import
unittest
from
multiprocessing
import
Process
import
paddle.fluid.layers
as
layers
from
functools
import
reduce
from
test_collective_multi_nodes
import
TestCollectiveAPIRunnerBase
,
runtime_main
from
paddle
import
nn
import
numpy
as
np
def
weight_init
(
mp
,
shape
,
col
=
True
,
seed
=
1024
):
np
.
random
.
seed
(
seed
)
w
=
np
.
random
.
normal
(
0
,
0.02
,
size
=
shape
)
if
mp
is
None
:
_w
=
w
else
:
if
col
:
step
=
shape
[
1
]
//
mp
.
nranks
_w
=
w
[:,
mp
.
rank
*
step
:
mp
.
rank
*
step
+
step
]
else
:
step
=
shape
[
0
]
//
mp
.
nranks
_w
=
w
[
mp
.
rank
*
step
:
mp
.
rank
*
step
+
step
,
:]
return
paddle
.
fluid
.
initializer
.
NumpyArrayInitializer
(
_w
)
class
Criterion
(
nn
.
Layer
):
def
__init__
(
self
):
super
(
Criterion
,
self
).
__init__
()
self
.
loss_func
=
nn
.
MSELoss
(
reduction
=
"mean"
)
def
forward
(
self
,
pred
,
label
):
loss
=
self
.
loss_func
(
pred
,
label
)
return
loss
class
ModelPipeline
(
fleet
.
meta_parallel
.
PipelineLayer
):
def
__init__
(
self
,
hcg
):
paddle
.
seed
(
1024
)
dp_linear
=
nn
.
Linear
(
32
,
128
)
self
.
layers_pp
=
[]
self
.
topology
=
hcg
.
topology
()
self
.
layers_pp
.
append
(
dp_linear
)
mp
=
hcg
.
get_model_parallel_group
()
for
i
in
range
(
6
):
if
mp
is
not
None
and
mp
.
nranks
>
1
:
mp_linear_1
=
fleet
.
meta_parallel
.
ColumnParallelLinear
(
128
,
512
,
weight_attr
=
weight_init
(
mp
,
(
128
,
512
),
True
,
1204
+
i
),
has_bias
=
True
,
gather_output
=
False
)
mp_linear_2
=
fleet
.
meta_parallel
.
RowParallelLinear
(
512
,
128
,
weight_attr
=
weight_init
(
mp
,
(
512
,
128
),
False
,
2012
+
i
),
has_bias
=
True
,
input_is_parallel
=
True
)
else
:
mp_linear_1
=
nn
.
Linear
(
128
,
512
,
weight_attr
=
weight_init
(
None
,
(
128
,
512
),
True
,
1204
+
i
))
mp_linear_2
=
nn
.
Linear
(
512
,
128
,
weight_attr
=
weight_init
(
None
,
(
512
,
128
),
True
,
2012
+
i
))
act
=
nn
.
ReLU6
()
layer_seq
=
nn
.
Sequential
(
mp_linear_1
,
mp_linear_2
,
act
)
self
.
layers_pp
.
append
(
layer_seq
)
out
=
nn
.
Linear
(
128
,
32
)
self
.
layers_pp
.
append
(
out
)
super
(
ModelPipeline
,
self
).
__init__
(
layers
=
self
.
layers_pp
,
loss_fn
=
Criterion
(),
topology
=
self
.
topology
)
class
Model
(
nn
.
Layer
):
def
__init__
(
self
,
hcg
):
super
(
Model
,
self
).
__init__
()
paddle
.
seed
(
1024
)
dp_linear
=
nn
.
Linear
(
32
,
128
)
self
.
layers_pp
=
[]
self
.
layers_pp
.
append
(
dp_linear
)
mp
=
hcg
.
get_model_parallel_group
()
if
hcg
else
None
for
i
in
range
(
6
):
if
mp
is
not
None
and
mp
.
nranks
>
1
:
mp_linear_1
=
fleet
.
meta_parallel
.
ColumnParallelLinear
(
128
,
512
,
weight_attr
=
weight_init
(
mp
,
(
128
,
512
),
True
,
1204
+
i
),
has_bias
=
True
,
gather_output
=
False
)
mp_linear_2
=
fleet
.
meta_parallel
.
RowParallelLinear
(
512
,
128
,
weight_attr
=
weight_init
(
mp
,
(
512
,
128
),
False
,
2012
+
i
),
has_bias
=
True
,
input_is_parallel
=
True
)
else
:
mp_linear_1
=
nn
.
Linear
(
128
,
512
,
weight_attr
=
weight_init
(
None
,
(
128
,
512
),
True
,
1204
+
i
))
mp_linear_2
=
nn
.
Linear
(
512
,
128
,
weight_attr
=
weight_init
(
None
,
(
512
,
128
),
True
,
2012
+
i
))
act
=
nn
.
ReLU6
()
layer_seq
=
nn
.
Sequential
(
mp_linear_1
,
mp_linear_2
,
act
)
self
.
layers_pp
.
append
(
layer_seq
)
out
=
nn
.
Linear
(
128
,
32
)
self
.
layers_pp
.
append
(
out
)
self
.
layers
=
nn
.
Sequential
(
*
self
.
layers_pp
)
def
forward
(
self
,
x
):
return
self
.
layers
(
x
)
class
TestDygraphHybridFp16
(
TestCollectiveAPIRunnerBase
):
def
__init__
(
self
):
pass
def
check_pass
(
self
,
*
args
,
**
kwargs
):
from
common
import
init_parallel_env
import
paddle
from
paddle.distributed
import
fleet
hcg
=
init_parallel_env
(
"DP4-MP2-PP2-SH1-O1"
,
64
)
pp_degree
=
hcg
.
get_pipe_parallel_world_size
()
import
numpy
as
np
crit
=
Criterion
()
if
pp_degree
<=
1
:
model
=
Model
(
hcg
)
else
:
model
=
ModelPipeline
(
hcg
)
model_base
=
Model
(
None
)
optimizer
=
paddle
.
optimizer
.
Adam
(
learning_rate
=
0.01
,
parameters
=
model
.
parameters
(),
multi_precision
=
True
)
optimizer_base
=
paddle
.
optimizer
.
Adam
(
learning_rate
=
0.01
,
parameters
=
model_base
.
parameters
())
scaler
=
paddle
.
amp
.
GradScaler
(
init_loss_scaling
=
4096
)
scaler
=
fleet
.
distributed_scaler
(
scaler
)
model
=
paddle
.
amp
.
decorate
(
models
=
model
,
level
=
'O2'
,
save_dtype
=
'float32'
)
model
=
fleet
.
distributed_model
(
model
)
optimizer
=
fleet
.
distributed_optimizer
(
optimizer
)
loss_hybrid_arr
=
[]
loss_base_arr
=
[]
x
=
paddle
.
to_tensor
(
np
.
random
.
random
((
16
,
32
))).
astype
(
"float32"
)
y
=
paddle
.
to_tensor
(
np
.
random
.
random
((
16
,
32
))).
astype
(
"float32"
)
for
_
in
range
(
2
):
if
pp_degree
>
1
:
with
paddle
.
amp
.
auto_cast
(
True
,
level
=
'O2'
):
loss
=
model
.
train_batch
([
x
,
y
],
optimizer
=
optimizer
,
scaler
=
scaler
)
else
:
with
paddle
.
amp
.
auto_cast
(
True
,
level
=
'O2'
):
output
=
model
(
x
)
loss
=
crit
(
output
,
y
)
scaler
.
scale
(
loss
).
backward
()
scaler
.
minimize
(
optimizer
,
loss
)
optimizer
.
clear_grad
()
# baseline loss
with
paddle
.
amp
.
auto_cast
(
True
,
level
=
'O2'
):
output_base
=
model_base
(
x
)
loss_base
=
crit
(
output_base
,
y
)
loss_base
.
backward
()
optimizer_base
.
step
()
optimizer_base
.
clear_grad
()
loss_base_arr
.
append
(
loss_base
.
numpy
())
loss_hybrid_arr
.
append
(
loss
)
assert
np
.
allclose
(
loss_base_arr
,
loss_hybrid_arr
,
rtol
=
1e-3
,
atol
=
1e-3
)
if
__name__
==
"__main__"
:
runtime_main
(
TestDygraphHybridFp16
,
"dpppmp"
)
python/paddle/fluid/tests/unittests/dygraph_hybrid_recompute.py
0 → 100644
浏览文件 @
f064ead6
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
import
argparse
import
os
import
sys
import
signal
import
time
import
socket
from
contextlib
import
closing
from
six
import
string_types
import
math
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.profiler
as
profiler
import
paddle.fluid.unique_name
as
nameGen
from
paddle.fluid
import
core
import
paddle.distributed.fleet
as
fleet
from
paddle.fluid.incubate.fleet.base
import
role_maker
import
unittest
from
multiprocessing
import
Process
import
paddle.fluid.layers
as
layers
from
functools
import
reduce
from
test_collective_multi_nodes
import
TestCollectiveAPIRunnerBase
,
runtime_main
from
paddle
import
nn
import
numpy
as
np
from
paddle.distributed.fleet.utils
import
recompute
def
weight_init
(
mp
,
shape
,
col
=
True
,
seed
=
1024
):
np
.
random
.
seed
(
seed
)
w
=
np
.
random
.
normal
(
0
,
0.02
,
size
=
shape
)
if
mp
is
None
:
_w
=
w
else
:
if
col
:
step
=
shape
[
1
]
//
mp
.
nranks
_w
=
w
[:,
mp
.
rank
*
step
:
mp
.
rank
*
step
+
step
]
else
:
step
=
shape
[
0
]
//
mp
.
nranks
_w
=
w
[
mp
.
rank
*
step
:
mp
.
rank
*
step
+
step
,
:]
return
paddle
.
fluid
.
initializer
.
NumpyArrayInitializer
(
_w
)
class
Criterion
(
nn
.
Layer
):
def
__init__
(
self
):
super
(
Criterion
,
self
).
__init__
()
self
.
loss_func
=
nn
.
MSELoss
(
reduction
=
"mean"
)
def
forward
(
self
,
pred
,
label
):
loss
=
self
.
loss_func
(
pred
,
label
)
return
loss
class
RecomputeMatmulBlock
(
nn
.
Layer
):
def
__init__
(
self
,
mp
,
seed
,
m
,
n
,
k
):
super
(
RecomputeMatmulBlock
,
self
).
__init__
()
self
.
mp
=
mp
if
mp
is
not
None
and
mp
.
nranks
>
1
:
mp_linear_1
=
fleet
.
meta_parallel
.
ColumnParallelLinear
(
m
,
n
,
weight_attr
=
weight_init
(
mp
,
(
m
,
n
),
True
,
seed
),
has_bias
=
True
,
gather_output
=
False
)
mp_linear_2
=
fleet
.
meta_parallel
.
RowParallelLinear
(
n
,
k
,
weight_attr
=
weight_init
(
mp
,
(
n
,
k
),
False
,
seed
+
1
),
has_bias
=
True
,
input_is_parallel
=
True
)
else
:
mp_linear_1
=
nn
.
Linear
(
m
,
n
,
weight_attr
=
weight_init
(
None
,
(
m
,
n
),
True
,
seed
))
mp_linear_2
=
nn
.
Linear
(
n
,
k
,
weight_attr
=
weight_init
(
None
,
(
n
,
k
),
True
,
seed
+
1
))
self
.
layers
=
nn
.
Sequential
(
mp_linear_1
,
mp_linear_2
)
def
forward
(
self
,
x
):
if
self
.
mp
:
return
recompute
(
self
.
layers
,
x
)
else
:
return
self
.
layers
(
x
)
RecomputeBlock
=
RecomputeMatmulBlock
class
ModelPipeline
(
fleet
.
meta_parallel
.
PipelineLayer
):
def
__init__
(
self
,
hcg
):
paddle
.
seed
(
1024
)
dp_linear
=
nn
.
Linear
(
32
,
64
)
self
.
layers_pp
=
[]
self
.
topology
=
hcg
.
topology
()
self
.
layers_pp
.
append
(
dp_linear
)
mp
=
hcg
.
get_model_parallel_group
()
for
i
in
range
(
6
):
mp_layer
=
RecomputeBlock
(
mp
,
1024
+
i
,
64
,
128
,
64
)
act
=
nn
.
ReLU6
()
layer_seq
=
nn
.
Sequential
(
mp_layer
,
act
)
self
.
layers_pp
.
append
(
layer_seq
)
out
=
nn
.
Linear
(
64
,
32
)
self
.
layers_pp
.
append
(
out
)
super
(
ModelPipeline
,
self
).
__init__
(
layers
=
self
.
layers_pp
,
loss_fn
=
Criterion
(),
topology
=
self
.
topology
)
class
Model
(
nn
.
Layer
):
def
__init__
(
self
,
hcg
):
super
(
Model
,
self
).
__init__
()
paddle
.
seed
(
1024
)
dp_linear
=
nn
.
Linear
(
32
,
64
)
self
.
layers_pp
=
[]
self
.
layers_pp
.
append
(
dp_linear
)
mp
=
hcg
.
get_model_parallel_group
()
if
hcg
else
None
for
i
in
range
(
6
):
mp_layer
=
RecomputeBlock
(
mp
,
1024
+
i
,
64
,
128
,
64
)
act
=
nn
.
ReLU6
()
layer_seq
=
nn
.
Sequential
(
mp_layer
,
act
)
self
.
layers_pp
.
append
(
layer_seq
)
out
=
nn
.
Linear
(
64
,
32
)
self
.
layers_pp
.
append
(
out
)
self
.
layers
=
nn
.
Sequential
(
*
self
.
layers_pp
)
def
forward
(
self
,
x
):
return
self
.
layers
(
x
)
class
TestDygrapgHybridRecompute
(
TestCollectiveAPIRunnerBase
):
def
__init__
(
self
):
pass
def
check_pass
(
self
,
*
args
,
**
kwargs
):
from
common
import
init_parallel_env
import
paddle
from
paddle.distributed
import
fleet
hcg
=
init_parallel_env
(
"DP4-MP2-PP2-SH1-O1"
,
64
)
pp_degree
=
hcg
.
get_pipe_parallel_world_size
()
import
numpy
as
np
crit
=
Criterion
()
if
pp_degree
<=
1
:
model
=
Model
(
hcg
)
else
:
model
=
ModelPipeline
(
hcg
)
model_base
=
Model
(
None
)
optimizer
=
paddle
.
optimizer
.
Adam
(
learning_rate
=
0.01
,
parameters
=
model
.
parameters
())
optimizer_base
=
paddle
.
optimizer
.
Adam
(
learning_rate
=
0.01
,
parameters
=
model_base
.
parameters
())
model
=
fleet
.
distributed_model
(
model
)
optimizer
=
fleet
.
distributed_optimizer
(
optimizer
)
loss_hybrid_arr
=
[]
loss_base_arr
=
[]
x
=
paddle
.
to_tensor
(
np
.
random
.
random
((
16
,
32
))).
astype
(
"float32"
)
y
=
paddle
.
to_tensor
(
np
.
random
.
random
((
16
,
32
))).
astype
(
"float32"
)
for
_
in
range
(
5
):
if
pp_degree
>
1
:
loss
=
model
.
train_batch
([
x
,
y
],
optimizer
=
optimizer
)
else
:
output
=
model
(
x
)
loss
=
crit
(
output
,
y
)
loss
.
backward
()
optimizer
.
step
()
optimizer
.
clear_grad
()
# baseline loss
output_base
=
model_base
(
x
)
loss_base
=
crit
(
output_base
,
y
)
loss_base
.
backward
()
optimizer_base
.
step
()
optimizer_base
.
clear_grad
()
loss_base_arr
.
append
(
loss_base
.
numpy
())
loss_hybrid_arr
.
append
(
loss
)
assert
np
.
allclose
(
loss_base_arr
,
loss_hybrid_arr
,
rtol
=
1e-5
,
atol
=
1e-5
)
if
__name__
==
"__main__"
:
runtime_main
(
TestDygrapgHybridRecompute
,
"dpppmp"
)
python/paddle/fluid/tests/unittests/mn_dygraph_group_sharded_stage3.py
0 → 100644
浏览文件 @
f064ead6
# -*- coding: UTF-8 -*-
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
shutil
import
tempfile
import
numpy
as
np
import
argparse
import
ast
import
time
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.dygraph.nn
import
Linear
from
paddle.distributed
import
fleet
from
paddle.fluid.dygraph
import
nn
from
paddle.fluid.framework
import
_test_eager_guard
from
paddle.distributed.fleet.meta_parallel.sharding.group_sharded_optimizer_stage2
import
GroupShardedOptimizerStage2
from
paddle.distributed.fleet.meta_parallel.sharding.group_sharded_stage2
import
GroupShardedStage2
from
paddle.distributed.fleet.meta_parallel.sharding.group_sharded_stage3
import
GroupShardedStage3
from
paddle.distributed.fleet.meta_parallel.sharding.group_sharded_utils
import
GroupShardedScaler
epoch
=
10
paddle
.
seed
(
2022
)
np
.
random
.
seed
(
2022
)
base_lr
=
0.1
momentum_rate
=
0.9
l2_decay
=
1e-4
class
MLP
(
fluid
.
Layer
):
def
__init__
(
self
,
linear_size
=
1000
,
param_attr
=
None
,
bias_attr
=
None
):
super
(
MLP
,
self
).
__init__
()
self
.
_linear1
=
Linear
(
linear_size
,
linear_size
)
self
.
_linear2
=
Linear
(
linear_size
,
linear_size
)
self
.
_linear3
=
Linear
(
linear_size
,
linear_size
)
self
.
_linear4
=
Linear
(
linear_size
,
linear_size
)
self
.
_linear5
=
Linear
(
linear_size
,
10
)
def
forward
(
self
,
inputs
):
y
=
self
.
_linear1
(
inputs
)
y
=
self
.
_linear2
(
y
)
y
=
self
.
_linear3
(
y
)
y
=
self
.
_linear4
(
y
)
y
=
self
.
_linear5
(
y
)
return
y
def
reader_decorator
(
linear_size
=
1000
):
def
__reader__
():
for
_
in
range
(
100
):
img
=
np
.
random
.
rand
(
linear_size
).
astype
(
'float32'
)
label
=
np
.
ones
(
1
).
astype
(
'int64'
)
yield
img
,
label
return
__reader__
def
optimizer_setting
(
model
,
use_pure_fp16
,
opt_group
=
False
):
clip
=
paddle
.
nn
.
ClipGradByGlobalNorm
(
clip_norm
=
1.0
)
optimizer
=
paddle
.
optimizer
.
Momentum
(
parameters
=
[{
"params"
:
list
(
model
.
parameters
())
}]
if
opt_group
else
list
(
model
.
parameters
()),
learning_rate
=
0.001
,
weight_decay
=
0.00001
,
grad_clip
=
clip
,
multi_precision
=
use_pure_fp16
)
return
optimizer
def
train_mlp
(
model
,
sharding_stage
,
use_pure_fp16
=
False
,
accumulate_grad
=
False
,
batch_size
=
100
,
opt_group
=
False
,
sync_comm
=
False
,
test_minimize
=
False
,
save_model
=
False
):
group
=
paddle
.
distributed
.
new_group
(
[
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
,
12
,
13
,
14
,
15
])
if
opt_group
:
optimizer
=
optimizer_setting
(
model
=
model
,
use_pure_fp16
=
use_pure_fp16
,
opt_group
=
opt_group
)
else
:
optimizer
=
optimizer_setting
(
model
=
model
,
use_pure_fp16
=
use_pure_fp16
)
if
use_pure_fp16
:
model
=
paddle
.
amp
.
decorate
(
models
=
model
,
level
=
'O2'
,
save_dtype
=
'float32'
)
scaler
=
paddle
.
amp
.
GradScaler
(
init_loss_scaling
=
32768
)
scaler
=
GroupShardedScaler
(
scaler
)
if
sharding_stage
==
2
:
optimizer
=
GroupShardedOptimizerStage2
(
params
=
optimizer
.
_parameter_list
,
optim
=
optimizer
,
group
=
group
)
model
=
GroupShardedStage2
(
model
,
optimizer
,
group
=
group
,
buffer_max_size
=
2
**
21
)
elif
sharding_stage
==
3
:
model
=
GroupShardedStage3
(
model
,
optimizer
=
optimizer
,
group
=
group
,
sync_comm
=
sync_comm
,
segment_size
=
2
**
15
)
# check optimizer.minimize() error
if
test_minimize
:
try
:
optimizer
.
minimize
()
except
:
print
(
"====== Find sharding_stage3_optimizer.minimize() error ======"
)
return
train_reader
=
paddle
.
batch
(
reader_decorator
(),
batch_size
=
batch_size
,
drop_last
=
True
)
train_loader
=
paddle
.
io
.
DataLoader
.
from_generator
(
capacity
=
32
,
use_double_buffer
=
True
,
iterable
=
True
,
return_list
=
True
,
use_multiprocess
=
True
)
train_loader
.
set_sample_list_generator
(
train_reader
)
for
eop
in
range
(
epoch
):
model
.
train
()
for
batch_id
,
data
in
enumerate
(
train_loader
()):
img
,
label
=
data
label
.
stop_gradient
=
True
img
.
stop_gradient
=
True
with
paddle
.
amp
.
auto_cast
(
True
,
level
=
'O2'
):
out
=
model
(
img
)
loss
=
paddle
.
nn
.
functional
.
cross_entropy
(
input
=
out
,
label
=
label
)
avg_loss
=
paddle
.
mean
(
x
=
loss
.
cast
(
dtype
=
paddle
.
float32
))
if
batch_size
==
20
:
avg_loss
=
avg_loss
/
5
if
not
use_pure_fp16
:
avg_loss
.
backward
()
else
:
scaler
.
scale
(
avg_loss
).
backward
()
if
not
accumulate_grad
:
if
not
use_pure_fp16
:
optimizer
.
step
()
else
:
scaler
.
step
(
optimizer
)
scaler
.
update
()
optimizer
.
clear_grad
()
if
accumulate_grad
:
if
not
use_pure_fp16
:
optimizer
.
step
()
else
:
scaler
.
step
(
optimizer
)
scaler
.
update
()
optimizer
.
clear_grad
()
if
sharding_stage
==
3
:
model
.
get_all_parameters
()
if
save_model
:
return
model
,
optimizer
return
model
.
parameters
()
def
test_stage2_stage3
():
paddle
.
distributed
.
init_parallel_env
()
mlp
,
mlp1
,
mlp2
,
mlp3
,
mlp4
,
mlp5
,
mlp6
,
mlp7
,
mlp8
,
mlp9
,
mlp10
=
MLP
(
),
MLP
(),
MLP
(),
MLP
(),
MLP
(),
MLP
(),
MLP
(),
MLP
(),
MLP
(),
MLP
(),
MLP
()
state_dict
=
mlp
.
state_dict
()
mlp1
.
set_state_dict
(
state_dict
)
mlp2
.
set_state_dict
(
state_dict
)
mlp3
.
set_state_dict
(
state_dict
)
mlp4
.
set_state_dict
(
state_dict
)
mlp5
.
set_state_dict
(
state_dict
)
mlp6
.
set_state_dict
(
state_dict
)
mlp7
.
set_state_dict
(
state_dict
)
mlp8
.
set_state_dict
(
state_dict
)
mlp9
.
set_state_dict
(
state_dict
)
mlp10
.
set_state_dict
(
state_dict
)
# fp32
stage2_params
=
train_mlp
(
mlp1
,
sharding_stage
=
2
,
use_pure_fp16
=
False
,
opt_group
=
False
)
stage3_params
=
train_mlp
(
mlp2
,
sharding_stage
=
3
,
use_pure_fp16
=
False
,
opt_group
=
False
)
for
i
in
range
(
len
(
stage2_params
)):
np
.
testing
.
assert_allclose
(
stage2_params
[
i
].
numpy
(),
stage3_params
[
i
].
numpy
(),
rtol
=
1e-6
,
atol
=
1e-6
)
# fp32 accumulate grad
stage3_params
=
train_mlp
(
mlp3
,
sharding_stage
=
3
,
use_pure_fp16
=
False
,
accumulate_grad
=
True
,
opt_group
=
True
)
stage3_params_add
=
train_mlp
(
mlp4
,
sharding_stage
=
3
,
use_pure_fp16
=
False
,
accumulate_grad
=
True
,
batch_size
=
20
,
opt_group
=
True
)
for
i
in
range
(
len
(
stage3_params
)):
np
.
testing
.
assert_allclose
(
stage3_params
[
i
].
numpy
(),
stage3_params_add
[
i
].
numpy
(),
rtol
=
1e-6
,
atol
=
1e-4
)
# fp16
stage2_params
=
train_mlp
(
mlp5
,
sharding_stage
=
2
,
use_pure_fp16
=
True
,
opt_group
=
False
)
stage3_params
=
train_mlp
(
mlp6
,
sharding_stage
=
3
,
use_pure_fp16
=
True
,
opt_group
=
False
)
for
i
in
range
(
len
(
stage2_params
)):
np
.
testing
.
assert_allclose
(
stage2_params
[
i
].
numpy
(),
stage3_params
[
i
].
numpy
(),
rtol
=
1e-4
,
atol
=
1e-3
)
# fp16 sync_comm
stage3_params
=
train_mlp
(
mlp7
,
sharding_stage
=
3
,
use_pure_fp16
=
True
,
opt_group
=
False
)
stage3_params_re
=
train_mlp
(
mlp8
,
sharding_stage
=
3
,
use_pure_fp16
=
True
,
opt_group
=
False
,
sync_comm
=
True
)
for
i
in
range
(
len
(
stage3_params
)):
np
.
testing
.
assert_allclose
(
stage3_params
[
i
].
numpy
(),
stage3_params_re
[
i
].
numpy
(),
rtol
=
1e-6
)
# save/load model
output_dir
=
tempfile
.
mkdtemp
()
try
:
model_file
=
os
.
path
.
join
(
output_dir
,
"model.pdmodel"
)
optimizer_file
=
os
.
path
.
join
(
output_dir
,
"model.pdopt"
)
model_stage3
,
optimizer_stage3
=
train_mlp
(
mlp9
,
sharding_stage
=
3
,
use_pure_fp16
=
False
,
opt_group
=
False
,
save_model
=
True
)
paddle
.
save
(
model_stage3
.
state_dict
(),
model_file
)
paddle
.
save
(
optimizer_stage3
.
state_dict
(),
optimizer_file
)
m_state_dict
=
paddle
.
load
(
model_file
)
opt_state_dict
=
paddle
.
load
(
optimizer_file
)
model_stage3
.
set_state_dict
(
m_state_dict
)
optimizer_stage3
.
set_state_dict
(
opt_state_dict
)
except
Exception
as
e
:
shutil
.
rmtree
(
output_dir
)
raise
e
else
:
shutil
.
rmtree
(
output_dir
)
# check optimizer.minimize() error
train_mlp
(
mlp10
,
sharding_stage
=
3
,
use_pure_fp16
=
False
,
opt_group
=
False
,
test_minimize
=
True
)
if
__name__
==
'__main__'
:
with
_test_eager_guard
():
test_stage2_stage3
()
python/paddle/fluid/tests/unittests/mn_dygraph_sharding_stage2.py
0 → 100644
浏览文件 @
f064ead6
# -*- coding: UTF-8 -*-
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
shutil
import
numpy
as
np
import
argparse
import
tempfile
import
ast
import
time
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.dygraph.nn
import
Linear
from
paddle.distributed
import
fleet
from
paddle.fluid.dygraph
import
nn
from
paddle.fluid.framework
import
_test_eager_guard
from
paddle.distributed.fleet.meta_optimizers.dygraph_optimizer.sharding_optimizer_stage2
import
ShardingOptimizerStage2
from
paddle.distributed.fleet.meta_parallel.sharding.sharding_stage2
import
ShardingStage2
seed
=
2022
epoch
=
2
linear_size
=
1000
strategy
=
fleet
.
DistributedStrategy
()
strategy
.
hybrid_configs
=
{
"dp_degree"
:
16
,
"mp_degree"
:
1
,
"pp_degree"
:
1
,
"sharding_degree"
:
1
}
np
.
random
.
seed
(
seed
)
paddle
.
seed
(
seed
)
class
MLP
(
fluid
.
Layer
):
def
__init__
(
self
,
linear_size
=
1000
,
param_attr
=
None
,
bias_attr
=
None
):
super
(
MLP
,
self
).
__init__
()
self
.
_linear1
=
Linear
(
linear_size
,
linear_size
)
self
.
_linear2
=
Linear
(
linear_size
,
linear_size
)
self
.
_linear3
=
Linear
(
linear_size
,
linear_size
)
self
.
_linear4
=
Linear
(
linear_size
,
linear_size
)
self
.
_linear5
=
Linear
(
linear_size
,
10
)
def
forward
(
self
,
inputs
):
y
=
self
.
_linear1
(
inputs
)
y
=
self
.
_linear2
(
y
)
y
=
self
.
_linear3
(
y
)
y
=
self
.
_linear4
(
y
)
y
=
self
.
_linear5
(
y
)
return
y
def
reader_decorator
(
linear_size
=
1000
):
def
__reader__
():
for
_
in
range
(
100
):
img
=
np
.
random
.
rand
(
linear_size
).
astype
(
'float32'
)
label
=
np
.
ones
(
1
).
astype
(
'int64'
)
yield
img
,
label
return
__reader__
def
optimizer_setting
(
model
,
use_pure_fp16
,
opt_group
=
False
):
clip
=
paddle
.
nn
.
ClipGradByGlobalNorm
(
clip_norm
=
1.0
)
optimizer
=
paddle
.
optimizer
.
AdamW
(
parameters
=
[{
"params"
:
model
.
parameters
()
}]
if
opt_group
else
model
.
parameters
(),
learning_rate
=
0.001
,
weight_decay
=
0.00001
,
grad_clip
=
clip
,
multi_precision
=
use_pure_fp16
)
return
optimizer
def
train_mlp
(
model
,
sharding_stage
,
batch_size
=
100
,
use_pure_fp16
=
False
,
accumulate_grad
=
False
,
opt_group
=
False
,
save_model
=
False
):
if
sharding_stage
==
"dp"
:
hcg
=
fleet
.
get_hybrid_communicate_group
()
group
=
hcg
.
get_check_parallel_group
()
else
:
group
=
paddle
.
distributed
.
new_group
(
[
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
,
12
,
13
,
14
,
15
])
if
opt_group
:
optimizer
=
optimizer_setting
(
model
=
model
,
use_pure_fp16
=
use_pure_fp16
,
opt_group
=
opt_group
)
else
:
optimizer
=
optimizer_setting
(
model
=
model
,
use_pure_fp16
=
use_pure_fp16
)
if
sharding_stage
==
2
:
optimizer
=
ShardingOptimizerStage2
(
params
=
model
.
parameters
(),
optim
=
optimizer
,
group
=
group
)
model
=
ShardingStage2
(
model
,
optimizer
,
group
=
group
,
buffer_max_size
=
2
**
21
)
else
:
optimizer
=
fleet
.
distributed_optimizer
(
optimizer
)
model
=
fleet
.
distributed_model
(
model
)
train_reader
=
paddle
.
batch
(
reader_decorator
(),
batch_size
=
batch_size
,
drop_last
=
True
)
train_loader
=
paddle
.
io
.
DataLoader
.
from_generator
(
capacity
=
32
,
use_double_buffer
=
True
,
iterable
=
True
,
return_list
=
True
,
use_multiprocess
=
True
)
train_loader
.
set_sample_list_generator
(
train_reader
)
if
sharding_stage
==
2
:
model
.
to
(
device
=
"gpu"
)
for
eop
in
range
(
epoch
):
model
.
train
()
for
batch_id
,
data
in
enumerate
(
train_loader
()):
img
,
label
=
data
label
.
stop_gradient
=
True
img
.
stop_gradient
=
True
out
=
model
(
img
)
loss
=
paddle
.
nn
.
functional
.
cross_entropy
(
input
=
out
,
label
=
label
)
avg_loss
=
paddle
.
mean
(
x
=
loss
.
cast
(
dtype
=
paddle
.
float32
))
if
batch_size
==
20
:
avg_loss
=
avg_loss
/
5
avg_loss
.
backward
()
if
not
accumulate_grad
:
optimizer
.
step
()
optimizer
.
clear_grad
()
if
accumulate_grad
:
optimizer
.
step
()
optimizer
.
clear_grad
()
if
save_model
:
return
model
,
optimizer
return
model
.
parameters
()
def
test_dp_stage2
():
mlp
=
MLP
()
state_dict
=
mlp
.
state_dict
()
mlp1
=
MLP
()
mlp2
=
MLP
()
mlp3
=
MLP
()
mlp4
=
MLP
()
mlp5
=
MLP
()
mlp6
=
MLP
()
mlp1
.
set_state_dict
(
state_dict
)
mlp2
.
set_state_dict
(
state_dict
)
mlp3
.
set_state_dict
(
state_dict
)
mlp4
.
set_state_dict
(
state_dict
)
mlp5
.
set_state_dict
(
state_dict
)
mlp6
.
set_state_dict
(
state_dict
)
# DP VS stage2
dp_params
=
train_mlp
(
mlp1
,
sharding_stage
=
"dp"
,
use_pure_fp16
=
False
,
opt_group
=
False
)
stage2_params
=
train_mlp
(
mlp2
,
sharding_stage
=
2
,
use_pure_fp16
=
False
,
opt_group
=
False
)
for
i
in
range
(
len
(
dp_params
)):
np
.
testing
.
assert_allclose
(
dp_params
[
i
].
numpy
(),
stage2_params
[
i
].
numpy
(),
rtol
=
1e-6
,
atol
=
5e-4
)
# stage2 accumulate grad
stage2_params
=
train_mlp
(
mlp3
,
sharding_stage
=
2
,
accumulate_grad
=
True
)
stage2_accumulate_grad
=
train_mlp
(
mlp4
,
sharding_stage
=
2
,
batch_size
=
20
,
accumulate_grad
=
True
)
for
i
in
range
(
len
(
stage2_params
)):
np
.
testing
.
assert_allclose
(
stage2_params
[
i
].
numpy
(),
stage2_accumulate_grad
[
i
].
numpy
(),
rtol
=
1e-5
,
atol
=
1e-5
)
# stage2 param list VS param group
stage2_params
=
train_mlp
(
mlp5
,
sharding_stage
=
2
,
use_pure_fp16
=
False
,
opt_group
=
True
)
for
i
in
range
(
len
(
dp_params
)):
np
.
testing
.
assert_allclose
(
dp_params
[
i
].
numpy
(),
stage2_params
[
i
].
numpy
(),
rtol
=
1e-6
,
atol
=
5e-4
)
# save/load model
output_dir
=
tempfile
.
mkdtemp
()
try
:
model_file
=
os
.
path
.
join
(
output_dir
,
"model.pdmodel"
)
optimizer_file
=
os
.
path
.
join
(
output_dir
,
"model.pdopt"
)
model_stage2
,
optimizer_stage2
=
train_mlp
(
mlp6
,
sharding_stage
=
2
,
use_pure_fp16
=
False
,
opt_group
=
False
,
save_model
=
True
)
paddle
.
save
(
model_stage2
.
state_dict
(),
model_file
)
paddle
.
save
(
optimizer_stage2
.
state_dict
(),
optimizer_file
)
m_state_dict
=
paddle
.
load
(
model_file
)
opt_state_dict
=
paddle
.
load
(
optimizer_file
)
model_stage2
.
set_state_dict
(
m_state_dict
)
optimizer_stage2
.
set_state_dict
(
opt_state_dict
)
except
Exception
as
e
:
shutil
.
rmtree
(
output_dir
)
raise
e
else
:
shutil
.
rmtree
(
output_dir
)
if
__name__
==
'__main__'
:
with
_test_eager_guard
():
pass
fleet
.
init
(
is_collective
=
True
,
strategy
=
strategy
)
test_dp_stage2
()
python/paddle/fluid/tests/unittests/multinode_dist_test.sh
0 → 100644
浏览文件 @
f064ead6
#!/bin/bash
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
unset
https_proxy http_proxy
export
FLAGS_rpc_disable_reuse_port
=
1
export
MPIRUN
=
${
EXE_MPIRUN
:-
""
}
# MPIRUN="mpirun"
name
=
${
TEST_TARGET_NAME
}
TEST_TIMEOUT
=
${
TEST_TIMEOUT
}
if
[[
${
name
}
"x"
==
"x"
]]
;
then
echo
"can't find
${
name
}
, please set
${
TEST_TARGET_NAME
}
first"
exit
1
fi
if
[[
${
TEST_TIMEOUT
}
"x"
==
"x"
]]
;
then
echo
"can't find
${
TEST_TIMEOUT
}
, please set
${
TEST_TIMEOUT
}
first"
exit
1
fi
# rm flag file
rm
-f
${
name
}
_
*
.log
# start the unit test
run_time
=
$((
$TEST_TIMEOUT
-
10
))
echo
"run_time:
${
run_time
}
"
if
[[
${
WITH_COVERAGE
}
==
"ON"
]]
;
then
PYTHON_EXEC
=
"python3 -u -m coverage run --branch -p "
else
PYTHON_EXEC
=
"python3 -u "
fi
unset
PYTHONPATH
timeout
-s
SIGKILL
${
run_time
}
${
MPIRUN
}
${
PYTHON_EXEC
}
${
name
}
.py
>
${
name
}
_run.log 2>&1
exit_code
=
$?
if
[[
$exit_code
-eq
0
]]
;
then
exit
0
fi
echo
"
${
name
}
faild with
${
exit_code
}
"
echo
"after run
${
name
}
"
ps
-aux
netstat
-anlp
# paddle log
echo
"
${
name
}
log"
for
log
in
`
ls
${
name
}
_
*
.log
`
do
printf
"
\n
cat
${
log
}
\n
"
cat
-n
${
log
}
done
# check CUDA or ROCM env
GPU_SYS_INFO_CMD
=
nvidia-smi
which
${
GPU_SYS_INFO_CMD
}
exit_code
=
$?
if
[[
$exit_code
-ne
0
]]
;
then
GPU_SYS_INFO_CMD
=
rocm-smi
fi
which
${
GPU_SYS_INFO_CMD
}
exit_code
=
$?
if
[[
$exit_code
-ne
0
]]
;
then
echo
"nvidia-smi or rocm-smi faild with
${
exit_code
}
"
exit
${
exit_code
}
fi
#display system context
for
i
in
{
1..2
}
;
do
sleep
3
ps
-aux
netstat
-anlp
if
hash
"
${
GPU_SYS_INFO_CMD
}
"
>
/dev/null
;
then
${
GPU_SYS_INFO_CMD
}
fi
done
echo
"dist space:"
df
-h
#display /tmp/files
echo
"ls /tmp/paddle.*"
ls
-l
/tmp/paddle.
*
echo
"ls -l ./"
ls
-l
./
exit
1
python/paddle/fluid/tests/unittests/test_collective_multi_nodes.py
0 → 100644
浏览文件 @
f064ead6
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
import
unittest
import
time
import
argparse
import
os
import
sys
import
subprocess
import
traceback
import
functools
import
pickle
import
tempfile
from
contextlib
import
closing
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.unique_name
as
nameGen
from
paddle.fluid
import
core
import
socket
class
TestCollectiveAPIRunnerBase
(
object
):
def
check_pass
(
self
,
*
args
,
**
kwargs
):
raise
NotImplementedError
(
"get model should be implemented by child class."
)
def
run_trainer
(
self
,
*
args
,
**
kwargs
):
self
.
check_pass
(
*
args
,
**
kwargs
)
def
runtime_main
(
test_class
,
col_type
=
None
):
args
=
{}
model
=
test_class
()
args
[
"static_mode"
]
=
0
model
.
run_trainer
(
**
args
)
class
TestDistBase
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
_trainers
=
4
self
.
_init_env
()
def
_init_env
(
self
):
self
.
_python_interp
=
sys
.
executable
self
.
temp_dir
=
tempfile
.
TemporaryDirectory
()
def
check_with_place
(
self
,
model_file
,
backend
=
"nccl"
,
static_mode
=
False
,
check_error_log
=
False
,
need_envs
=
{},
eager_mode
=
True
,
args
=
[],
kwargs
=
{}):
required_envs
=
{
"FLAGS_fraction_of_gpu_memory_to_use"
:
"0.15"
,
"FLAGS_eager_delete_tensor_gb"
:
"0.0"
,
"PATH"
:
os
.
getenv
(
"PATH"
),
"PYTHONPATH"
:
os
.
getenv
(
"PYTHONPATH"
,
""
),
"LD_LIBRARY_PATH"
:
os
.
getenv
(
"LD_LIBRARY_PATH"
,
""
),
"LD_PRELOAD"
:
os
.
getenv
(
"LD_PRELOAD"
,
""
),
"FLAGS_call_stack_level"
:
"2"
,
"GLOG_v"
:
"0"
,
"NCCL_P2P_DISABLE"
:
"1"
,
"PADDLE_WITH_GLOO"
:
"0"
,
"BACKEND"
:
backend
,
"PADDLE_DISTRI_BACKEND"
:
backend
,
"PADDLE_USE_GPU"
:
"1"
}
required_envs
.
update
(
need_envs
)
if
check_error_log
:
required_envs
[
"GLOG_v"
]
=
"0"
required_envs
[
"GLOG_logtostderr"
]
=
"1"
required_envs
[
"GLOO_LOG_LEVEL"
]
=
"TRACE"
if
eager_mode
:
required_envs
[
"FLAGS_enable_eager_mode"
]
=
"%d"
%
1
else
:
required_envs
[
"FLAGS_enable_eager_mode"
]
=
"%d"
%
0
self
.
_run_cluster
(
model_file
,
required_envs
)
def
_run_cluster
(
self
,
model_file
,
envs
):
run_cluster_process
=
f
"
{
self
.
_python_interp
}
-u -m paddle.distributed.launch --log_dir
{
self
.
temp_dir
.
name
}
{
model_file
}
"
filted_envs
=
dict
()
for
k
in
envs
.
keys
():
if
"PADDLE_"
==
k
[:
7
]
and
k
not
in
[
"PADDLE_NNODES"
,
"PADDLE_MASTER"
]:
continue
filted_envs
[
k
]
=
envs
[
k
]
launcher
=
subprocess
.
Popen
(
run_cluster_process
.
strip
().
split
(),
stdout
=
sys
.
stderr
,
stderr
=
sys
.
stdout
,
env
=
filted_envs
)
launcher
.
communicate
(
timeout
=
240
)
if
launcher
.
poll
()
is
None
:
self
.
temp_dir
.
cleanup
()
raise
TimeoutError
elif
launcher
.
poll
()
!=
0
:
self
.
temp_dir
.
cleanup
()
raise
RuntimeError
(
"test failed!"
)
self
.
temp_dir
.
cleanup
()
python/paddle/fluid/tests/unittests/test_multinode_dygraph_hybrid_dp.py
0 → 100755
浏览文件 @
f064ead6
#!/usr/bin/python3
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
paddle
from
test_collective_multi_nodes
import
TestDistBase
import
os
class
TestDYgraphDPMode
(
TestDistBase
):
def
setUp
(
self
):
self
.
_trainers
=
16
self
.
_init_env
()
def
test_col_parallel_linear
(
self
):
self
.
check_with_place
(
"dygraph_hybrid_dp.py"
,
backend
=
"nccl"
,
need_envs
=
os
.
environ
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_multinode_dygraph_hybrid_dpppmp.py
0 → 100755
浏览文件 @
f064ead6
#!/usr/bin/python3
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
paddle
from
test_collective_multi_nodes
import
TestDistBase
import
os
class
TestDYgraphHybrid
(
TestDistBase
):
def
setUp
(
self
):
self
.
_trainers
=
16
self
.
_init_env
()
def
test_hybrid_dpppmp
(
self
):
self
.
check_with_place
(
"dygraph_hybrid_dpppmp.py"
,
backend
=
"nccl"
,
need_envs
=
os
.
environ
)
def
test_hybrid_recompute
(
self
):
self
.
check_with_place
(
"dygraph_hybrid_recompute.py"
,
backend
=
"nccl"
,
need_envs
=
os
.
environ
)
def
test_hybrid_fp16
(
self
):
self
.
check_with_place
(
"dygraph_hybrid_fp16.py"
,
backend
=
"nccl"
,
need_envs
=
os
.
environ
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_multinode_dygraph_sharding.py
0 → 100755
浏览文件 @
f064ead6
#!/usr/bin/python3
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
paddle
from
test_collective_multi_nodes
import
TestDistBase
import
os
class
TestDYgrapShardingDP
(
TestDistBase
):
def
setUp
(
self
):
self
.
_trainers
=
16
self
.
_init_env
()
def
test_hybrid_sharding_stage2
(
self
):
self
.
check_with_place
(
"mn_dygraph_sharding_stage2.py"
,
backend
=
"nccl"
,
need_envs
=
os
.
environ
)
def
test_hybrid_sharding_stage3
(
self
):
self
.
check_with_place
(
"mn_dygraph_group_sharded_stage3.py"
,
backend
=
"nccl"
,
need_envs
=
os
.
environ
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录