提交 f05c7fb8 编写于 作者: N nhzlx

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into add_tensorrt_conv2d_converter

......@@ -85,8 +85,7 @@ def dist_transpile(trainer_id, args):
trainer_id,
pservers=pserver_endpoints,
trainers=trainers,
sync_mode=not args.async_mode,
slice_var_up=not args.no_split_var)
sync_mode=not args.async_mode)
if training_role == "PSERVER":
pserver_program = t.get_pserver_program(current_endpoint)
pserver_startup_program = t.get_startup_program(current_endpoint,
......
......@@ -50,7 +50,7 @@ ExternalProject_Add(
UPDATE_COMMAND ""
CONFIGURE_COMMAND ""
BUILD_IN_SOURCE 1
PATCH_COMMAND git apply ${PADDLE_SOURCE_DIR}/patches/grpc/fix_too_early_destory.patch
PATCH_COMMAND cp ${PADDLE_SOURCE_DIR}/patches/grpc/grpc_library.h ${GRPC_SOURCES_DIR}/src/extern_grpc/include/grpcpp/impl/codegen/grpc_library.h && cp ${PADDLE_SOURCE_DIR}/patches/grpc/completion_queue.h ${GRPC_SOURCES_DIR}/src/extern_grpc/include/grpcpp/impl/codegen/completion_queue.h
# NOTE(yuyang18):
# Disable -Werror, otherwise the compile will fail in MacOS.
# It seems that we cannot configure that by make command.
......
......@@ -263,7 +263,7 @@ function(cc_test TARGET_NAME)
COMMAND ${TARGET_NAME} ${cc_test_ARGS}
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
if (${cc_test_SERIAL})
set_property(TEST ${TARGET_NAME} PROPERTY SERIAL 1)
set_property(TEST ${TARGET_NAME} PROPERTY RUN_SERIAL 1)
set_property(TEST ${TARGET_NAME} PROPERTY ENVIRONMENT FLAGS_init_allocated_mem=true)
endif()
endif()
......@@ -328,7 +328,7 @@ function(nv_test TARGET_NAME)
add_dependencies(${TARGET_NAME} ${nv_test_DEPS} paddle_gtest_main lod_tensor memory gtest gflags glog)
add_test(${TARGET_NAME} ${TARGET_NAME})
if (nv_test_SERIAL)
set_property(TEST ${TARGET_NAME} PROPERTY SERIAL 1)
set_property(TEST ${TARGET_NAME} PROPERTY RUN_SERIAL 1)
set_property(TEST ${TARGET_NAME} PROPERTY ENVIRONMENT FLAGS_init_allocated_mem=true)
endif()
endif()
......
......@@ -148,18 +148,11 @@ if (WITH_ANAKIN AND WITH_GPU)
list(APPEND inference_deps anakin_inference_lib)
endif()
copy(inference_api_lib DEPS paddle_inference_api paddle_inference_api_shared
SRCS ${src_dir}/${module}/paddle_inference_api.h
${src_dir}/${module}/demo_ci
${PADDLE_BINARY_DIR}/paddle/fluid/inference/api/libpaddle_inference_api*
DSTS ${dst_dir}/inference ${dst_dir}/inference ${dst_dir}/inference
)
list(APPEND inference_deps inference_api_lib)
set(module "inference")
copy(inference_lib DEPS ${inference_deps}
SRCS ${src_dir}/${module}/*.h ${PADDLE_BINARY_DIR}/paddle/fluid/inference/libpaddle_fluid.*
DSTS ${dst_dir}/${module} ${dst_dir}/${module}
${src_dir}/${module}/api/paddle_inference_api.h ${src_dir}/${module}/api/demo_ci
DSTS ${dst_dir}/${module} ${dst_dir}/${module} ${dst_dir}/${module} ${dst_dir}/${module}
)
set(module "platform")
......
......@@ -8,9 +8,9 @@ cc_test(ddim_test SRCS ddim_test.cc DEPS ddim)
nv_test(dim_test SRCS dim_test.cu DEPS ddim)
cc_library(data_type SRCS data_type.cc DEPS framework_proto ddim device_context)
if(WITH_GPU)
nv_library(tensor SRCS tensor.cc tensor_util.cu DEPS place memory data_type)
nv_library(tensor SRCS tensor.cc tensor_util.cu DEPS place memory data_type device_context)
else()
cc_library(tensor SRCS tensor.cc tensor_util.cc DEPS place memory data_type)
cc_library(tensor SRCS tensor.cc tensor_util.cc DEPS place memory data_type device_context)
endif()
cc_test(tensor_test SRCS tensor_test.cc DEPS tensor)
......@@ -110,7 +110,7 @@ cc_test(selected_rows_test SRCS selected_rows_test.cc DEPS selected_rows)
cc_test(op_kernel_type_test SRCS op_kernel_type_test.cc DEPS place device_context framework_proto)
cc_test(cow_ptr_tests SRCS details/cow_ptr_test.cc)
# cc_test(channel_test SRCS channel_test.cc)
cc_test(tuple_test SRCS tuple_test.cc )
......
......@@ -715,6 +715,7 @@ void MultiDevSSAGraphBuilder::CreateRPCOp(ir::Graph *result,
result->CreateOpNode(node->Op()), *node->Op(), local_scopes_[op_dev_id],
node->Op()->Type(), places_[op_dev_id]));
// TODO(panyx0718): This might not be needed anymore.
if (node->Op()->Type() == "send_barrier") {
ConnectOp(result, result->Get<GraphOps>("ops").back().get(), "send");
} else if (node->Op()->Type() == "recv") {
......
......@@ -24,6 +24,68 @@ namespace paddle {
namespace framework {
namespace ir {
std::vector<std::string> FindDistTrainSendVars(
const std::vector<ir::Node *> &nodes) {
std::vector<std::string> send_vars;
// since parameters are all in block 0,
// it's enough to only scan send ops in block 0
for (auto &node : nodes) {
auto op_vars = node->Op()->InputArgumentNames();
send_vars.reserve(send_vars.size() +
std::distance(op_vars.begin(), op_vars.end()));
send_vars.insert(send_vars.end(), op_vars.begin(), op_vars.end());
}
return send_vars;
}
std::vector<std::string> FindDistTrainRecvVars(
const std::vector<ir::Node *> &nodes) {
std::vector<std::string> recv_vars;
for (auto &node : nodes) {
auto op_vars = node->Op()->OutputArgumentNames();
recv_vars.reserve(recv_vars.size() +
std::distance(op_vars.begin(), op_vars.end()));
recv_vars.insert(recv_vars.end(), op_vars.begin(), op_vars.end());
}
return recv_vars;
}
bool IsDistTrainOp(ir::Node *node, const std::vector<std::string> &send_vars,
const std::vector<std::string> &recv_vars) {
if (send_vars.size() == 0 || recv_vars.size() == 0) {
return false;
}
/**
* Check any of opvars contains `.block` and in sendvars
*/
auto checker = [](const std::vector<std::string> &opvars,
const std::vector<std::string> &rpc_vars) -> bool {
for (auto &var : opvars) {
// a variable name with the suffix `.block` means it's a splited
// variable by (DistributeTranspiler)
// [python/paddle/fluid/transpiler/distribute_transpiler.py]
if (var.find(".block") != std::string::npos &&
std::find(rpc_vars.begin(), rpc_vars.end(), var) != rpc_vars.end()) {
return true;
}
}
return false;
};
std::vector<std::string> input_var_names;
std::vector<std::string> output_var_names;
for (ir::Node *input : node->inputs) {
input_var_names.push_back(input->Name());
}
for (ir::Node *output : node->outputs) {
output_var_names.push_back(output->Name());
}
return checker(output_var_names, send_vars) ||
checker(input_var_names, recv_vars);
}
Graph::Graph(const ProgramDesc &program) : program_(program) {
VLOG(3) << "block in program:" << program_.Size();
std::unordered_map<std::string, VarDesc *> all_vars;
......@@ -61,6 +123,64 @@ Graph::Graph(const ProgramDesc &program) : program_(program) {
var->inputs.push_back(node);
}
}
std::vector<ir::Node *> send_ops;
ir::Node *send_bar = nullptr;
std::vector<ir::Node *> recv_ops;
ir::Node *fetch_bar = nullptr;
for (ir::Node *node : Nodes()) {
if (node->Name() == "send") {
send_ops.push_back(node);
} else if (node->Name() == "send_barrier") {
PADDLE_ENFORCE(!send_bar, "only has one send barrier");
send_bar = node;
} else if (node->Name() == "recv") {
recv_ops.push_back(node);
} else if (node->Name() == "fetch_barrier") {
PADDLE_ENFORCE(!fetch_bar, "only has one fetch barrier");
fetch_bar = node;
}
}
if (send_bar) {
for (ir::Node *send : send_ops) {
ir::Node *dep_var = CreateControlDepVar();
send->outputs.push_back(dep_var);
dep_var->inputs.push_back(send);
send_bar->inputs.push_back(dep_var);
dep_var->outputs.push_back(send_bar);
}
for (ir::Node *recv : recv_ops) {
ir::Node *dep_var = CreateControlDepVar();
recv->inputs.push_back(dep_var);
dep_var->outputs.push_back(recv);
send_bar->outputs.push_back(dep_var);
dep_var->inputs.push_back(send_bar);
}
}
if (fetch_bar) {
for (ir::Node *recv : recv_ops) {
ir::Node *dep_var = CreateControlDepVar();
recv->outputs.push_back(dep_var);
dep_var->inputs.push_back(recv);
fetch_bar->inputs.push_back(dep_var);
dep_var->outputs.push_back(fetch_bar);
}
}
std::vector<std::string> send_vars = FindDistTrainSendVars(send_ops);
std::vector<std::string> recv_vars = FindDistTrainRecvVars(recv_ops);
for (ir::Node *node : Nodes()) {
if (IsDistTrainOp(node, send_vars, recv_vars)) {
if (fetch_bar && node->Name() == "concat") {
ir::Node *dep_var = CreateControlDepVar();
fetch_bar->outputs.push_back(dep_var);
dep_var->inputs.push_back(fetch_bar);
node->inputs.push_back(dep_var);
dep_var->outputs.push_back(node);
}
}
}
/**
* We only handle write after read(WAR), since it should not have a write
* after write in program. If there are write after write operators, we need
......
......@@ -679,6 +679,8 @@ void OperatorWithKernel::RunImpl(const Scope& scope,
if (var == nullptr) continue;
if (var->IsType<framework::LoDTensor>()) {
CheckTensorNANOrInf(vname, var->Get<framework::LoDTensor>());
} else if (var->IsType<framework::SelectedRows>()) {
CheckTensorNANOrInf(vname, var->Get<framework::SelectedRows>().value());
}
}
}
......
......@@ -14,8 +14,15 @@ cc_library(paddle_fluid_api
get_property(fluid_modules GLOBAL PROPERTY FLUID_MODULES)
# paddle_fluid_origin exclude inference api interface
cc_library(paddle_fluid_origin DEPS ${fluid_modules} paddle_fluid_api)
if(NOT APPLE)
add_subdirectory(api)
endif()
# Create static library
cc_library(paddle_fluid DEPS ${fluid_modules} paddle_fluid_api)
cc_library(paddle_fluid DEPS ${fluid_modules} paddle_fluid_api paddle_inference_api)
if(NOT APPLE)
# TODO(liuyiqu: Temporarily disable the link flag because it is not support on Mac.
set(LINK_FLAGS "-Wl,--retain-symbols-file ${CMAKE_CURRENT_SOURCE_DIR}/paddle_fluid.sym")
......@@ -24,7 +31,7 @@ endif()
# Create shared library
cc_library(paddle_fluid_shared SHARED
SRCS io.cc
SRCS io.cc ${CMAKE_CURRENT_SOURCE_DIR}/api/api.cc ${CMAKE_CURRENT_SOURCE_DIR}/api/api_impl.cc
DEPS ${fluid_modules} paddle_fluid_api)
set_target_properties(paddle_fluid_shared PROPERTIES OUTPUT_NAME paddle_fluid)
......@@ -32,12 +39,21 @@ if(NOT APPLE)
# TODO(liuyiqun): Temporarily disable the link flag because it is not support on Mac.
set(LINK_FLAGS "-Wl,--version-script ${CMAKE_CURRENT_SOURCE_DIR}/paddle_fluid.map")
set_target_properties(paddle_fluid_shared PROPERTIES LINK_FLAGS "${LINK_FLAGS}")
# check symbol hidden
FILE(WRITE ${CMAKE_CURRENT_BINARY_DIR}/check_symbol.cmake
"execute_process(COMMAND bash -c \"${CMAKE_CURRENT_SOURCE_DIR}/check_symbol.sh"
" ${CMAKE_CURRENT_BINARY_DIR}/libpaddle_fluid.so\" RESULT_VARIABLE symbol_res)\n"
"if(NOT \"\${symbol_res}\" STREQUAL \"0\")\n"
" message(FATAL_ERROR \"Check symbol failed.\")\n"
"endif()\n")
add_custom_command(
OUTPUT "${CMAKE_CURRENT_BINARY_DIR}/.check_symbol"
COMMAND ${CMAKE_COMMAND} -P "${CMAKE_CURRENT_BINARY_DIR}/check_symbol.cmake"
DEPENDS paddle_fluid_shared)
add_custom_target(check_symbol ALL DEPENDS "${CMAKE_CURRENT_BINARY_DIR}/.check_symbol")
endif()
if(WITH_TESTING)
# both tests/book and analysis depends the models that generated by python/paddle/fluid/tests/book
add_subdirectory(tests/book)
endif()
if(NOT APPLE)
add_subdirectory(api)
endif()
......@@ -42,35 +42,8 @@ function(inference_api_test TARGET_NAME)
endif(WITH_TESTING)
endfunction(inference_api_test)
cc_library(paddle_inference_api
SRCS api.cc api_impl.cc
DEPS ${FLUID_CORE_MODULES} ${GLOB_OP_LIB})
if(NOT APPLE)
set(LINK_FLAGS "-Wl,--retain-symbols-file ${CMAKE_CURRENT_SOURCE_DIR}/api.sym")
set_target_properties(paddle_inference_api PROPERTIES LINK_FLAGS "${LINK_FLAGS}")
endif()
# Here the shared library doesn't depend on other fluid libraries, or double free will occur.
cc_library(paddle_inference_api_shared SHARED
SRCS api.cc api_impl.cc)
add_dependencies(paddle_inference_api_shared ${FLUID_CORE_MODULES} ${GLOB_OP_LIB})
set_target_properties(paddle_inference_api_shared PROPERTIES OUTPUT_NAME paddle_inference_api)
cc_library(paddle_inference_api SRCS api.cc api_impl.cc DEPS lod_tensor)
if(NOT APPLE)
set(LINK_FLAGS "-Wl,--version-script ${CMAKE_CURRENT_SOURCE_DIR}/api.map")
set_target_properties(paddle_inference_api_shared PROPERTIES LINK_FLAGS "${LINK_FLAGS}")
FILE(WRITE ${CMAKE_CURRENT_BINARY_DIR}/check_symbol.cmake
"execute_process(COMMAND bash -c \"${CMAKE_CURRENT_SOURCE_DIR}/check_symbol.sh"
" ${CMAKE_CURRENT_BINARY_DIR}/libpaddle_inference_api.so\" RESULT_VARIABLE symbol_res)\n"
"if(NOT \"\${symbol_res}\" STREQUAL \"0\")\n"
" message(FATAL_ERROR \"Check symbol failed.\")\n"
"endif()\n")
add_custom_command(
OUTPUT "${CMAKE_CURRENT_BINARY_DIR}/.check_symbol"
COMMAND ${CMAKE_COMMAND} -P "${CMAKE_CURRENT_BINARY_DIR}/check_symbol.cmake"
DEPENDS paddle_inference_api_shared)
add_custom_target(check_symbol ALL DEPENDS "${CMAKE_CURRENT_BINARY_DIR}/.check_symbol")
endif()
cc_test(test_paddle_inference_api
SRCS api_tester.cc
......
......@@ -55,11 +55,9 @@ endif()
# Note: libpaddle_inference_api.so/a must put before libpaddle_fluid.so/a
if(WITH_STATIC_LIB)
set(DEPS
${PADDLE_LIB}/paddle/fluid/inference/libpaddle_inference_api.a
${PADDLE_LIB}/paddle/fluid/inference/libpaddle_fluid.a)
else()
set(DEPS
${PADDLE_LIB}/paddle/fluid/inference/libpaddle_inference_api.so
${PADDLE_LIB}/paddle/fluid/inference/libpaddle_fluid.so)
endif()
set(EXTERNAL_LIB "-lrt -ldl -lpthread")
......
......@@ -3,8 +3,8 @@
lib=$1
if [ $# -ne 1 ]; then echo "No input library"; exit -1 ; fi
num_paddle_syms=$(nm -D --defined-only ${lib} | grep paddle | wc -l)
num_google_syms=$(nm -D --defined-only ${lib} | grep google | wc -l)
num_paddle_syms=$(nm -D ${lib} | grep paddle | wc -l)
num_google_syms=$(nm -D ${lib} | grep google | grep -v paddle | grep T | wc -l)
if [ $num_paddle_syms -le 0 ]; then echo "Have no paddle symbols"; exit -1 ; fi
if [ $num_google_syms -ge 1 ]; then echo "Have some google symbols"; exit -1 ; fi
......
# Add TRT tests
nv_library(tensorrt_converter
SRCS mul_op.cc conv2d_op.cc fc_op.cc pool2d_op.cc
DEPS tensorrt_engine mul_op)
DEPS tensorrt_engine operator scope framework_proto op_registry)
nv_test(test_op_converter SRCS test_op_converter.cc DEPS
${FLUID_CORE_MODULES} tensorrt_engine tensorrt_converter)
......
......@@ -49,5 +49,4 @@ class MulOpConverter : public OpConverter {
} // namespace inference
} // namespace paddle
USE_OP(mul);
REGISTER_TRT_OP_CONVERTER(mul, MulOpConverter);
......@@ -17,7 +17,7 @@ function(inference_test TARGET_NAME)
string(REGEX REPLACE "^_$" "" arg "${arg}")
cc_test(test_inference_${TARGET_NAME}${arg}
SRCS test_inference_${TARGET_NAME}.cc
DEPS paddle_fluid
DEPS paddle_fluid_origin
ARGS --dirname=${PYTHON_TESTS_DIR}/book/${TARGET_NAME}${arg}.inference.model)
set_tests_properties(test_inference_${TARGET_NAME}${arg}
PROPERTIES DEPENDS test_${TARGET_NAME})
......@@ -43,6 +43,6 @@ inference_test(word2vec)
# TODO(TJ): clean me up
cc_test(test_inference_nlp
SRCS test_inference_nlp.cc
DEPS paddle_fluid
DEPS paddle_fluid_origin
ARGS
--model_path=${PADDLE_BINARY_DIR}/python/paddle/fluid/tests/book/recognize_digits_mlp.inference.model)
......@@ -271,6 +271,8 @@ op_library(parallel_do_op DEPS executor)
op_library(unsqueeze_op DEPS reshape_op)
op_library(squeeze_op DEPS reshape_op)
op_library(extract_rows_op DEPS memory)
op_library(flatten_op DEPS reshape_op)
if (WITH_GPU)
op_library(conv_op DEPS vol2col depthwise_conv im2col)
......
......@@ -49,6 +49,7 @@ void GRPCClient::SendComplete() {
}
GRPCClient::~GRPCClient() {
stopped_ = true;
Wait();
cq_.Shutdown();
{
......@@ -275,7 +276,7 @@ void GRPCClient::Proceed() {
void* tag = nullptr;
bool ok = false;
while (cq_.Next(&tag, &ok)) {
while (!stopped_ && cq_.Next(&tag, &ok)) {
BaseProcessor* c = static_cast<BaseProcessor*>(tag);
GPR_ASSERT(ok);
PADDLE_ENFORCE(c);
......
......@@ -174,7 +174,7 @@ class CheckpointNotifyProcessor : public BaseProcessor {
class GRPCClient : public RPCClient {
public:
GRPCClient() : ok_(true), completed_(false) {}
GRPCClient() : ok_(true), completed_(false), stopped_(false) {}
virtual ~GRPCClient();
bool AsyncSendVar(const std::string& ep, const platform::DeviceContext& ctx,
......@@ -237,6 +237,8 @@ class GRPCClient : public RPCClient {
// mutex for sending complete message only once
std::mutex completed_mutex_;
bool completed_;
volatile bool stopped_;
};
} // namespace distributed
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
class FlattenOpInferShape : public framework::InferShapeBase {
public:
void operator()(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"),
"Input (X) of Flatten op should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Output (Output) of Flatten op should not be null.");
const auto &axis = ctx->Attrs().Get<int>("axis");
const auto &in_dims = ctx->GetInputDim("X");
PADDLE_ENFORCE(axis >= 0, "The axis should be greater than or equal to 0.");
PADDLE_ENFORCE(
axis <= in_dims.size(),
"The axis should be less than or equal to input tensor's rank.");
const auto &out_dims = GetOutputShape(axis, in_dims);
ctx->SetOutputDim("Out", framework::make_ddim(out_dims));
if (in_dims[0] == out_dims[0]) {
// Only pass LoD when the first dimension of output and Input(X)
// are the same.
ctx->ShareLoD("X", "Out");
}
}
static std::vector<int32_t> GetOutputShape(const int axis,
const framework::DDim &in_dims) {
int64_t outer = 1, inner = 1;
for (int i = 0; i < in_dims.size(); ++i) {
if (i < axis) {
outer *= in_dims[i];
} else {
inner *= in_dims[i];
}
}
std::vector<int32_t> out_shape(2);
out_shape[0] = outer;
out_shape[1] = inner;
return out_shape;
}
};
class FlattenOp : public framework::OperatorBase {
public:
using OperatorBase::OperatorBase;
private:
void RunImpl(const framework::Scope &scope,
const platform::Place &place) const override {
auto &axis = Attr<int>("axis");
auto in_dims =
scope.FindVar(Input("X"))->Get<framework::LoDTensor>().dims();
const auto &out_dims = FlattenOpInferShape::GetOutputShape(axis, in_dims);
framework::AttributeMap attrs;
attrs["shape"] = out_dims;
attrs["inplace"] = false;
// Invoke Reshape Op
auto reshape_op = framework::OpRegistry::CreateOp(
"reshape", {{"X", {Input("X")}}, {"Shape", {}}},
{{"Out", {Output("Out")}}}, attrs);
reshape_op->Run(scope, place);
}
};
class FlattenOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X", "(Tensor) A tensor of rank >= axis.");
AddOutput("Out",
"A 2D tensor is reshaped input tensor. The input dimensions"
"up to axis are flattened to the outer dimension of the output"
"and the remaining input dimensions are flattened into the inner"
"dimension of the output.");
AddAttr<int>("axis",
"(int)"
"Indicate up to which input dimensions (exclusive) should be"
"flattened to the outer dimension of the output. The value"
"for axis must be in the range [0, R], where R is the rank of"
"the input tensor. When axis = 0, the shape of the output"
"tensor is (1, (d_0 X d_1 ... d_n), where the shape of the"
"input tensor is (d_0, d_1, ... d_n).")
.SetDefault(1);
AddComment(R"DOC(
Flatten Operator
Flattens the input tensor into a 2D matrix.
Examples:
Case 1:
Given
X.shape = (3, 100, 100, 4)
and
axis = 2
We get:
Out.shape = (3 * 100, 4 * 100)
Case 2:
Given
X.shape = (3, 100, 100, 4)
and
axis = 0
We get:
Out.shape = (1, 3 * 100 * 100 * 4)
)DOC");
}
};
class FlattenGradInferShape : public framework::InferShapeBase {
public:
void operator()(framework::InferShapeContext *context) const override {
context->SetOutputDim(framework::GradVarName("X"),
context->GetInputDim("X"));
context->ShareLoD("X", framework::GradVarName("X"));
}
};
class FlattenGradOp : public framework::OperatorBase {
public:
using OperatorBase::OperatorBase;
private:
void RunImpl(const framework::Scope &scope,
const platform::Place &place) const override {
auto dx_name = Output(framework::GradVarName("X"));
auto dout_name = Input(framework::GradVarName("Out"));
auto in_dims =
scope.FindVar(Input("X"))->Get<framework::LoDTensor>().dims();
framework::AttributeMap attrs;
attrs["shape"] = framework::vectorize2int(in_dims);
attrs["inplace"] = false;
auto reshape_op = framework::OpRegistry::CreateOp(
"reshape", {{"X", {dout_name}}, {"Shape", {}}}, {{"Out", {dx_name}}},
attrs);
reshape_op->Run(scope, place);
}
};
} // namespace operators
} // namespace paddle
USE_OP(reshape);
namespace ops = paddle::operators;
REGISTER_OPERATOR(flatten, ops::FlattenOp, ops::FlattenOpMaker,
ops::FlattenOpInferShape,
paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(flatten_grad, ops::FlattenGradOp, ops::FlattenGradInferShape);
......@@ -163,7 +163,4 @@ REGISTER_OP_CPU_KERNEL(
ops::TensorRTEngineKernel<paddle::platform::CPUDeviceContext, int>,
ops::TensorRTEngineKernel<paddle::platform::CPUDeviceContext, int64_t>);
// A trick to compile with the needed TensorRT op converter.
USE_TRT_CONVERTER(mul)
#endif // PADDLE_WITH_CUDA
......@@ -60,3 +60,7 @@ cc_test(profiler_test SRCS profiler_test.cc DEPS profiler)
nv_test(float16_gpu_test SRCS float16_test.cu DEPS lod_tensor)
cc_test(float16_test SRCS float16_test.cc DEPS lod_tensor)
IF(WITH_GPU)
nv_test(cuda_helper_test SRCS cuda_helper_test.cu)
ENDIF()
......@@ -14,6 +14,10 @@ limitations under the License. */
#pragma once
#include <cuda.h>
// NOTE(): support float16 to half in header file.
#define PADDLE_CUDA_FP16
#include <cuda_fp16.h>
#include "paddle/fluid/platform/float16.h"
namespace paddle {
namespace platform {
......@@ -36,6 +40,18 @@ __forceinline__ __device__ T CudaShuffleDownSync(unsigned mask, T val,
#endif
}
// CUDA 9.0 have native compatible float16 shfl_down
#if CUDA_VERSION < 9000
template <>
__forceinline__ __device__ float16 CudaShuffleDownSync(unsigned mask,
float16 val, int delta,
int width) {
half tmp = static_cast<half>(val);
__shfl_down(tmp, static_cast<unsigned>(delta), width);
return float16(tmp);
}
#endif
template <typename T>
__forceinline__ __device__ T CudaShuffleSync(unsigned mask, T val, int src_line,
int width = 32) {
......@@ -46,6 +62,11 @@ __forceinline__ __device__ T CudaShuffleSync(unsigned mask, T val, int src_line,
#endif
}
template <typename T>
HOSTDEVICE T Infinity() {
return INFINITY;
}
template <typename T>
__device__ T reduceSum(T val, int tid, int len) {
// NOTE(zcd): The warp size should be taken from the
......
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gtest/gtest.h>
#include <bitset>
#include <iostream>
#include <random>
#define PADDLE_CUDA_FP16
#include "paddle/fluid/platform/cuda_device_function.h"
#include "paddle/fluid/platform/cuda_primitives.h"
#include "paddle/fluid/platform/float16.h"
using paddle::platform::PADDLE_CUDA_NUM_THREADS;
using paddle::platform::float16;
#define CUDA_ATOMIC_KERNEL(op, T) \
__global__ void op##Kernel(const T* data_a, T* data_b, size_t num) { \
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < num; \
i += blockDim.x * gridDim.x) { \
paddle::platform::CudaAtomic##op(&data_b[i], data_a[i]); \
} \
}
template <typename T>
struct AddFunctor {
T operator()(const T& a, const T& b) { return a + b; }
};
template <typename T>
struct SubFunctor {
T operator()(const T& a, const T& b) { return a - b; }
};
// NOTE(dzhwinter): the float16 add has small underflow/overflow
// so we use EXPECT_NEAR to check the result.
#define ARITHMETIC_KERNEL_LAUNCH(op, T) \
void Test##T##op(size_t num) { \
T *in1, *in2, *out; \
T *d_in1, *d_in2; \
size_t size = sizeof(T) * num; \
cudaMalloc(reinterpret_cast<void**>(&d_in1), size); \
cudaMalloc(reinterpret_cast<void**>(&d_in2), size); \
in1 = reinterpret_cast<T*>(malloc(size)); \
in2 = reinterpret_cast<T*>(malloc(size)); \
out = reinterpret_cast<T*>(malloc(size)); \
std::minstd_rand engine; \
std::uniform_real_distribution<double> dist(0.0, 1.0); \
for (size_t i = 0; i < num; ++i) { \
in1[i] = static_cast<T>(dist(engine)); \
in2[i] = static_cast<T>(dist(engine)); \
} \
cudaMemcpy(d_in1, in1, size, cudaMemcpyHostToDevice); \
cudaMemcpy(d_in2, in2, size, cudaMemcpyHostToDevice); \
op##Kernel<<<1, PADDLE_CUDA_NUM_THREADS>>>(d_in1, d_in2, num); \
cudaDeviceSynchronize(); \
cudaMemcpy(out, d_in2, size, cudaMemcpyDeviceToHost); \
cudaDeviceSynchronize(); \
for (size_t i = 0; i < num; ++i) { \
EXPECT_NEAR(static_cast<float>(out[i]), \
static_cast<float>(op##Functor<T>()(in1[i], in2[i])), \
0.001); \
} \
free(in1); \
free(in2); \
free(out); \
cudaFree(d_in1); \
cudaFree(d_in2); \
}
CUDA_ATOMIC_KERNEL(Add, float);
CUDA_ATOMIC_KERNEL(Add, double);
CUDA_ATOMIC_KERNEL(Add, float16);
ARITHMETIC_KERNEL_LAUNCH(Add, float);
ARITHMETIC_KERNEL_LAUNCH(Add, double);
ARITHMETIC_KERNEL_LAUNCH(Add, float16);
namespace paddle {
namespace platform {
USE_CUDA_ATOMIC(Sub, int);
};
};
CUDA_ATOMIC_KERNEL(Sub, int);
ARITHMETIC_KERNEL_LAUNCH(Sub, int);
// cuda primitives
TEST(CudaAtomic, Add) {
TestfloatAdd(static_cast<size_t>(10));
TestfloatAdd(static_cast<size_t>(1024 * 1024));
TestdoubleAdd(static_cast<size_t>(10));
TestdoubleAdd(static_cast<size_t>(1024 * 1024));
}
TEST(CudaAtomic, Sub) {
TestintSub(static_cast<size_t>(10));
TestintSub(static_cast<size_t>(1024 * 1024));
}
TEST(CudaAtomic, float16) {
using paddle::platform::float16;
Testfloat16Add(static_cast<size_t>(1));
Testfloat16Add(static_cast<size_t>(2));
Testfloat16Add(static_cast<size_t>(3));
Testfloat16Add(static_cast<size_t>(10));
Testfloat16Add(static_cast<size_t>(1024 * 1024));
}
......@@ -14,12 +14,14 @@ limitations under the License. */
#pragma once
#include <cuda.h>
#include <stdio.h>
#include "paddle/fluid/platform/float16.h"
namespace paddle {
namespace platform {
#define CUDA_ATOMIC_WRAPPER(op, T) \
__device__ __forceinline__ T CudaAtomic##op(T* address, const T val)
__device__ __forceinline__ T CudaAtomic##op(T *address, const T val)
#define USE_CUDA_ATOMIC(op, T) \
CUDA_ATOMIC_WRAPPER(op, T) { return atomic##op(address, val); }
......@@ -42,17 +44,17 @@ CUDA_ATOMIC_WRAPPER(Add, int64_t) {
static_assert(sizeof(int64_t) == sizeof(long long int), // NOLINT
"long long should be int64");
return CudaAtomicAdd(
reinterpret_cast<unsigned long long int*>(address), // NOLINT
static_cast<unsigned long long int>(val)); // NOLINT
reinterpret_cast<unsigned long long int *>(address), // NOLINT
static_cast<unsigned long long int>(val)); // NOLINT
}
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 600
USE_CUDA_ATOMIC(Add, double);
#else
CUDA_ATOMIC_WRAPPER(Add, double) {
unsigned long long int* address_as_ull = // NOLINT
reinterpret_cast<unsigned long long int*>(address); // NOLINT
unsigned long long int old = *address_as_ull, assumed; // NOLINT
unsigned long long int *address_as_ull = // NOLINT
reinterpret_cast<unsigned long long int *>(address); // NOLINT
unsigned long long int old = *address_as_ull, assumed; // NOLINT
do {
assumed = old;
......@@ -64,6 +66,67 @@ CUDA_ATOMIC_WRAPPER(Add, double) {
return __longlong_as_double(old);
}
#endif
#ifdef PADDLE_CUDA_FP16
// NOTE(dzhwinter): cuda do not have atomicCAS for half.
// Just use the half address as a unsigned value address and
// do the atomicCAS. According to the value store at high 16 bits
// or low 16 bits, then do a different sum and CAS.
// Given most warp-threads will failed on the atomicCAS, so this
// implemented should be avoided in high concurrency. It's will be
// slower than the way convert value into 32bits and do a full atomicCAS.
// convert the value into float and do the add arithmetic.
// then store the result into a uint32.
inline __device__ uint32_t add_to_low_half(uint32_t val, float x) {
float16 low_half;
// the float16 in lower 16bits
low_half.x = static_cast<uint16_t>(val & 0xffffu);
low_half = static_cast<float16>(static_cast<float>(low_half) + x);
return (val & 0xffff0000u) | low_half.x;
}
inline __device__ uint32_t add_to_high_half(uint32_t val, float x) {
float16 high_half;
// the float16 in higher 16bits
high_half.x = static_cast<uint16_t>(val >> 16);
high_half = static_cast<float16>(static_cast<float>(high_half) + x);
return (val & 0xffffu) | (static_cast<uint32_t>(high_half.x) << 16);
}
CUDA_ATOMIC_WRAPPER(Add, float16) {
// concrete packed float16 value may exsits in lower or higher 16bits
// of the 32bits address.
uint32_t *address_as_ui =
reinterpret_cast<uint32_t *>(reinterpret_cast<char *>(address) -
(reinterpret_cast<size_t>(address) & 2));
float val_f = static_cast<float>(val);
uint32_t old = *address_as_ui;
uint32_t sum;
uint32_t newval;
uint32_t assumed;
if (((size_t)address & 2) == 0) {
// the float16 value stay at lower 16 bits of the address.
do {
assumed = old;
old = atomicCAS(address_as_ui, assumed, add_to_low_half(assumed, val_f));
} while (old != assumed);
float16 ret;
ret.x = old & 0xffffu;
return ret;
} else {
// the float16 value stay at higher 16 bits of the address.
do {
assumed = old;
old = atomicCAS(address_as_ui, assumed, add_to_high_half(assumed, val_f));
} while (old != assumed);
float16 ret;
ret.x = old >> 16;
return ret;
}
}
#endif
} // namespace platform
} // namespace paddle
......@@ -67,8 +67,11 @@ struct float16;
} // namespace platform
} // namespace paddle
// NOTE():
// Do not move the eigen.h header, otherwise the eigen_vector<bool> will failed.
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/platform/hostdevice.h"
#include "unsupported/Eigen/CXX11/Tensor"
namespace paddle {
namespace platform {
......@@ -898,6 +901,30 @@ struct is_pod<paddle::platform::float16> {
is_standard_layout<paddle::platform::float16>::value;
};
template <>
struct is_floating_point<paddle::platform::float16>
: std::integral_constant<
bool, std::is_same<paddle::platform::float16,
typename std::remove_cv<
paddle::platform::float16>::type>::value> {};
template <>
struct is_signed<paddle::platform::float16> {
static const bool value = true;
};
template <>
struct is_unsigned<paddle::platform::float16> {
static const bool value = false;
};
inline bool isnan(const paddle::platform::float16& a) {
return paddle::platform::isnan(a);
}
inline bool isinf(const paddle::platform::float16& a) {
return paddle::platform::isinf(a);
}
template <>
struct numeric_limits<paddle::platform::float16> {
static const bool is_specialized = true;
......
......@@ -141,10 +141,36 @@ TEST(float16, lod_tensor_cpu) {
}
}
TEST(float16, floating) {
// compile time assert.
PADDLE_ASSERT(std::is_floating_point<float16>::value);
}
TEST(float16, print) {
float16 a = float16(1.0f);
std::cout << a << std::endl;
}
// CPU test
TEST(float16, isinf) {
float16 a;
a.x = 0x7c00;
float16 b = float16(INFINITY);
float16 c = static_cast<float16>(INFINITY);
EXPECT_EQ(std::isinf(a), true);
EXPECT_EQ(std::isinf(b), true);
EXPECT_EQ(std::isinf(c), true);
}
TEST(float16, isnan) {
float16 a;
a.x = 0x7fff;
float16 b = float16(NAN);
float16 c = static_cast<float16>(NAN);
EXPECT_EQ(std::isnan(a), true);
EXPECT_EQ(std::isnan(b), true);
EXPECT_EQ(std::isnan(c), true);
}
} // namespace platform
} // namespace paddle
......@@ -11,11 +11,13 @@ limitations under the License. */
#include "paddle/fluid/platform/float16.h"
#include <glog/logging.h>
#include <gtest/gtest.h>
#include <bitset>
#include <iostream>
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/legacy/utils/Logging.h"
#define ARITHMETIC_KERNEL(op_type, sign) \
__global__ void op_type(const half* in1, const half* in2, half* out) { \
......@@ -241,6 +243,72 @@ TEST(float16, lod_tensor_on_gpu) {
}
}
template <typename T>
struct Functor {
bool operator()(const T& val) {
return std::type_index(typeid(T)) ==
std::type_index(typeid(platform::float16));
}
};
TEST(float16, typeid) {
// the framework heavily used typeid hash
Functor<float16> functor;
float16 a = float16(.0f);
Functor<int> functor2;
int b(0);
// compile time assert
PADDLE_ASSERT(functor(a) == true);
PADDLE_ASSERT(functor2(b) == false);
}
// GPU test
TEST(float16, isinf) {
float16 a;
a.x = 0x7c00;
float16 b = float16(INFINITY);
// underflow to 0
float16 native_a(5e-40f);
// overflow to inf
float16 native_b(5e40f);
EXPECT_EQ(std::isinf(a), true);
EXPECT_EQ(std::isinf(b), true);
EXPECT_EQ(std::isinf(native_b), true);
EXPECT_EQ(native_a, float16(0));
}
TEST(float16, isnan) {
float16 a;
a.x = 0x7fff;
float16 b = float16(NAN);
float16 c = float16(5e40);
// inf * +-0 will get a nan
float16 d = c * float16(0);
EXPECT_EQ(std::isnan(a), true);
EXPECT_EQ(std::isnan(b), true);
EXPECT_EQ(std::isnan(d), true);
}
TEST(float16, cast) {
float16 a;
a.x = 0x0070;
auto b = a;
{
// change semantic, keep the same value
float16 c = reinterpret_cast<float16&>(reinterpret_cast<unsigned&>(b));
EXPECT_EQ(b, c);
}
{
// use uint32 low 16 bit store float16
uint32_t c = reinterpret_cast<uint32_t&>(b);
float16 d;
d.x = c;
EXPECT_EQ(b, d);
}
}
} // namespace platform
} // namespace paddle
#endif // PADDLE_CUDA_FP16
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/// A completion queue implements a concurrent producer-consumer queue, with
/// two main API-exposed methods: \a Next and \a AsyncNext. These
/// methods are the essential component of the gRPC C++ asynchronous API.
/// There is also a \a Shutdown method to indicate that a given completion queue
/// will no longer have regular events. This must be called before the
/// completion queue is destroyed.
/// All completion queue APIs are thread-safe and may be used concurrently with
/// any other completion queue API invocation; it is acceptable to have
/// multiple threads calling \a Next or \a AsyncNext on the same or different
/// completion queues, or to call these methods concurrently with a \a Shutdown
/// elsewhere.
/// \remark{All other API calls on completion queue should be completed before
/// a completion queue destructor is called.}
#ifndef GRPCPP_IMPL_CODEGEN_COMPLETION_QUEUE_H
#define GRPCPP_IMPL_CODEGEN_COMPLETION_QUEUE_H
#include <typeinfo>
#include <grpc/impl/codegen/atm.h>
#include <grpcpp/impl/codegen/completion_queue_tag.h>
#include <grpcpp/impl/codegen/core_codegen_interface.h>
#include <grpcpp/impl/codegen/grpc_library.h>
#include <grpcpp/impl/codegen/status.h>
#include <grpcpp/impl/codegen/time.h>
struct grpc_completion_queue;
namespace grpc {
template <class R>
class ClientReader;
template <class W>
class ClientWriter;
template <class W, class R>
class ClientReaderWriter;
template <class R>
class ServerReader;
template <class W>
class ServerWriter;
namespace internal {
template <class W, class R>
class ServerReaderWriterBody;
} // namespace internal
class Channel;
class ChannelInterface;
class ClientContext;
class CompletionQueue;
class Server;
class ServerBuilder;
class ServerContext;
class ServerInterface;
namespace internal {
class CompletionQueueTag;
class RpcMethod;
template <class ServiceType, class RequestType, class ResponseType>
class RpcMethodHandler;
template <class ServiceType, class RequestType, class ResponseType>
class ClientStreamingHandler;
template <class ServiceType, class RequestType, class ResponseType>
class ServerStreamingHandler;
template <class ServiceType, class RequestType, class ResponseType>
class BidiStreamingHandler;
class UnknownMethodHandler;
template <class Streamer, bool WriteNeeded>
class TemplatedBidiStreamingHandler;
template <class InputMessage, class OutputMessage>
class BlockingUnaryCallImpl;
} // namespace internal
extern CoreCodegenInterface* g_core_codegen_interface;
/// A thin wrapper around \ref grpc_completion_queue (see \ref
/// src/core/lib/surface/completion_queue.h).
/// See \ref doc/cpp/perf_notes.md for notes on best practices for high
/// performance servers.
class CompletionQueue : private GrpcLibraryCodegen {
public:
/// Default constructor. Implicitly creates a \a grpc_completion_queue
/// instance.
CompletionQueue()
: CompletionQueue(grpc_completion_queue_attributes{
GRPC_CQ_CURRENT_VERSION, GRPC_CQ_NEXT, GRPC_CQ_DEFAULT_POLLING}) {}
/// Wrap \a take, taking ownership of the instance.
///
/// \param take The completion queue instance to wrap. Ownership is taken.
explicit CompletionQueue(grpc_completion_queue* take);
/// Destructor. Destroys the owned wrapped completion queue / instance.
~CompletionQueue() {
if (typeid(*g_core_codegen_interface).hash_code() !=
typeid(CoreCodegenInterface).hash_code()) {
g_core_codegen_interface->grpc_completion_queue_destroy(cq_);
}
}
/// Tri-state return for AsyncNext: SHUTDOWN, GOT_EVENT, TIMEOUT.
enum NextStatus {
SHUTDOWN, ///< The completion queue has been shutdown and fully-drained
GOT_EVENT, ///< Got a new event; \a tag will be filled in with its
///< associated value; \a ok indicating its success.
TIMEOUT ///< deadline was reached.
};
/// Read from the queue, blocking until an event is available or the queue is
/// shutting down.
///
/// \param tag[out] Updated to point to the read event's tag.
/// \param ok[out] true if read a successful event, false otherwise.
///
/// Note that each tag sent to the completion queue (through RPC operations
/// or alarms) will be delivered out of the completion queue by a call to
/// Next (or a related method), regardless of whether the operation succeeded
/// or not. Success here means that this operation completed in the normal
/// valid manner.
///
/// Server-side RPC request: \a ok indicates that the RPC has indeed
/// been started. If it is false, the server has been Shutdown
/// before this particular call got matched to an incoming RPC.
///
/// Client-side StartCall/RPC invocation: \a ok indicates that the RPC is
/// going to go to the wire. If it is false, it not going to the wire. This
/// would happen if the channel is either permanently broken or
/// transiently broken but with the fail-fast option. (Note that async unary
/// RPCs don't post a CQ tag at this point, nor do client-streaming
/// or bidi-streaming RPCs that have the initial metadata corked option set.)
///
/// Client-side Write, Client-side WritesDone, Server-side Write,
/// Server-side Finish, Server-side SendInitialMetadata (which is
/// typically included in Write or Finish when not done explicitly):
/// \a ok means that the data/metadata/status/etc is going to go to the
/// wire. If it is false, it not going to the wire because the call
/// is already dead (i.e., canceled, deadline expired, other side
/// dropped the channel, etc).
///
/// Client-side Read, Server-side Read, Client-side
/// RecvInitialMetadata (which is typically included in Read if not
/// done explicitly): \a ok indicates whether there is a valid message
/// that got read. If not, you know that there are certainly no more
/// messages that can ever be read from this stream. For the client-side
/// operations, this only happens because the call is dead. For the
/// server-sider operation, though, this could happen because the client
/// has done a WritesDone already.
///
/// Client-side Finish: \a ok should always be true
///
/// Server-side AsyncNotifyWhenDone: \a ok should always be true
///
/// Alarm: \a ok is true if it expired, false if it was canceled
///
/// \return true if got an event, false if the queue is fully drained and
/// shut down.
bool Next(void** tag, bool* ok) {
return (AsyncNextInternal(tag,
ok,
g_core_codegen_interface->gpr_inf_future(
GPR_CLOCK_REALTIME)) != SHUTDOWN);
}
/// Read from the queue, blocking up to \a deadline (or the queue's shutdown).
/// Both \a tag and \a ok are updated upon success (if an event is available
/// within the \a deadline). A \a tag points to an arbitrary location usually
/// employed to uniquely identify an event.
///
/// \param tag[out] Upon sucess, updated to point to the event's tag.
/// \param ok[out] Upon sucess, true if a successful event, false otherwise
/// See documentation for CompletionQueue::Next for explanation of ok
/// \param deadline[in] How long to block in wait for an event.
///
/// \return The type of event read.
template <typename T>
NextStatus AsyncNext(void** tag, bool* ok, const T& deadline) {
TimePoint<T> deadline_tp(deadline);
return AsyncNextInternal(tag, ok, deadline_tp.raw_time());
}
/// EXPERIMENTAL
/// First executes \a F, then reads from the queue, blocking up to
/// \a deadline (or the queue's shutdown).
/// Both \a tag and \a ok are updated upon success (if an event is available
/// within the \a deadline). A \a tag points to an arbitrary location usually
/// employed to uniquely identify an event.
///
/// \param F[in] Function to execute before calling AsyncNext on this queue.
/// \param tag[out] Upon sucess, updated to point to the event's tag.
/// \param ok[out] Upon sucess, true if read a regular event, false otherwise.
/// \param deadline[in] How long to block in wait for an event.
///
/// \return The type of event read.
template <typename T, typename F>
NextStatus DoThenAsyncNext(F&& f, void** tag, bool* ok, const T& deadline) {
CompletionQueueTLSCache cache = CompletionQueueTLSCache(this);
f();
if (cache.Flush(tag, ok)) {
return GOT_EVENT;
} else {
return AsyncNext(tag, ok, deadline);
}
}
/// Request the shutdown of the queue.
///
/// \warning This method must be called at some point if this completion queue
/// is accessed with Next or AsyncNext. \a Next will not return false
/// until this method has been called and all pending tags have been drained.
/// (Likewise for \a AsyncNext returning \a NextStatus::SHUTDOWN .)
/// Only once either one of these methods does that (that is, once the queue
/// has been \em drained) can an instance of this class be destroyed.
/// Also note that applications must ensure that no work is enqueued on this
/// completion queue after this method is called.
void Shutdown();
/// Returns a \em raw pointer to the underlying \a grpc_completion_queue
/// instance.
///
/// \warning Remember that the returned instance is owned. No transfer of
/// owership is performed.
grpc_completion_queue* cq() { return cq_; }
protected:
/// Private constructor of CompletionQueue only visible to friend classes
CompletionQueue(const grpc_completion_queue_attributes& attributes) {
cq_ = g_core_codegen_interface->grpc_completion_queue_create(
g_core_codegen_interface->grpc_completion_queue_factory_lookup(
&attributes),
&attributes,
NULL);
InitialAvalanching(); // reserve this for the future shutdown
}
private:
// Friend synchronous wrappers so that they can access Pluck(), which is
// a semi-private API geared towards the synchronous implementation.
template <class R>
friend class ::grpc::ClientReader;
template <class W>
friend class ::grpc::ClientWriter;
template <class W, class R>
friend class ::grpc::ClientReaderWriter;
template <class R>
friend class ::grpc::ServerReader;
template <class W>
friend class ::grpc::ServerWriter;
template <class W, class R>
friend class ::grpc::internal::ServerReaderWriterBody;
template <class ServiceType, class RequestType, class ResponseType>
friend class ::grpc::internal::RpcMethodHandler;
template <class ServiceType, class RequestType, class ResponseType>
friend class ::grpc::internal::ClientStreamingHandler;
template <class ServiceType, class RequestType, class ResponseType>
friend class ::grpc::internal::ServerStreamingHandler;
template <class Streamer, bool WriteNeeded>
friend class ::grpc::internal::TemplatedBidiStreamingHandler;
friend class ::grpc::internal::UnknownMethodHandler;
friend class ::grpc::Server;
friend class ::grpc::ServerContext;
friend class ::grpc::ServerInterface;
template <class InputMessage, class OutputMessage>
friend class ::grpc::internal::BlockingUnaryCallImpl;
/// EXPERIMENTAL
/// Creates a Thread Local cache to store the first event
/// On this completion queue queued from this thread. Once
/// initialized, it must be flushed on the same thread.
class CompletionQueueTLSCache {
public:
CompletionQueueTLSCache(CompletionQueue* cq);
~CompletionQueueTLSCache();
bool Flush(void** tag, bool* ok);
private:
CompletionQueue* cq_;
bool flushed_;
};
NextStatus AsyncNextInternal(void** tag, bool* ok, gpr_timespec deadline);
/// Wraps \a grpc_completion_queue_pluck.
/// \warning Must not be mixed with calls to \a Next.
bool Pluck(internal::CompletionQueueTag* tag) {
auto deadline =
g_core_codegen_interface->gpr_inf_future(GPR_CLOCK_REALTIME);
auto ev = g_core_codegen_interface->grpc_completion_queue_pluck(
cq_, tag, deadline, nullptr);
bool ok = ev.success != 0;
void* ignored = tag;
GPR_CODEGEN_ASSERT(tag->FinalizeResult(&ignored, &ok));
GPR_CODEGEN_ASSERT(ignored == tag);
// Ignore mutations by FinalizeResult: Pluck returns the C API status
return ev.success != 0;
}
/// Performs a single polling pluck on \a tag.
/// \warning Must not be mixed with calls to \a Next.
///
/// TODO: sreek - This calls tag->FinalizeResult() even if the cq_ is already
/// shutdown. This is most likely a bug and if it is a bug, then change this
/// implementation to simple call the other TryPluck function with a zero
/// timeout. i.e:
/// TryPluck(tag, gpr_time_0(GPR_CLOCK_REALTIME))
void TryPluck(internal::CompletionQueueTag* tag) {
auto deadline = g_core_codegen_interface->gpr_time_0(GPR_CLOCK_REALTIME);
auto ev = g_core_codegen_interface->grpc_completion_queue_pluck(
cq_, tag, deadline, nullptr);
if (ev.type == GRPC_QUEUE_TIMEOUT) return;
bool ok = ev.success != 0;
void* ignored = tag;
// the tag must be swallowed if using TryPluck
GPR_CODEGEN_ASSERT(!tag->FinalizeResult(&ignored, &ok));
}
/// Performs a single polling pluck on \a tag. Calls tag->FinalizeResult if
/// the pluck() was successful and returned the tag.
///
/// This exects tag->FinalizeResult (if called) to return 'false' i.e expects
/// that the tag is internal not something that is returned to the user.
void TryPluck(internal::CompletionQueueTag* tag, gpr_timespec deadline) {
auto ev = g_core_codegen_interface->grpc_completion_queue_pluck(
cq_, tag, deadline, nullptr);
if (ev.type == GRPC_QUEUE_TIMEOUT || ev.type == GRPC_QUEUE_SHUTDOWN) {
return;
}
bool ok = ev.success != 0;
void* ignored = tag;
GPR_CODEGEN_ASSERT(!tag->FinalizeResult(&ignored, &ok));
}
/// Manage state of avalanching operations : completion queue tags that
/// trigger other completion queue operations. The underlying core completion
/// queue should not really shutdown until all avalanching operations have
/// been finalized. Note that we maintain the requirement that an avalanche
/// registration must take place before CQ shutdown (which must be maintained
/// elsehwere)
void InitialAvalanching() {
gpr_atm_rel_store(&avalanches_in_flight_, static_cast<gpr_atm>(1));
}
void RegisterAvalanching() {
gpr_atm_no_barrier_fetch_add(&avalanches_in_flight_,
static_cast<gpr_atm>(1));
}
void CompleteAvalanching();
grpc_completion_queue* cq_; // owned
gpr_atm avalanches_in_flight_;
};
/// A specific type of completion queue used by the processing of notifications
/// by servers. Instantiated by \a ServerBuilder.
class ServerCompletionQueue : public CompletionQueue {
public:
bool IsFrequentlyPolled() { return polling_type_ != GRPC_CQ_NON_LISTENING; }
private:
grpc_cq_polling_type polling_type_;
friend class ServerBuilder;
/// \param is_frequently_polled Informs the GRPC library about whether the
/// server completion queue would be actively polled (by calling Next() or
/// AsyncNext()). By default all server completion queues are assumed to be
/// frequently polled.
ServerCompletionQueue(grpc_cq_polling_type polling_type)
: CompletionQueue(grpc_completion_queue_attributes{
GRPC_CQ_CURRENT_VERSION, GRPC_CQ_NEXT, polling_type}),
polling_type_(polling_type) {}
};
} // namespace grpc
#endif // GRPCPP_IMPL_CODEGEN_COMPLETION_QUEUE_H
diff --git a/include/grpcpp/impl/codegen/completion_queue.h b/include/grpcpp/impl/codegen/completion_queue.h
index 80c7c41982..3f7d8a7714 100644
--- a/include/grpcpp/impl/codegen/completion_queue.h
+++ b/include/grpcpp/impl/codegen/completion_queue.h
@@ -32,6 +32,8 @@
#ifndef GRPCPP_IMPL_CODEGEN_COMPLETION_QUEUE_H
#define GRPCPP_IMPL_CODEGEN_COMPLETION_QUEUE_H
+#include <typeinfo>
+
#include <grpc/impl/codegen/atm.h>
#include <grpcpp/impl/codegen/completion_queue_tag.h>
#include <grpcpp/impl/codegen/core_codegen_interface.h>
@@ -106,7 +108,9 @@ class CompletionQueue : private GrpcLibraryCodegen {
/// Destructor. Destroys the owned wrapped completion queue / instance.
~CompletionQueue() {
- g_core_codegen_interface->grpc_completion_queue_destroy(cq_);
+ if (typeid(*g_core_codegen_interface).hash_code() != typeid(CoreCodegenInterface).hash_code()) {
+ g_core_codegen_interface->grpc_completion_queue_destroy(cq_);
+ }
}
/// Tri-state return for AsyncNext: SHUTDOWN, GOT_EVENT, TIMEOUT.
diff --git a/include/grpcpp/impl/codegen/grpc_library.h b/include/grpcpp/impl/codegen/grpc_library.h
index 17c904d71a..a092b2204d 100644
--- a/include/grpcpp/impl/codegen/grpc_library.h
+++ b/include/grpcpp/impl/codegen/grpc_library.h
@@ -19,6 +19,8 @@
#ifndef GRPCPP_IMPL_CODEGEN_GRPC_LIBRARY_H
#define GRPCPP_IMPL_CODEGEN_GRPC_LIBRARY_H
+#include <typeinfo>
+
#include <grpcpp/impl/codegen/core_codegen_interface.h>
namespace grpc {
@@ -47,7 +49,8 @@ class GrpcLibraryCodegen {
}
}
virtual ~GrpcLibraryCodegen() {
- if (grpc_init_called_) {
+ if (grpc_init_called_ &&
+ typeid(*g_glip).hash_code() != typeid(GrpcLibraryInterface).hash_code()) {
GPR_CODEGEN_ASSERT(g_glip &&
"gRPC library not initialized. See "
"grpc::internal::GrpcLibraryInitializer.");
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef GRPCPP_IMPL_CODEGEN_GRPC_LIBRARY_H
#define GRPCPP_IMPL_CODEGEN_GRPC_LIBRARY_H
#include <typeinfo>
#include <grpcpp/impl/codegen/core_codegen_interface.h>
namespace grpc {
class GrpcLibraryInterface {
public:
virtual ~GrpcLibraryInterface() = default;
virtual void init() = 0;
virtual void shutdown() = 0;
};
/// Initialized by \a grpc::GrpcLibraryInitializer from
/// <grpcpp/impl/grpc_library.h>
extern GrpcLibraryInterface* g_glip;
/// Classes that require gRPC to be initialized should inherit from this class.
class GrpcLibraryCodegen {
public:
GrpcLibraryCodegen(bool call_grpc_init = true) : grpc_init_called_(false) {
if (call_grpc_init) {
GPR_CODEGEN_ASSERT(g_glip &&
"gRPC library not initialized. See "
"grpc::internal::GrpcLibraryInitializer.");
g_glip->init();
grpc_init_called_ = true;
}
}
virtual ~GrpcLibraryCodegen() {
if (grpc_init_called_ &&
typeid(*g_glip).hash_code() !=
typeid(GrpcLibraryInterface).hash_code()) {
GPR_CODEGEN_ASSERT(g_glip &&
"gRPC library not initialized. See "
"grpc::internal::GrpcLibraryInitializer.");
g_glip->shutdown();
}
}
private:
bool grpc_init_called_;
};
} // namespace grpc
#endif // GRPCPP_IMPL_CODEGEN_GRPC_LIBRARY_H
......@@ -40,7 +40,7 @@ function(py_test_modules TARGET_NAME)
${PYTHON_EXECUTABLE} ${PADDLE_SOURCE_DIR}/tools/test_runner.py ${py_test_modules_MODULES}
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
if (py_test_modules_SERIAL)
set_property(TEST ${TARGET_NAME} PROPERTY SERIAL 1)
set_property(TEST ${TARGET_NAME} PROPERTY RUN_SERIAL 1)
endif()
endif()
endfunction()
......
......@@ -278,7 +278,7 @@ class DistSeResneXt2x2:
def run_trainer(self, place, endpoints, trainer_id, trainers, is_dist=True):
test_program, avg_cost, train_reader, test_reader, batch_acc, predict = get_model(
batch_size=20)
batch_size=2)
if is_dist:
t = get_transpiler(trainer_id,
fluid.default_main_program(), endpoints,
......@@ -294,11 +294,7 @@ class DistSeResneXt2x2:
strategy.num_threads = 1
strategy.allow_op_delay = False
exe = fluid.ParallelExecutor(
True,
loss_name=avg_cost.name,
exec_strategy=strategy,
num_trainers=trainers,
trainer_id=trainer_id)
True, loss_name=avg_cost.name, exec_strategy=strategy)
feed_var_list = [
var for var in trainer_prog.global_block().vars.itervalues()
......
......@@ -19,6 +19,7 @@ import math
import unittest
import os
import sys
import signal
import subprocess
......@@ -56,7 +57,7 @@ class TestDistSeResneXt2x2(unittest.TestCase):
except os.error:
retry_times -= 1
def non_test_with_place(self):
def test_with_place(self):
# *ATTENTION* THIS TEST NEEDS AT LEAST 2GPUS TO RUN
required_envs = {
"PATH": os.getenv("PATH"),
......@@ -70,9 +71,15 @@ class TestDistSeResneXt2x2(unittest.TestCase):
local_cmd = "%s dist_se_resnext.py trainer %s 0 %s %d FLASE" % \
(self._python_interp, "127.0.0.1:1234", "127.0.0.1:1234", 1)
local_proc = subprocess.Popen(
local_cmd.split(" "), stdout=subprocess.PIPE, env=env_local)
local_cmd.split(" "),
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
env=env_local)
local_proc.wait()
local_ret = local_proc.stdout.read()
out, err = local_proc.communicate()
local_ret = out
sys.stderr.write('local_loss: %s\n' % local_ret)
sys.stderr.write('local_stderr: %s\n' % err)
# Run dist train to compare with local results
ps0, ps1 = self.start_pserver()
......@@ -92,13 +99,22 @@ class TestDistSeResneXt2x2(unittest.TestCase):
FNULL = open(os.devnull, 'w')
tr0_proc = subprocess.Popen(
tr0_cmd.split(" "), stdout=subprocess.PIPE, stderr=FNULL, env=env0)
tr0_cmd.split(" "),
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
env=env0)
tr1_proc = subprocess.Popen(
tr1_cmd.split(" "), stdout=subprocess.PIPE, stderr=FNULL, env=env1)
tr1_cmd.split(" "),
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
env=env1)
tr0_proc.wait()
tr1_proc.wait()
loss_data0 = tr0_proc.stdout.read()
out, err = tr0_proc.communicate()
sys.stderr.write('dist_stderr: %s\n' % err)
loss_data0 = out
sys.stderr.write('dist_loss: %s\n' % loss_data0)
lines = loss_data0.split("\n")
dist_first_loss = eval(lines[0].replace(" ", ","))[0]
dist_last_loss = eval(lines[1].replace(" ", ","))[0]
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from op_test import OpTest
class TestFlattenOp(OpTest):
def setUp(self):
self.op_type = "flatten"
self.init_test_case()
self.inputs = {"X": np.random.random(self.in_shape).astype("float32")}
self.init_attrs()
self.outputs = {"Out": self.inputs["X"].reshape(self.new_shape)}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(["X"], "Out")
def init_test_case(self):
self.in_shape = (3, 2, 2, 5)
self.axis = 1
self.new_shape = (3, 20)
def init_attrs(self):
self.attrs = {"axis": self.axis}
class TestFlattenOp(TestFlattenOp):
def init_test_case(self):
self.in_shape = (3, 2, 2, 3)
self.axis = 0
self.new_shape = (1, 36)
class TestFlattenOpWithDefaultAxis(TestFlattenOp):
def init_test_case(self):
self.in_shape = (3, 2, 2, 3)
self.new_shape = (3, 12)
def init_attrs(self):
self.attrs = {}
class TestFlattenOpSixDims(TestFlattenOp):
def init_test_case(self):
self.in_shape = (3, 2, 3, 2, 4, 4)
self.axis = 4
self.new_shape = (36, 16)
if __name__ == "__main__":
unittest.main()
......@@ -347,6 +347,7 @@ class DistributeTranspiler(object):
# step1
pserver_program = Program()
pserver_program.random_seed = self.origin_program.random_seed
# step2: Create vars to receive vars at parameter servers.
recv_inputs = []
for v in self.param_grad_ep_mapping[endpoint]["params"]:
......@@ -544,6 +545,7 @@ class DistributeTranspiler(object):
"""
s_prog = Program()
orig_s_prog = default_startup_program()
s_prog.random_seed = orig_s_prog.random_seed
params = self.param_grad_ep_mapping[endpoint]["params"]
def _get_splited_name_and_shape(varname):
......
......@@ -4,7 +4,7 @@ TOTAL_ERRORS=0
# The trick to remove deleted files: https://stackoverflow.com/a/2413151
for file in $(git diff --cached --name-status | awk '$1 != "D" {print $2}'); do
if [[ $file =~ ^(paddle/legacy/api/.*|paddle/legacy/capi/.*|paddle/contrib/.*|paddle/legacy/cuda/.*|paddle/legacy/function/.*|paddle/legacy/gserver/.*|paddle/legacy/math/.*|paddle/legacy/optimizer/.*|paddle/legacy/parameter/.*|paddle/legacy/pserver/.*|paddle/legacy/trainer/.*|paddle/legacy/utils/.*|paddle/testing/TestUtil.*) ]]; then
if [[ $file =~ ^(paddle/legacy/api/.*|paddle/legacy/capi/.*|paddle/contrib/.*|paddle/legacy/cuda/.*|paddle/legacy/function/.*|paddle/legacy/gserver/.*|paddle/legacy/math/.*|paddle/legacy/optimizer/.*|paddle/legacy/parameter/.*|paddle/legacy/pserver/.*|paddle/legacy/trainer/.*|paddle/legacy/utils/.*|paddle/testing/TestUtil.*|patches/grpc/.*) ]]; then
continue;
else
cpplint --filter=-readability/fn_size $file;
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册