Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
eeeef957
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
eeeef957
编写于
8月 19, 2020
作者:
C
Chengmo
提交者:
GitHub
8月 19, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fix ps gpu (#26218)
* support ps-gpu
上级
6cbeafb6
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
335 addition
and
77 deletion
+335
-77
paddle/fluid/operators/distributed/parameter_prefetch.cc
paddle/fluid/operators/distributed/parameter_prefetch.cc
+47
-24
paddle/fluid/operators/distributed_ops/distributed_lookup_table_op.cc
.../operators/distributed_ops/distributed_lookup_table_op.cc
+3
-48
paddle/fluid/operators/distributed_ops/distributed_lookup_table_op.cu.cc
...erators/distributed_ops/distributed_lookup_table_op.cu.cc
+22
-0
paddle/fluid/operators/distributed_ops/distributed_lookup_table_op.h
...d/operators/distributed_ops/distributed_lookup_table_op.h
+45
-0
paddle/fluid/operators/distributed_ops/recv_save_op.cc
paddle/fluid/operators/distributed_ops/recv_save_op.cc
+1
-1
paddle/fluid/operators/strided_memcpy.h
paddle/fluid/operators/strided_memcpy.h
+0
-3
python/paddle/fluid/incubate/fleet/parameter_server/distribute_transpiler/__init__.py
.../fleet/parameter_server/distribute_transpiler/__init__.py
+13
-1
python/paddle/fluid/tests/unittests/dist_fleet_ctr_ps_gpu.py
python/paddle/fluid/tests/unittests/dist_fleet_ctr_ps_gpu.py
+152
-0
python/paddle/fluid/tests/unittests/test_dist_fleet_base.py
python/paddle/fluid/tests/unittests/test_dist_fleet_base.py
+17
-0
python/paddle/fluid/tests/unittests/test_dist_fleet_ctr.py
python/paddle/fluid/tests/unittests/test_dist_fleet_ctr.py
+35
-0
未找到文件。
paddle/fluid/operators/distributed/parameter_prefetch.cc
浏览文件 @
eeeef957
...
@@ -110,7 +110,7 @@ void prefetch_core(
...
@@ -110,7 +110,7 @@ void prefetch_core(
int
pservers
=
context
.
Attr
<
int
>
(
"pserver_num"
);
int
pservers
=
context
.
Attr
<
int
>
(
"pserver_num"
);
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
&
actual_ctx
=
*
pool
.
Get
(
context
.
Get
Place
());
auto
&
actual_ctx
=
*
pool
.
Get
(
platform
::
CPU
Place
());
std
::
unique_ptr
<
framework
::
Scope
>
local_scope
=
scope
.
NewTmpScope
();
std
::
unique_ptr
<
framework
::
Scope
>
local_scope
=
scope
.
NewTmpScope
();
...
@@ -144,7 +144,6 @@ void prefetch_core(
...
@@ -144,7 +144,6 @@ void prefetch_core(
VLOG
(
3
)
<<
"don't send no-initialied variable: "
<<
out_var_names
[
i
];
VLOG
(
3
)
<<
"don't send no-initialied variable: "
<<
out_var_names
[
i
];
}
}
}
}
for
(
size_t
i
=
0
;
i
<
rets
.
size
();
i
++
)
{
for
(
size_t
i
=
0
;
i
<
rets
.
size
();
i
++
)
{
PADDLE_ENFORCE_NE
(
rets
[
i
]
->
Wait
(),
0U
,
platform
::
errors
::
ExecutionTimeout
(
PADDLE_ENFORCE_NE
(
rets
[
i
]
->
Wait
(),
0U
,
platform
::
errors
::
ExecutionTimeout
(
"internal error in RPCClient"
));
"internal error in RPCClient"
));
...
@@ -167,6 +166,7 @@ void prefetch_core(
...
@@ -167,6 +166,7 @@ void prefetch_core(
for
(
int64_t
i
=
0
;
i
<
dims
[
0
];
++
i
)
{
for
(
int64_t
i
=
0
;
i
<
dims
[
0
];
++
i
)
{
auto
origin_id
=
ids_in_this_section
[
i
];
auto
origin_id
=
ids_in_this_section
[
i
];
std
::
vector
<
float
>
vecs
(
row_numel
);
std
::
vector
<
float
>
vecs
(
row_numel
);
std
::
copy_n
(
out_var_data
+
i
*
row_numel
,
row_numel
,
vecs
.
begin
());
std
::
copy_n
(
out_var_data
+
i
*
row_numel
,
row_numel
,
vecs
.
begin
());
(
*
recved_vec_map
)[
origin_id
]
=
vecs
;
(
*
recved_vec_map
)[
origin_id
]
=
vecs
;
}
}
...
@@ -213,18 +213,18 @@ void prefetchs(const std::vector<std::string> &id_var_names,
...
@@ -213,18 +213,18 @@ void prefetchs(const std::vector<std::string> &id_var_names,
const
auto
place
=
const
auto
place
=
scope
.
FindVar
(
id_var_names
[
0
])
->
Get
<
framework
::
LoDTensor
>
().
place
();
scope
.
FindVar
(
id_var_names
[
0
])
->
Get
<
framework
::
LoDTensor
>
().
place
();
if
(
!
platform
::
is_cpu_place
(
place
))
{
std
::
vector
<
std
::
vector
<
int64_t
>>
ids_group
;
PADDLE_THROW
(
"multi prefetch only support CPU currently"
);
}
std
::
vector
<
int64_t
>
ids_union
;
std
::
vector
<
int64_t
>
ids_union
;
std
::
vector
<
framework
::
LoD
>
ids_lods
;
TableAndEndpoints
tables
;
TableAndEndpoints
tables
;
for
(
auto
&
id_name
:
id_var_names
)
{
for
(
auto
&
id_name
:
id_var_names
)
{
auto
*
in_var
=
scope
.
FindVar
(
id_name
);
auto
&
id_tensor
=
scope
.
FindVar
(
id_name
)
->
Get
<
framework
::
LoDTensor
>
();
auto
&
id_tensor
=
in_var
->
Get
<
framework
::
LoDTensor
>
();
std
::
vector
<
int64_t
>
ids
;
std
::
copy_n
(
id_tensor
.
data
<
int64_t
>
(),
id_tensor
.
numel
(),
TensorToVector
(
id_tensor
,
context
.
device_context
(),
&
ids
);
back_inserter
(
ids_union
));
ids_union
.
insert
(
ids_union
.
end
(),
ids
.
begin
(),
ids
.
end
());
ids_group
.
push_back
(
ids
);
ids_lods
.
push_back
(
id_tensor
.
lod
());
}
}
std
::
unordered_set
<
int64_t
>
s
(
ids_union
.
begin
(),
ids_union
.
end
());
std
::
unordered_set
<
int64_t
>
s
(
ids_union
.
begin
(),
ids_union
.
end
());
...
@@ -258,25 +258,48 @@ void prefetchs(const std::vector<std::string> &id_var_names,
...
@@ -258,25 +258,48 @@ void prefetchs(const std::vector<std::string> &id_var_names,
}
}
for
(
size_t
i
=
0
;
i
<
out_var_names
.
size
();
i
++
)
{
for
(
size_t
i
=
0
;
i
<
out_var_names
.
size
();
i
++
)
{
auto
*
in_var
=
scope
.
FindVar
(
id_var_names
[
i
]);
std
::
vector
<
int64_t
>
ids
=
ids_group
[
i
];
auto
&
id_tensor
=
in_var
->
Get
<
framework
::
LoDTensor
>
();
auto
ids_size
=
ids
.
size
();
auto
ids_size
=
id_tensor
.
dims
()[
0
];
const
auto
*
id_data
=
id_tensor
.
data
<
int64_t
>
();
auto
*
out_t
=
auto
*
out_t
=
scope
.
FindVar
(
out_var_names
[
i
])
->
GetMutable
<
framework
::
LoDTensor
>
();
scope
.
FindVar
(
out_var_names
[
i
])
->
GetMutable
<
framework
::
LoDTensor
>
();
out_t
->
set_lod
(
id_tensor
.
lod
());
out_t
->
set_lod
(
ids_lods
[
i
]);
out_t
->
Resize
(
framework
::
make_ddim
({
ids_size
,
vec_dim_1
}));
out_t
->
Resize
(
framework
::
make_ddim
({
static_cast
<
int64_t
>
(
ids_size
),
vec_dim_1
}));
auto
*
out_d
=
out_t
->
mutable_data
<
float
>
(
place
);
auto
*
out_d
=
out_t
->
mutable_data
<
float
>
(
place
);
for
(
auto
idx
=
0
;
idx
<
static_cast
<
int
>
(
ids_size
);
idx
++
)
{
if
(
platform
::
is_cpu_place
(
out_t
->
place
()))
{
const
auto
&
id
=
id_data
[
idx
];
for
(
auto
idx
=
0
;
idx
<
static_cast
<
int
>
(
ids_size
);
idx
++
)
{
if
(
padding_idx
!=
distributed
::
kNoPadding
&&
id
==
padding_idx
)
{
const
auto
&
id
=
ids
[
idx
];
memset
(
out_d
+
idx
*
vec_dim_1
,
0
,
sizeof
(
float
)
*
vec_dim_1
);
if
(
padding_idx
!=
distributed
::
kNoPadding
&&
id
==
padding_idx
)
{
}
else
{
memset
(
out_d
+
idx
*
vec_dim_1
,
0
,
sizeof
(
float
)
*
vec_dim_1
);
std
::
copy_n
(
recved_vec_map
[
id
].
begin
(),
vec_dim_1
,
}
else
{
out_d
+
idx
*
vec_dim_1
);
std
::
copy_n
(
recved_vec_map
[
id
].
begin
(),
vec_dim_1
,
out_d
+
idx
*
vec_dim_1
);
}
}
}
else
{
#ifdef PADDLE_WITH_CUDA
for
(
auto
idx
=
0
;
idx
<
static_cast
<
int
>
(
ids_size
);
idx
++
)
{
const
auto
&
id
=
ids
[
idx
];
auto
stream
=
context
.
cuda_device_context
().
stream
();
if
(
padding_idx
!=
distributed
::
kNoPadding
&&
id
==
padding_idx
)
{
platform
::
GpuMemsetAsync
(
out_d
+
idx
*
vec_dim_1
,
0
,
sizeof
(
float
)
*
vec_dim_1
,
stream
);
}
else
{
auto
&
cpu_place
=
BOOST_GET_CONST
(
platform
::
CPUPlace
,
paddle
::
platform
::
CPUDeviceContext
().
GetPlace
());
auto
&
gpu_place
=
BOOST_GET_CONST
(
platform
::
CUDAPlace
,
out_t
->
place
());
memory
::
Copy
(
gpu_place
,
out_d
+
idx
*
vec_dim_1
,
cpu_place
,
&
recved_vec_map
[
id
][
0
],
sizeof
(
float
)
*
vec_dim_1
,
stream
);
}
}
}
#else
PADDLE_ENFORCE
(
true
,
platform
::
errors
::
PermissionDenied
(
"Paddle is not compiled with GPU!"
));
#endif
}
}
}
}
}
}
...
...
paddle/fluid/operators/distributed_ops/distributed_lookup_table_op.cc
浏览文件 @
eeeef957
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
...
@@ -17,6 +14,7 @@ limitations under the License. */
...
@@ -17,6 +14,7 @@ limitations under the License. */
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/distributed/parameter_prefetch.h"
#include "paddle/fluid/operators/distributed/parameter_prefetch.h"
#include "paddle/fluid/operators/distributed_ops/distributed_lookup_table_op.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/math_function.h"
namespace
paddle
{
namespace
paddle
{
...
@@ -75,47 +73,6 @@ class DistributedLookupTableOp : public framework::OperatorWithKernel {
...
@@ -75,47 +73,6 @@ class DistributedLookupTableOp : public framework::OperatorWithKernel {
}
}
};
};
template
<
typename
T
>
class
DistributedLookupTableKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
ids_vars
=
context
.
MultiInputVar
(
"Ids"
);
auto
emb_vars
=
context
.
MultiOutput
<
framework
::
Tensor
>
(
"Embeddings"
);
auto
id_names
=
context
.
InputNames
(
"Ids"
);
auto
embedding_name
=
context
.
InputNames
(
"W"
).
front
();
auto
out_names
=
context
.
OutputNames
(
"Outputs"
);
auto
lookup_tables
=
context
.
Attr
<
std
::
vector
<
std
::
string
>>
(
"table_names"
);
auto
endpoints
=
context
.
Attr
<
std
::
vector
<
std
::
string
>>
(
"endpoints"
);
auto
is_distributed
=
context
.
Attr
<
bool
>
(
"is_distributed"
);
auto
lookup_table_version
=
context
.
Attr
<
std
::
string
>
(
"lookup_table_version"
);
operators
::
distributed
::
prefetchs
(
id_names
,
out_names
,
embedding_name
,
is_distributed
,
lookup_tables
,
endpoints
,
context
,
context
.
scope
());
if
(
lookup_table_version
==
"lookup_table_v2"
)
{
auto
&
scope
=
context
.
scope
();
auto
emb_dim
=
scope
.
FindVar
(
embedding_name
)
->
Get
<
framework
::
LoDTensor
>
().
dims
()[
1
];
for
(
size_t
i
=
0
;
i
<
id_names
.
size
();
++
i
)
{
auto
*
id_var
=
scope
.
FindVar
(
id_names
[
i
]);
auto
*
out_var
=
scope
.
FindVar
(
out_names
[
i
]);
auto
*
id_tensor
=
id_var
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
*
out_tensor
=
out_var
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
id_dims
=
id_tensor
->
dims
();
out_tensor
->
Resize
(
framework
::
make_ddim
(
{
static_cast
<
int64_t
>
(
id_dims
[
0
]),
static_cast
<
int64_t
>
(
id_dims
[
1
]),
static_cast
<
int64_t
>
(
emb_dim
)}));
}
}
}
};
class
DistributedLookupTableOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
class
DistributedLookupTableOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
public:
void
Make
()
override
{
void
Make
()
override
{
...
@@ -170,15 +127,12 @@ class DistributedLookupTableOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -170,15 +127,12 @@ class DistributedLookupTableOpMaker : public framework::OpProtoAndCheckerMaker {
AddComment
(
R"DOC(
AddComment
(
R"DOC(
Lookup Tablel Prefetch Operator.
Lookup Tablel Prefetch Operator.
This operator is used to perform lookup on parameter W,
This operator is used to perform lookup on parameter W,
then concatenated into a sparse tensor.
then concatenated into a sparse tensor.
The type of Ids(Input) is SelectedRows, the rows of Ids contains
The type of Ids(Input) is SelectedRows, the rows of Ids contains
the ids to be looked up in W;
the ids to be looked up in W;
if the Id is not in the sparse table, this operator will return a
if the Id is not in the sparse table, this operator will return a
random value and set the value into the table for the next looking up.
random value and set the value into the table for the next looking up.
)DOC"
);
)DOC"
);
}
}
};
};
...
@@ -191,4 +145,5 @@ REGISTER_OPERATOR(distributed_lookup_table, ops::DistributedLookupTableOp,
...
@@ -191,4 +145,5 @@ REGISTER_OPERATOR(distributed_lookup_table, ops::DistributedLookupTableOp,
ops
::
DistributedLookupTableOpMaker
);
ops
::
DistributedLookupTableOpMaker
);
REGISTER_OP_CPU_KERNEL
(
distributed_lookup_table
,
REGISTER_OP_CPU_KERNEL
(
distributed_lookup_table
,
ops
::
DistributedLookupTableKernel
<
float
>
);
ops
::
DistributedLookupTableKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
);
paddle/fluid/operators/distributed_ops/distributed_lookup_table_op.cu.cc
0 → 100644
浏览文件 @
eeeef957
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/distributed_ops/distributed_lookup_table_op.h"
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_CUDA_KERNEL
(
distributed_lookup_table
,
ops
::
DistributedLookupTableKernel
<
plat
::
CUDADeviceContext
,
float
>
);
paddle/fluid/operators/distributed_ops/distributed_lookup_table_op.h
0 → 100644
浏览文件 @
eeeef957
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <algorithm>
#include <string>
#include <vector>
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/distributed/parameter_prefetch.h"
#include "paddle/fluid/operators/math/math_function.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
DeviceContext
,
typename
T
>
class
DistributedLookupTableKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
ids_vars
=
context
.
MultiInputVar
(
"Ids"
);
auto
emb_vars
=
context
.
MultiOutput
<
framework
::
Tensor
>
(
"Embeddings"
);
auto
id_names
=
context
.
InputNames
(
"Ids"
);
auto
embedding_name
=
context
.
InputNames
(
"W"
).
front
();
auto
out_names
=
context
.
OutputNames
(
"Outputs"
);
auto
lookup_tables
=
context
.
Attr
<
std
::
vector
<
std
::
string
>>
(
"table_names"
);
auto
endpoints
=
context
.
Attr
<
std
::
vector
<
std
::
string
>>
(
"endpoints"
);
auto
is_distributed
=
context
.
Attr
<
bool
>
(
"is_distributed"
);
operators
::
distributed
::
prefetchs
(
id_names
,
out_names
,
embedding_name
,
is_distributed
,
lookup_tables
,
endpoints
,
context
,
context
.
scope
());
}
};
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/distributed_ops/recv_save_op.cc
浏览文件 @
eeeef957
...
@@ -44,7 +44,7 @@ class RecvSaveOp : public framework::OperatorWithKernel {
...
@@ -44,7 +44,7 @@ class RecvSaveOp : public framework::OperatorWithKernel {
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
return
framework
::
OpKernelType
(
framework
::
proto
::
VarType
::
Type
(
ctx
.
Attr
<
int
>
(
"dtype"
)),
framework
::
proto
::
VarType
::
Type
(
ctx
.
Attr
<
int
>
(
"dtype"
)),
ctx
.
Get
Place
());
platform
::
CPU
Place
());
}
}
};
};
...
...
paddle/fluid/operators/strided_memcpy.h
浏览文件 @
eeeef957
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
...
...
python/paddle/fluid/incubate/fleet/parameter_server/distribute_transpiler/__init__.py
浏览文件 @
eeeef957
...
@@ -393,6 +393,12 @@ class FleetTranspiler(Fleet):
...
@@ -393,6 +393,12 @@ class FleetTranspiler(Fleet):
"in fleet.save_inference_model() function, executor must be as Executor type"
"in fleet.save_inference_model() function, executor must be as Executor type"
)
)
# Todo(MrChengmo): support recv&save GPU-Kernel for ps-gpu model save
if
not
isinstance
(
executor
.
place
,
fluid
.
CPUPlace
):
save_executor
=
Executor
(
fluid
.
CPUPlace
())
else
:
save_executor
=
executor
if
main_program
is
not
None
:
if
main_program
is
not
None
:
if
isinstance
(
main_program
,
CompiledProgram
):
if
isinstance
(
main_program
,
CompiledProgram
):
raise
TypeError
(
raise
TypeError
(
...
@@ -670,6 +676,11 @@ if you would like to save all variables in a
...
@@ -670,6 +676,11 @@ if you would like to save all variables in a
raise
TypeError
(
raise
TypeError
(
"in fleet.save_persistables() function, executor must be as Executor type"
"in fleet.save_persistables() function, executor must be as Executor type"
)
)
# Todo(MrChengmo): support recv&save GPU-Kernel for ps-gpu model save
if
not
isinstance
(
executor
.
place
,
fluid
.
CPUPlace
):
save_executor
=
Executor
(
fluid
.
CPUPlace
())
else
:
save_executor
=
executor
if
main_program
is
None
:
if
main_program
is
None
:
main_program
=
self
.
main_program
main_program
=
self
.
main_program
...
@@ -679,7 +690,8 @@ if you would like to save all variables in a
...
@@ -679,7 +690,8 @@ if you would like to save all variables in a
"in fleet.save_persistables() function, main_program must be as Program type, CompiledProgram is not allowed"
"in fleet.save_persistables() function, main_program must be as Program type, CompiledProgram is not allowed"
)
)
self
.
_save_distributed_persistables
(
executor
,
dirname
,
main_program
)
self
.
_save_distributed_persistables
(
save_executor
,
dirname
,
main_program
)
@
staticmethod
@
staticmethod
def
__exclude_vars
(
exclude_var_names
=
[]):
def
__exclude_vars
(
exclude_var_names
=
[]):
...
...
python/paddle/fluid/tests/unittests/dist_fleet_ctr_ps_gpu.py
0 → 100644
浏览文件 @
eeeef957
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Distribute CTR model for test fleet api
"""
from
__future__
import
print_function
import
shutil
import
tempfile
import
time
import
paddle
import
paddle.fluid
as
fluid
import
os
import
numpy
as
np
import
ctr_dataset_reader
from
test_dist_fleet_base
import
runtime_main
,
FleetDistRunnerBase
from
dist_fleet_ctr
import
TestDistCTR2x2
,
fake_ctr_reader
from
paddle.distributed.fleet.base.util_factory
import
fleet_util
# Fix seed for test
fluid
.
default_startup_program
().
random_seed
=
1
fluid
.
default_main_program
().
random_seed
=
1
class
TestDistGpuPsCTR2x2
(
TestDistCTR2x2
):
"""
For test CTR model, using Fleet api & PS-GPU
"""
def
check_model_right
(
self
,
dirname
):
model_filename
=
os
.
path
.
join
(
dirname
,
"__model__"
)
with
open
(
model_filename
,
"rb"
)
as
f
:
program_desc_str
=
f
.
read
()
program
=
fluid
.
Program
.
parse_from_string
(
program_desc_str
)
with
open
(
os
.
path
.
join
(
dirname
,
"__model__.proto"
),
"w"
)
as
wn
:
wn
.
write
(
str
(
program
))
def
do_pyreader_training
(
self
,
fleet
):
"""
do training using dataset, using fetch handler to catch variable
Args:
fleet(Fleet api): the fleet object of Parameter Server, define distribute training role
"""
device_id
=
int
(
os
.
getenv
(
"FLAGS_selected_gpus"
,
"0"
))
place
=
fluid
.
CUDAPlace
(
device_id
)
exe
=
fluid
.
Executor
(
place
)
fleet
.
init_worker
()
exe
.
run
(
fleet
.
startup_program
)
batch_size
=
4
train_reader
=
paddle
.
batch
(
fake_ctr_reader
(),
batch_size
=
batch_size
)
self
.
reader
.
decorate_sample_list_generator
(
train_reader
)
for
epoch_id
in
range
(
1
):
self
.
reader
.
start
()
try
:
pass_start
=
time
.
time
()
while
True
:
loss_val
=
exe
.
run
(
program
=
fleet
.
main_program
,
fetch_list
=
[
self
.
avg_cost
.
name
])
loss_val
=
np
.
mean
(
loss_val
)
reduce_output
=
fleet_util
.
all_reduce
(
np
.
array
(
loss_val
),
mode
=
"sum"
)
loss_all_trainer
=
fleet_util
.
all_gather
(
float
(
loss_val
))
loss_val
=
float
(
reduce_output
)
/
len
(
loss_all_trainer
)
message
=
"TRAIN ---> pass: {} loss: {}
\n
"
.
format
(
epoch_id
,
loss_val
)
fleet_util
.
print_on_rank
(
message
,
0
)
pass_time
=
time
.
time
()
-
pass_start
except
fluid
.
core
.
EOFException
:
self
.
reader
.
reset
()
model_dir
=
tempfile
.
mkdtemp
()
fleet
.
save_inference_model
(
exe
,
model_dir
,
[
feed
.
name
for
feed
in
self
.
feeds
],
self
.
avg_cost
)
self
.
check_model_right
(
model_dir
)
if
fleet
.
is_first_worker
():
fleet
.
save_persistables
(
executor
=
exe
,
dirname
=
model_dir
)
shutil
.
rmtree
(
model_dir
)
fleet
.
stop_worker
()
def
do_dataset_training
(
self
,
fleet
):
dnn_input_dim
,
lr_input_dim
,
train_file_path
=
ctr_dataset_reader
.
prepare_data
(
)
device_id
=
int
(
os
.
getenv
(
"FLAGS_selected_gpus"
,
"0"
))
place
=
fluid
.
CUDAPlace
(
device_id
)
exe
=
fluid
.
Executor
(
place
)
fleet
.
init_worker
()
exe
.
run
(
fleet
.
startup_program
)
thread_num
=
2
batch_size
=
128
filelist
=
[]
for
_
in
range
(
thread_num
):
filelist
.
append
(
train_file_path
)
# config dataset
dataset
=
paddle
.
fleet
.
DatasetFactory
().
create_dataset
()
dataset
.
set_batch_size
(
batch_size
)
dataset
.
set_use_var
(
self
.
feeds
)
pipe_command
=
'python ctr_dataset_reader.py'
dataset
.
set_pipe_command
(
pipe_command
)
dataset
.
set_filelist
(
filelist
)
dataset
.
set_thread
(
thread_num
)
for
epoch_id
in
range
(
1
):
pass_start
=
time
.
time
()
dataset
.
set_filelist
(
filelist
)
exe
.
train_from_dataset
(
program
=
fleet
.
main_program
,
dataset
=
dataset
,
fetch_list
=
[
self
.
avg_cost
],
fetch_info
=
[
"cost"
],
print_period
=
2
,
debug
=
int
(
os
.
getenv
(
"Debug"
,
"0"
)))
pass_time
=
time
.
time
()
-
pass_start
if
os
.
getenv
(
"SAVE_MODEL"
)
==
"1"
:
model_dir
=
tempfile
.
mkdtemp
()
fleet
.
save_inference_model
(
exe
,
model_dir
,
[
feed
.
name
for
feed
in
self
.
feeds
],
self
.
avg_cost
)
self
.
check_model_right
(
model_dir
)
if
fleet
.
is_first_worker
():
fleet
.
save_persistables
(
executor
=
exe
,
dirname
=
model_dir
)
shutil
.
rmtree
(
model_dir
)
fleet
.
stop_worker
()
if
__name__
==
"__main__"
:
runtime_main
(
TestDistGpuPsCTR2x2
)
python/paddle/fluid/tests/unittests/test_dist_fleet_base.py
浏览文件 @
eeeef957
...
@@ -278,6 +278,23 @@ class TestFleetBase(unittest.TestCase):
...
@@ -278,6 +278,23 @@ class TestFleetBase(unittest.TestCase):
tr0_ret
=
tr0
.
returncode
tr0_ret
=
tr0
.
returncode
tr1_ret
=
tr0
.
returncode
tr1_ret
=
tr0
.
returncode
if
tr0_ret
!=
0
:
print
(
"========================Error tr0_err begin==========================="
)
os
.
system
(
"cat {}"
.
format
(
tempfile
.
gettempdir
()
+
"/tr0_err.log"
))
print
(
"========================Error tr0_err end==========================="
)
if
tr1_ret
!=
0
:
print
(
"========================Error tr1_err begin==========================="
)
os
.
system
(
"cat {}"
.
format
(
tempfile
.
gettempdir
()
+
"/tr1_err.log"
))
print
(
"========================Error tr1_err end==========================="
)
self
.
assertEqual
(
tr0_ret
,
0
,
"something wrong in tr0, please check"
)
self
.
assertEqual
(
tr0_ret
,
0
,
"something wrong in tr0, please check"
)
self
.
assertEqual
(
tr1_ret
,
0
,
"something wrong in tr1, please check"
)
self
.
assertEqual
(
tr1_ret
,
0
,
"something wrong in tr1, please check"
)
...
...
python/paddle/fluid/tests/unittests/test_dist_fleet_ctr.py
浏览文件 @
eeeef957
...
@@ -156,5 +156,40 @@ class TestDistCtrHalfAsync2x2(TestFleetBase):
...
@@ -156,5 +156,40 @@ class TestDistCtrHalfAsync2x2(TestFleetBase):
"dist_fleet_ctr.py"
,
delta
=
1e-5
,
check_error_log
=
True
)
"dist_fleet_ctr.py"
,
delta
=
1e-5
,
check_error_log
=
True
)
class
TestDistCtrPsGpuPyreaderAsync2x2
(
TestFleetBase
):
def
_setup_config
(
self
):
self
.
_mode
=
"async"
self
.
_reader
=
"pyreader"
def
check_with_place
(
self
,
model_file
,
delta
=
1e-3
,
check_error_log
=
False
,
need_envs
=
{}):
required_envs
=
{
"PATH"
:
os
.
getenv
(
"PATH"
,
""
),
"PYTHONPATH"
:
os
.
getenv
(
"PYTHONPATH"
,
""
),
"LD_LIBRARY_PATH"
:
os
.
getenv
(
"LD_LIBRARY_PATH"
,
""
),
"FLAGS_rpc_deadline"
:
"30000"
,
# 5sec to fail fast
"http_proxy"
:
""
,
"FLAGS_communicator_send_queue_size"
:
"2"
,
"FLAGS_communicator_max_merge_var_num"
:
"2"
,
"CPU_NUM"
:
"2"
,
"SAVE_MODEL"
:
"1"
}
required_envs
.
update
(
need_envs
)
if
check_error_log
:
required_envs
[
"GLOG_v"
]
=
"3"
required_envs
[
"GLOG_logtostderr"
]
=
"1"
tr0_losses
,
tr1_losses
=
self
.
_run_cluster
(
model_file
,
required_envs
)
def
test_dist_train
(
self
):
self
.
check_with_place
(
"dist_fleet_ctr_ps_gpu.py"
,
delta
=
1e-5
,
check_error_log
=
True
)
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
unittest
.
main
()
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录