未验证 提交 ed2bb051 编写于 作者: N Nyakku Shigure 提交者: GitHub

[CodeStyle][W191][E101] remove tabs in python files (#46288)

上级 330b1a0a
......@@ -1493,7 +1493,7 @@ class BoxPSDataset(InMemoryDataset):
filelist = ["a.txt", "b.txt"]
dataset.set_filelist(filelist)
dataset.load_into_memory()
"""
"""
self._prepare_to_run()
self.boxps.load_into_memory()
......
......@@ -684,7 +684,7 @@ class FusedTransformerEncoderLayer(Layer):
.. code-block:: python
# required: gpu
# required: gpu
import paddle
from paddle.incubate.nn import FusedTransformerEncoderLayer
......
......@@ -511,7 +511,7 @@ def coalesce(x):
#[[0, 1], [1, 2]]
print(sp_x.values())
#[3.0, 3.0]
"""
"""
return _C_ops.sparse_coalesce(x)
......
......@@ -347,23 +347,23 @@ def interpolate(x,
Examples:
.. code-block:: python
import paddle
import paddle.nn.functional as F
input_data = paddle.randn(shape=(2,3,6,10)).astype(paddle.float32)
output_1 = F.interpolate(x=input_data, size=[12,12])
print(output_1.shape)
# [2L, 3L, 12L, 12L]
# given scale
output_2 = F.interpolate(x=input_data, scale_factor=[2,1])
print(output_2.shape)
# [2L, 3L, 12L, 10L]
# bilinear interp
output_3 = F.interpolate(x=input_data, scale_factor=[2,1], mode="bilinear")
print(output_2.shape)
# [2L, 3L, 12L, 10L]
import paddle
import paddle.nn.functional as F
input_data = paddle.randn(shape=(2,3,6,10)).astype(paddle.float32)
output_1 = F.interpolate(x=input_data, size=[12,12])
print(output_1.shape)
# [2L, 3L, 12L, 12L]
# given scale
output_2 = F.interpolate(x=input_data, scale_factor=[2,1])
print(output_2.shape)
# [2L, 3L, 12L, 10L]
# bilinear interp
output_3 = F.interpolate(x=input_data, scale_factor=[2,1], mode="bilinear")
print(output_2.shape)
# [2L, 3L, 12L, 10L]
"""
data_format = data_format.upper()
resample = mode.upper()
......@@ -818,17 +818,17 @@ def upsample(x,
or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels).
Examples:
.. code-block:: python
.. code-block:: python
import paddle
import paddle.nn as nn
import paddle
import paddle.nn as nn
input_data = paddle.randn(shape=(2,3,6,10)).astype(paddle.float32)
upsample_out = paddle.nn.Upsample(size=[12,12])
input_data = paddle.randn(shape=(2,3,6,10)).astype(paddle.float32)
upsample_out = paddle.nn.Upsample(size=[12,12])
output = upsample_out(x=input_data)
print(output.shape)
# [2L, 3L, 12L, 12L]
output = upsample_out(x=input_data)
print(output.shape)
# [2L, 3L, 12L, 12L]
"""
return interpolate(x, size, scale_factor, mode, align_corners, align_mode,
......@@ -842,30 +842,30 @@ def bilinear(x1, x2, weight, bias=None, name=None):
See :ref:`api_nn_Bilinear` for details and output shape.
Parameters:
x1 (Tensor): the first input tensor, it's data type should be float32, float64.
x2 (Tensor): the second input tensor, it's data type should be float32, float64.
weight (Parameter): The learnable weights of this layer, shape is [out_features, in1_features, in2_features].
bias (Parameter, optional): The learnable bias(Bias) of this layer, shape is [1, out_features]. If it is set to None, no bias will be added to the output units. The default value is None.
name (str, optional): The default value is None. Normally there is no need for user
to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.
x1 (Tensor): the first input tensor, it's data type should be float32, float64.
x2 (Tensor): the second input tensor, it's data type should be float32, float64.
weight (Parameter): The learnable weights of this layer, shape is [out_features, in1_features, in2_features].
bias (Parameter, optional): The learnable bias(Bias) of this layer, shape is [1, out_features]. If it is set to None, no bias will be added to the output units. The default value is None.
name (str, optional): The default value is None. Normally there is no need for user
to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.
Returns:
Tensor: A 2-D Tensor of shape [batch_size, out_features].
Tensor: A 2-D Tensor of shape [batch_size, out_features].
Examples:
.. code-block:: python
.. code-block:: python
import paddle
import paddle.nn.functional as F
import paddle
import paddle.nn.functional as F
x1 = paddle.randn((5, 5)).astype(paddle.float32)
x2 = paddle.randn((5, 4)).astype(paddle.float32)
w = paddle.randn((1000, 5, 4)).astype(paddle.float32)
b = paddle.randn((1, 1000)).astype(paddle.float32)
x1 = paddle.randn((5, 5)).astype(paddle.float32)
x2 = paddle.randn((5, 4)).astype(paddle.float32)
w = paddle.randn((1000, 5, 4)).astype(paddle.float32)
b = paddle.randn((1, 1000)).astype(paddle.float32)
result = F.bilinear(x1, x2, w, b)
print(result.shape)
# [5, 1000]
result = F.bilinear(x1, x2, w, b)
print(result.shape)
# [5, 1000]
"""
if in_dygraph_mode():
......@@ -1008,38 +1008,38 @@ def dropout(x,
.. code-block:: python
import paddle
x = paddle.to_tensor([[1,2,3], [4,5,6]]).astype(paddle.float32)
y_train = paddle.nn.functional.dropout(x, 0.5)
y_test = paddle.nn.functional.dropout(x, 0.5, training=False)
y_0 = paddle.nn.functional.dropout(x, axis=0)
y_1 = paddle.nn.functional.dropout(x, axis=1)
y_01 = paddle.nn.functional.dropout(x, axis=[0,1])
print(x)
# Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
# [[1., 2., 3.],
# [4., 5., 6.]])
print(y_train)
# Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
# [[2. , 0. , 6. ],
# [8. , 0. , 12.]])
print(y_test)
# Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
# [[1., 2., 3.],
# [4., 5., 6.]])
print(y_0)
# Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
# [[0. , 0. , 0. ],
# [8. , 10., 12.]])
print(y_1)
# Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
# [[2. , 0. , 6. ],
# [8. , 0. , 12.]])
print(y_01)
# Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
# [[0. , 0. , 0. ],
# [8. , 0. , 12.]])
import paddle
x = paddle.to_tensor([[1,2,3], [4,5,6]]).astype(paddle.float32)
y_train = paddle.nn.functional.dropout(x, 0.5)
y_test = paddle.nn.functional.dropout(x, 0.5, training=False)
y_0 = paddle.nn.functional.dropout(x, axis=0)
y_1 = paddle.nn.functional.dropout(x, axis=1)
y_01 = paddle.nn.functional.dropout(x, axis=[0,1])
print(x)
# Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
# [[1., 2., 3.],
# [4., 5., 6.]])
print(y_train)
# Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
# [[2. , 0. , 6. ],
# [8. , 0. , 12.]])
print(y_test)
# Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
# [[1., 2., 3.],
# [4., 5., 6.]])
print(y_0)
# Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
# [[0. , 0. , 0. ],
# [8. , 10., 12.]])
print(y_1)
# Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
# [[2. , 0. , 6. ],
# [8. , 0. , 12.]])
print(y_01)
# Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
# [[0. , 0. , 0. ],
# [8. , 0. , 12.]])
"""
if not isinstance(p, (float, int, Variable)):
......@@ -1239,14 +1239,14 @@ def dropout3d(x, p=0.5, training=True, data_format='NCDHW', name=None):
Examples:
.. code-block:: python
import paddle
import paddle
x = paddle.randn(shape=(2, 3, 4, 5, 6)).astype(paddle.float32)
y_train = paddle.nn.functional.dropout3d(x) #train
y_test = paddle.nn.functional.dropout3d(x, training=False) #test
print(x[0,0,:,:,:])
print(y_train[0,0,:,:,:]) # may all 0
print(y_test[0,0,:,:,:])
x = paddle.randn(shape=(2, 3, 4, 5, 6)).astype(paddle.float32)
y_train = paddle.nn.functional.dropout3d(x) #train
y_test = paddle.nn.functional.dropout3d(x, training=False) #test
print(x[0,0,:,:,:])
print(y_train[0,0,:,:,:]) # may all 0
print(y_test[0,0,:,:,:])
"""
......@@ -1287,19 +1287,19 @@ def alpha_dropout(x, p=0.5, training=True, name=None):
Examples:
.. code-block:: python
import paddle
x = paddle.to_tensor([[-1, 1], [-1, 1]]).astype(paddle.float32)
y_train = paddle.nn.functional.alpha_dropout(x, 0.5)
y_test = paddle.nn.functional.alpha_dropout(x, 0.5, training=False)
print(y_train)
# Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
# [[-0.10721093, -0.77919382],
# [-0.10721093, 1.66559887]]) (randomly)
print(y_test)
# Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
# [[-1., 1.],
# [-1., 1.]])
import paddle
x = paddle.to_tensor([[-1, 1], [-1, 1]]).astype(paddle.float32)
y_train = paddle.nn.functional.alpha_dropout(x, 0.5)
y_test = paddle.nn.functional.alpha_dropout(x, 0.5, training=False)
print(y_train)
# Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
# [[-0.10721093, -0.77919382],
# [-0.10721093, 1.66559887]]) (randomly)
print(y_test)
# Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
# [[-1., 1.],
# [-1., 1.]])
"""
if not isinstance(p, (float, int)):
raise TypeError("p argument should be a float or int")
......
......@@ -472,10 +472,9 @@ def edit_distance(input,
NOTE: This Api is different from fluid.metrics.EditDistance
Returns:
Tuple:
distance(Tensor): edit distance result, its data type is float32, and its shape is (batch_size, 1).
sequence_num(Tensor): sequence number, its data type is float32, and its shape is (1,).
Tuple:
distance(Tensor): edit distance result, its data type is float32, and its shape is (batch_size, 1).
sequence_num(Tensor): sequence number, its data type is float32, and its shape is (1,).
Examples:
.. code-block:: python
......@@ -2959,29 +2958,29 @@ def multi_label_soft_margin_loss(input,
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Shape:
input: N-D Tensor, the shape is [N, \*], N is batch size and `\*` means number of classes, available dtype is float32, float64. The sum operationoperates over all the elements.
label: N-D Tensor, same shape as the input.
weight:N-D Tensor, the shape is [N,1]
output: scalar. If :attr:`reduction` is ``'none'``, then same shape as the input.
Shape:
input: N-D Tensor, the shape is [N, \*], N is batch size and `\*` means number of classes, available dtype is float32, float64. The sum operationoperates over all the elements.
label: N-D Tensor, same shape as the input.
weight:N-D Tensor, the shape is [N,1]
output: scalar. If :attr:`reduction` is ``'none'``, then same shape as the input.
Returns:
Tensor, The tensor variable storing the multi_label_soft_margin_loss of input and label.
Returns:
Tensor, The tensor variable storing the multi_label_soft_margin_loss of input and label.
Examples:
.. code-block:: python
Examples:
.. code-block:: python
import paddle
import paddle.nn.functional as F
input = paddle.to_tensor([[1, -2, 3], [0, -1, 2], [1, 0, 1]], dtype=paddle.float32)
# label elements in {1., -1.}
label = paddle.to_tensor([[-1, 1, -1], [1, 1, 1], [1, -1, 1]], dtype=paddle.float32)
loss = F.multi_label_soft_margin_loss(input, label, reduction='none')
print(loss)
# Tensor([3.49625897, 0.71111226, 0.43989015])
loss = F.multi_label_soft_margin_loss(input, label, reduction='mean')
print(loss)
# Tensor([1.54908717])
import paddle
import paddle.nn.functional as F
input = paddle.to_tensor([[1, -2, 3], [0, -1, 2], [1, 0, 1]], dtype=paddle.float32)
# label elements in {1., -1.}
label = paddle.to_tensor([[-1, 1, -1], [1, 1, 1], [1, -1, 1]], dtype=paddle.float32)
loss = F.multi_label_soft_margin_loss(input, label, reduction='none')
print(loss)
# Tensor([3.49625897, 0.71111226, 0.43989015])
loss = F.multi_label_soft_margin_loss(input, label, reduction='mean')
print(loss)
# Tensor([1.54908717])
"""
if reduction not in ['sum', 'mean', 'none']:
raise ValueError(
......@@ -3266,8 +3265,8 @@ def triplet_margin_with_distance_loss(input,
distance_function (callable, optional): Quantifies the distance between two tensors. if not specified, 2 norm functions will be used.
margin (float, optional):Default: :math:`1`.A nonnegative margin representing the minimum difference
between the positive and negative distances required for the loss to be 0.
margin (float, optional): A nonnegative margin representing the minimum difference
between the positive and negative distances required for the loss to be 0. Default value is :math:`1`.
swap (bool, optional):The distance swap changes the negative distance to the swap distance (distance between positive samples
and negative samples) if swap distance smaller than negative distance. Default: ``False``.
......
......@@ -1219,7 +1219,7 @@ class MultiLabelSoftMarginLoss(Layer):
:math:`y` and :math:`x` must have the same size.
Parameters:
weight (Tensor,optional): a manual rescaling weight given to each class.
weight (Tensor,optional): a manual rescaling weight given to each class.
If given, has to be a Tensor of size C and the data type is float32, float64.
Default is ``'None'`` .
reduction (str, optional): Indicate how to average the loss by batch_size,
......@@ -1482,7 +1482,7 @@ class TripletMarginWithDistanceLoss(Layer):
where the default `distance_function`
.. math::
d(x_i, y_i) = \left\lVert {\bf x}_i - {\bf y}_i \right\rVert_2
d(x_i, y_i) = \left\lVert {\bf x}_i - {\bf y}_i \right\rVert_2
or user can define their own distance function. `margin` is a nonnegative margin representing the minimum difference
between the positive and negative distances that is required for the loss to be 0. If `swap` is true, it will compare distance of (input, negative) with
......@@ -1510,15 +1510,15 @@ class TripletMarginWithDistanceLoss(Layer):
Shapes:
input (Tensor):Input tensor, the data type is float32 or float64.
the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64.
the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64.
positive (Tensor):Positive tensor, the data type is float32 or float64.
The shape of label is the same as the shape of input.
The shape of label is the same as the shape of input.
negative (Tensor):Negative tensor, the data type is float32 or float64.
The shape of label is the same as the shape of input.
The shape of label is the same as the shape of input.
output(Tensor): The tensor variable storing the triplet_margin_with_distance_loss of input and positive and negative.
output(Tensor): The tensor variable storing the triplet_margin_with_distance_loss of input and positive and negative.
Return:
A callable object of TripletMarginWithDistanceLoss
......
......@@ -134,15 +134,15 @@ Where `H` means height of feature map, `W` means width of feature map.
numerical stability. Default is 1e-5.
momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
will create ParamAttr as weight_attr, the name of scale can be set in ParamAttr.
If the Initializer of the weight_attr is not set, the parameter is initialized
one. If it is set to False, will not create weight_attr. Default: None.
of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
will create ParamAttr as weight_attr, the name of scale can be set in ParamAttr.
If the Initializer of the weight_attr is not set, the parameter is initialized
one. If it is set to False, will not create weight_attr. Default: None.
bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of instance_norm.
If it is set to None or one attribute of ParamAttr, instance_norm
will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr.
If the Initializer of the bias_attr is not set, the bias is initialized zero.
If it is set to False, will not create bias_attr. Default: None.
If it is set to None or one attribute of ParamAttr, instance_norm
will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr.
If the Initializer of the bias_attr is not set, the bias is initialized zero.
If it is set to False, will not create bias_attr. Default: None.
data_format(str, optional): Specify the input data format, may be "NC", "NCL". Default "NCL".
name(str, optional): Name for the InstanceNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..
......@@ -202,15 +202,15 @@ Where `H` means height of feature map, `W` means width of feature map.
numerical stability. Default is 1e-5.
momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
will create ParamAttr as weight_attr, the name of scale can be set in ParamAttr.
If the Initializer of the weight_attr is not set, the parameter is initialized
one. If it is set to False, will not create weight_attr. Default: None.
of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
will create ParamAttr as weight_attr, the name of scale can be set in ParamAttr.
If the Initializer of the weight_attr is not set, the parameter is initialized
one. If it is set to False, will not create weight_attr. Default: None.
bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of instance_norm.
If it is set to None or one attribute of ParamAttr, instance_norm
will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr.
If the Initializer of the bias_attr is not set, the bias is initialized zero.
If it is set to False, will not create bias_attr. Default: None.
If it is set to None or one attribute of ParamAttr, instance_norm
will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr.
If the Initializer of the bias_attr is not set, the bias is initialized zero.
` If it is set to False, will not create bias_attr. Default: None.
data_format(str, optional): Specify the input data format, could be "NCHW". Default: NCHW.
name(str, optional): Name for the InstanceNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..
......@@ -226,13 +226,13 @@ Where `H` means height of feature map, `W` means width of feature map.
.. code-block:: python
import paddle
import paddle
x = paddle.rand((2, 2, 2, 3))
instance_norm = paddle.nn.InstanceNorm2D(2)
instance_norm_out = instance_norm(x)
x = paddle.rand((2, 2, 2, 3))
instance_norm = paddle.nn.InstanceNorm2D(2)
instance_norm_out = instance_norm(x)
print(instance_norm_out)
print(instance_norm_out)
"""
def _check_input_dim(self, input):
......@@ -268,15 +268,15 @@ Where `H` means height of feature map, `W` means width of feature map.
numerical stability. Default is 1e-5.
momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
will create ParamAttr as weight_attr, the name of scale can be set in ParamAttr.
If the Initializer of the weight_attr is not set, the parameter is initialized
one. If it is set to False, will not create weight_attr. Default: None.
of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
will create ParamAttr as weight_attr, the name of scale can be set in ParamAttr.
If the Initializer of the weight_attr is not set, the parameter is initialized
one. If it is set to False, will not create weight_attr. Default: None.
bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of instance_norm.
If it is set to None or one attribute of ParamAttr, instance_norm
will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr.
If the Initializer of the bias_attr is not set, the bias is initialized zero.
If it is set to False, will not create bias_attr. Default: None.
If it is set to None or one attribute of ParamAttr, instance_norm
will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr.
If the Initializer of the bias_attr is not set, the bias is initialized zero.
If it is set to False, will not create bias_attr. Default: None.
data_format(str, optional): Specify the input data format, could be "NCDHW". Default: NCDHW.
name(str, optional): Name for the InstanceNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..
......@@ -292,13 +292,13 @@ Where `H` means height of feature map, `W` means width of feature map.
.. code-block:: python
import paddle
import paddle
x = paddle.rand((2, 2, 2, 2, 3))
instance_norm = paddle.nn.InstanceNorm3D(2)
instance_norm_out = instance_norm(x)
x = paddle.rand((2, 2, 2, 2, 3))
instance_norm = paddle.nn.InstanceNorm3D(2)
instance_norm_out = instance_norm(x)
print(instance_norm_out.numpy)
print(instance_norm_out.numpy)
"""
def _check_input_dim(self, input):
......@@ -318,13 +318,13 @@ class GroupNorm(Layer):
num_groups(int): The number of groups that divided from channels.
num_channels(int): The number of channels of input.
epsilon(float, optional): The small value added to the variance to prevent
division by zero. Default: 1e-05.
division by zero. Default: 1e-05.
weight_attr(ParamAttr|bool, optional): The parameter attribute for the learnable
scale :math:`g`. If it is set to False, no scale will be added to the output units.
If it is set to None, the bias is initialized one. Default: None.
scale :math:`g`. If it is set to False, no scale will be added to the output units.
If it is set to None, the bias is initialized one. Default: None.
bias_attr(ParamAttr|bool, optional): The parameter attribute for the learnable
bias :math:`b`. If it is set to False, no bias will be added to the output units.
If it is set to None, the bias is initialized zero. Default: None.
bias :math:`b`. If it is set to False, no bias will be added to the output units.
If it is set to None, the bias is initialized zero. Default: None.
data_format(str, optional): Specify the input data format. Only NCHW is supported. Default: NCHW.
name(str, optional): Name for the GroupNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..
......@@ -338,17 +338,17 @@ class GroupNorm(Layer):
Examples:
.. code-block:: python
import paddle
import numpy as np
import paddle
import numpy as np
paddle.disable_static()
np.random.seed(123)
x_data = np.random.random(size=(2, 6, 2, 2)).astype('float32')
x = paddle.to_tensor(x_data)
group_norm = paddle.nn.GroupNorm(num_channels=6, num_groups=6)
group_norm_out = group_norm(x)
paddle.disable_static()
np.random.seed(123)
x_data = np.random.random(size=(2, 6, 2, 2)).astype('float32')
x = paddle.to_tensor(x_data)
group_norm = paddle.nn.GroupNorm(num_channels=6, num_groups=6)
group_norm_out = group_norm(x)
print(group_norm_out.numpy())
print(group_norm_out.numpy())
"""
def __init__(self,
......
......@@ -45,19 +45,19 @@ class Adagrad(Optimizer):
It can be a float value or a ``Variable`` with a float type.
epsilon (float, optional): A small float value for numerical stability.
The default value is 1e-06.
parameters (list|tuple, optional): List/Tuple of ``Tensor`` to update to minimize ``loss``. \
This parameter is required in dygraph mode. And you can specify different options for \
different parameter groups such as the learning rate, weight decay, etc, \
then the parameters are list of dict. Note that the learning_rate in paramter groups \
represents the scale of base learning_rate. \
The default value is None in static mode, at this time all parameters will be updated.
weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization. \
It canbe a float value as coeff of L2 regularization or \
:ref:`api_paddle_regularizer_L1Decay`, :ref:`api_paddle_regularizer_L2Decay`.
If a parameter has set regularizer using :ref:`api_paddle_fluid_param_attr_aramAttr` already, \
the regularization setting here in optimizer will be ignored for this parameter. \
Otherwise, the regularization setting here in optimizer will take effect. \
Default None, meaning there is no regularization.
parameters (list|tuple, optional): List/Tuple of ``Tensor`` to update to minimize ``loss``.
This parameter is required in dygraph mode. And you can specify different options for
different parameter groups such as the learning rate, weight decay, etc,
then the parameters are list of dict. Note that the learning_rate in paramter groups
represents the scale of base learning_rate.
The default value is None in static mode, at this time all parameters will be updated.
weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization.
It canbe a float value as coeff of L2 regularization or
:ref:`api_paddle_regularizer_L1Decay`, :ref:`api_paddle_regularizer_L2Decay`.
If a parameter has set regularizer using :ref:`api_paddle_fluid_param_attr_aramAttr` already,
the regularization setting here in optimizer will be ignored for this parameter.
Otherwise, the regularization setting here in optimizer will take effect.
Default None, meaning there is no regularization.
grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
some derived class of ``GradientClipBase`` . There are three cliping strategies,
ClipGradByGlobalNorm, ClipGradByNorm and ClipGradByValue. Default None,
......
......@@ -67,19 +67,19 @@ class Adam(Optimizer):
epsilon (float|Tensor, optional): A small float value for numerical stability.
It should be a float number or a Tensor with shape [1] and data type as float32.
The default value is 1e-08.
parameters (list|tuple, optional): List/Tuple of ``Tensor`` to update to minimize ``loss``. \
This parameter is required in dygraph mode. And you can specify different options for \
different parameter groups such as the learning rate, weight decay, etc, \
then the parameters are list of dict. Note that the learning_rate in paramter groups \
represents the scale of base learning_rate. \
The default value is None in static mode, at this time all parameters will be updated.
weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization. \
It canbe a float value as coeff of L2 regularization or \
:ref:`api_fluid_regularizer_L1Decay`, :ref:`api_fluid_regularizer_L2Decay`.
If a parameter has set regularizer using :ref:`api_fluid_ParamAttr` already, \
the regularization setting here in optimizer will be ignored for this parameter. \
Otherwise, the regularization setting here in optimizer will take effect. \
Default None, meaning there is no regularization.
parameters (list|tuple, optional): List/Tuple of ``Tensor`` to update to minimize ``loss``.
This parameter is required in dygraph mode. And you can specify different options for
different parameter groups such as the learning rate, weight decay, etc,
then the parameters are list of dict. Note that the learning_rate in paramter groups
represents the scale of base learning_rate.
The default value is None in static mode, at this time all parameters will be updated.
weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization.
It canbe a float value as coeff of L2 regularization or
:ref:`api_fluid_regularizer_L1Decay`, :ref:`api_fluid_regularizer_L2Decay`.
If a parameter has set regularizer using :ref:`api_fluid_ParamAttr` already,
the regularization setting here in optimizer will be ignored for this parameter.
Otherwise, the regularization setting here in optimizer will take effect.
Default None, meaning there is no regularization.
grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
some derived class of ``GradientClipBase`` . There are three cliping strategies
( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
......
......@@ -57,19 +57,19 @@ class Adamax(Optimizer):
The default value is 0.999.
epsilon (float, optional): A small float value for numerical stability.
The default value is 1e-08.
parameters (list|tuple, optional): List/Tuple of ``Tensor`` to update to minimize ``loss``. \
This parameter is required in dygraph mode. And you can specify different options for \
different parameter groups such as the learning rate, weight decay, etc, \
then the parameters are list of dict. Note that the learning_rate in paramter groups \
represents the scale of base learning_rate. \
The default value is None in static mode, at this time all parameters will be updated.
weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization. \
It canbe a float value as coeff of L2 regularization or \
:ref:`api_fluid_regularizer_L1Decay`, :ref:`api_fluid_regularizer_L2Decay`.
If a parameter has set regularizer using :ref:`api_fluid_ParamAttr` already, \
the regularization setting here in optimizer will be ignored for this parameter. \
Otherwise, the regularization setting here in optimizer will take effect. \
Default None, meaning there is no regularization.
parameters (list|tuple, optional): List/Tuple of ``Tensor`` to update to minimize ``loss``.
This parameter is required in dygraph mode. And you can specify different options for
different parameter groups such as the learning rate, weight decay, etc,
then the parameters are list of dict. Note that the learning_rate in paramter groups
represents the scale of base learning_rate.
The default value is None in static mode, at this time all parameters will be updated.
weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization.
It canbe a float value as coeff of L2 regularization or
:ref:`api_fluid_regularizer_L1Decay`, :ref:`api_fluid_regularizer_L2Decay`.
If a parameter has set regularizer using :ref:`api_fluid_ParamAttr` already,
the regularization setting here in optimizer will be ignored for this parameter.
Otherwise, the regularization setting here in optimizer will take effect.
Default None, meaning there is no regularization.
grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
some derived class of ``GradientClipBase`` . There are three cliping strategies
( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
......
......@@ -54,12 +54,12 @@ class AdamW(Optimizer):
Args:
learning_rate (float|LRScheduler, optional): The learning rate used to update ``Parameter``.
It can be a float value or a LRScheduler. The default value is 0.001.
parameters (list|tuple, optional): List/Tuple of ``Tensor`` names to update to minimize ``loss``. \
This parameter is required in dygraph mode. And you can specify different options for \
different parameter groups such as the learning rate, weight decay, etc, \
then the parameters are list of dict. Note that the learning_rate in paramter groups \
represents the scale of base learning_rate. \
The default value is None in static mode, at this time all parameters will be updated.
parameters (list|tuple, optional): List/Tuple of ``Tensor`` names to update to minimize ``loss``.
This parameter is required in dygraph mode. And you can specify different options for
different parameter groups such as the learning rate, weight decay, etc,
then the parameters are list of dict. Note that the learning_rate in paramter groups
represents the scale of base learning_rate.
The default value is None in static mode, at this time all parameters will be updated.
beta1 (float|Tensor, optional): The exponential decay rate for the 1st moment estimates.
It should be a float number or a Tensor with shape [1] and data type as float32.
The default value is 0.9.
......
......@@ -63,12 +63,6 @@ def rank(input):
def shape(input):
"""
:alias_main: paddle.shape
:alias: paddle.shape,paddle.tensor.shape,paddle.tensor.attribute.shape
:old_api: paddle.fluid.layers.shape
**Shape Layer**
Get the shape of the input.
.. code-block:: text
......
......@@ -416,12 +416,6 @@ def transpose(x, perm, name=None):
def unstack(x, axis=0, num=None):
"""
:alias_main: paddle.unstack
:alias: paddle.unstack,paddle.tensor.unstack,paddle.tensor.manipulation.unstack
:old_api: paddle.fluid.layers.unstack
**UnStack Layer**
This layer unstacks input Tensor :code:`x` into several Tensors along :code:`axis`.
If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
......@@ -1693,12 +1687,12 @@ def stack(x, axis=0, name=None):
# [[3., 4.]],
# [[5., 6.]]]
out = paddle.stack([x1, x2, x3], axis=-2)
print(out.shape) # [1, 3, 2]
print(out)
# [[[1., 2.],
# [3., 4.],
# [5., 6.]]]
out = paddle.stack([x1, x2, x3], axis=-2)
print(out.shape) # [1, 3, 2]
print(out)
# [[[1., 2.],
# [3., 4.],
# [5., 6.]]]
"""
axis = 0 if axis is None else axis
......@@ -2663,7 +2657,7 @@ def scatter(x, index, updates, overwrite=True, name=None):
overwrite (bool): The mode that updating the output when there are same indices.
If True, use the overwrite mode to update the output of the same index,
if False, use the accumulate mode to update the output of the same index.Default value is True.
if False, use the accumulate mode to update the output of the same index.Default value is True.
name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .
......
......@@ -302,10 +302,10 @@ class Conll05st(Dataset):
.. code-block:: python
from paddle.text.datasets import Conll05st
from paddle.text.datasets import Conll05st
conll05st = Conll05st()
word_dict, predicate_dict, label_dict = conll05st.get_dict()
conll05st = Conll05st()
word_dict, predicate_dict, label_dict = conll05st.get_dict()
"""
return self.word_dict, self.predicate_dict, self.label_dict
......@@ -317,9 +317,9 @@ class Conll05st(Dataset):
.. code-block:: python
from paddle.text.datasets import Conll05st
from paddle.text.datasets import Conll05st
conll05st = Conll05st()
emb_file = conll05st.get_embedding()
conll05st = Conll05st()
emb_file = conll05st.get_embedding()
"""
return self.emb_file
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册