Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
ecc12fb4
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ecc12fb4
编写于
2月 15, 2019
作者:
N
nhzlx
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
3. when runing in trt mode, do not allocate memory for parameters in fluid.
test=develop
上级
9cc6249c
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
126 addition
and
83 deletion
+126
-83
paddle/fluid/framework/ir/fuse_pass_base.h
paddle/fluid/framework/ir/fuse_pass_base.h
+5
-0
paddle/fluid/inference/analysis/ir_passes/tensorrt_subgraph_pass.cc
...id/inference/analysis/ir_passes/tensorrt_subgraph_pass.cc
+31
-11
paddle/fluid/inference/analysis/ir_passes/tensorrt_subgraph_pass.h
...uid/inference/analysis/ir_passes/tensorrt_subgraph_pass.h
+5
-2
paddle/fluid/inference/analysis/passes/ir_params_sync_among_devices_pass.cc
...ence/analysis/passes/ir_params_sync_among_devices_pass.cc
+11
-0
paddle/fluid/inference/analysis/passes/ir_params_sync_among_devices_pass.h
...rence/analysis/passes/ir_params_sync_among_devices_pass.h
+1
-0
paddle/fluid/inference/tensorrt/convert/op_converter.h
paddle/fluid/inference/tensorrt/convert/op_converter.h
+62
-0
paddle/fluid/operators/tensorrt/tensorrt_engine_op.h
paddle/fluid/operators/tensorrt/tensorrt_engine_op.h
+11
-70
未找到文件。
paddle/fluid/framework/ir/fuse_pass_base.h
浏览文件 @
ecc12fb4
...
@@ -14,6 +14,7 @@
...
@@ -14,6 +14,7 @@
#pragma once
#pragma once
#include <string>
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/pass.h"
#include "paddle/fluid/framework/ir/pass.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/scope.h"
...
@@ -24,6 +25,10 @@ namespace ir {
...
@@ -24,6 +25,10 @@ namespace ir {
static
const
char
kParamScopeAttr
[]
=
"__param_scope__"
;
static
const
char
kParamScopeAttr
[]
=
"__param_scope__"
;
static
const
char
kFuseStatisAttr
[]
=
"__fuse_statis__"
;
static
const
char
kFuseStatisAttr
[]
=
"__fuse_statis__"
;
// When we use trt or other third_party lib, the parameters are managered by
// the lib, but not the fluid. So we need to record them to avoid duplicate
// allocation.
static
const
char
kRepetitiveParamAttr
[]
=
"__repetitive_param__"
;
enum
FuseOptions
{
enum
FuseOptions
{
DO_NOT_FUSE
,
// fusing will not be done
DO_NOT_FUSE
,
// fusing will not be done
...
...
paddle/fluid/inference/analysis/ir_passes/tensorrt_subgraph_pass.cc
浏览文件 @
ecc12fb4
...
@@ -14,8 +14,6 @@
...
@@ -14,8 +14,6 @@
#include <algorithm>
#include <algorithm>
#include <set>
#include <set>
#include <string>
#include <vector>
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
#include "paddle/fluid/inference/analysis/helper.h"
#include "paddle/fluid/inference/analysis/helper.h"
...
@@ -42,7 +40,6 @@ void RenameAndGetOutputs(
...
@@ -42,7 +40,6 @@ void RenameAndGetOutputs(
std
::
unordered_map
<
std
::
string
,
std
::
string
>
*
output_name_map
);
std
::
unordered_map
<
std
::
string
,
std
::
string
>
*
output_name_map
);
std
::
unique_ptr
<
framework
::
ir
::
Graph
>
analysis
::
TensorRtSubgraphPass
::
ApplyImpl
(
std
::
unique_ptr
<
framework
::
ir
::
Graph
>
analysis
::
TensorRtSubgraphPass
::
ApplyImpl
(
std
::
unique_ptr
<
framework
::
ir
::
Graph
>
graph
)
const
{
std
::
unique_ptr
<
framework
::
ir
::
Graph
>
graph
)
const
{
framework
::
ir
::
FusePassBase
::
Init
(
"tensorrt_subgraph_pass"
,
graph
.
get
());
framework
::
ir
::
FusePassBase
::
Init
(
"tensorrt_subgraph_pass"
,
graph
.
get
());
...
@@ -55,9 +52,16 @@ std::unique_ptr<framework::ir::Graph> analysis::TensorRtSubgraphPass::ApplyImpl(
...
@@ -55,9 +52,16 @@ std::unique_ptr<framework::ir::Graph> analysis::TensorRtSubgraphPass::ApplyImpl(
Get
<
int
>
(
"min_subgraph_size"
)
/*min subgraph size*/
);
Get
<
int
>
(
"min_subgraph_size"
)
/*min subgraph size*/
);
fuser
();
fuser
();
std
::
vector
<
std
::
string
>
graph_param_names
=
ExtractParameters
(
graph
->
Nodes
());
// those parameter already exist in trt, and should not have another copy in
// fluid.
std
::
vector
<
std
::
string
>
repetitive_params
;
for
(
auto
*
node
:
graph
->
Nodes
())
{
for
(
auto
*
node
:
graph
->
Nodes
())
{
if
(
node
->
IsOp
()
&&
!
Agent
(
node
).
subgraph
()
->
empty
())
{
if
(
node
->
IsOp
()
&&
!
Agent
(
node
).
subgraph
()
->
empty
())
{
CreateTensorRTOp
(
node
,
graph
.
get
());
CreateTensorRTOp
(
node
,
graph
.
get
(),
graph_param_names
,
&
repetitive_params
);
std
::
unordered_set
<
const
Node
*>
nodes2remove
(
std
::
unordered_set
<
const
Node
*>
nodes2remove
(
Agent
(
node
).
subgraph
()
->
begin
(),
Agent
(
node
).
subgraph
()
->
end
());
Agent
(
node
).
subgraph
()
->
begin
(),
Agent
(
node
).
subgraph
()
->
end
());
...
@@ -72,6 +76,8 @@ std::unique_ptr<framework::ir::Graph> analysis::TensorRtSubgraphPass::ApplyImpl(
...
@@ -72,6 +76,8 @@ std::unique_ptr<framework::ir::Graph> analysis::TensorRtSubgraphPass::ApplyImpl(
}
}
}
}
framework
::
ir
::
GraphSafeRemoveNodes
(
graph
.
get
(),
nodes2remove
);
framework
::
ir
::
GraphSafeRemoveNodes
(
graph
.
get
(),
nodes2remove
);
graph
->
Set
(
framework
::
ir
::
kRepetitiveParamAttr
,
new
std
::
vector
<
std
::
string
>
(
repetitive_params
));
return
graph
;
return
graph
;
}
}
...
@@ -89,8 +95,10 @@ std::string GenerateEngineKey(const std::set<std::string> &engine_inputs,
...
@@ -89,8 +95,10 @@ std::string GenerateEngineKey(const std::set<std::string> &engine_inputs,
return
engine_key
;
return
engine_key
;
}
}
void
TensorRtSubgraphPass
::
CreateTensorRTOp
(
framework
::
ir
::
Node
*
node
,
void
TensorRtSubgraphPass
::
CreateTensorRTOp
(
Graph
*
graph
)
const
{
framework
::
ir
::
Node
*
node
,
Graph
*
graph
,
const
std
::
vector
<
std
::
string
>
&
graph_params
,
std
::
vector
<
std
::
string
>
*
repetitive_params
)
const
{
auto
*
op_desc
=
node
->
Op
();
auto
*
op_desc
=
node
->
Op
();
auto
&
subgraph
=
*
Agent
(
node
).
subgraph
();
auto
&
subgraph
=
*
Agent
(
node
).
subgraph
();
PADDLE_ENFORCE
(
!
subgraph
.
empty
());
PADDLE_ENFORCE
(
!
subgraph
.
empty
());
...
@@ -124,10 +132,17 @@ void TensorRtSubgraphPass::CreateTensorRTOp(framework::ir::Node *node,
...
@@ -124,10 +132,17 @@ void TensorRtSubgraphPass::CreateTensorRTOp(framework::ir::Node *node,
// is unique.
// is unique.
std
::
set
<
std
::
string
>
input_names
;
std
::
set
<
std
::
string
>
input_names
;
std
::
set
<
std
::
string
>
input_names_with_id
;
std
::
set
<
std
::
string
>
input_names_with_id
;
std
::
vector
<
std
::
string
>
params
;
// The node->inputs containes input tensors and parameters.
for
(
auto
*
x
:
node
->
inputs
)
{
for
(
auto
*
x
:
node
->
inputs
)
{
input_names
.
insert
(
x
->
Name
());
input_names
.
insert
(
x
->
Name
());
input_names_with_id
.
insert
(
x
->
Name
()
+
std
::
to_string
(
x
->
id
()));
input_names_with_id
.
insert
(
x
->
Name
()
+
std
::
to_string
(
x
->
id
()));
if
(
std
::
count
(
graph_params
.
begin
(),
graph_params
.
end
(),
x
->
Name
())
>
0
)
{
params
.
push_back
(
x
->
Name
());
}
}
}
std
::
set
<
std
::
string
>
output_names
;
std
::
set
<
std
::
string
>
output_names
;
std
::
set
<
std
::
string
>
output_names_with_id
;
std
::
set
<
std
::
string
>
output_names_with_id
;
for
(
auto
*
x
:
node
->
outputs
)
{
for
(
auto
*
x
:
node
->
outputs
)
{
...
@@ -161,6 +176,7 @@ void TensorRtSubgraphPass::CreateTensorRTOp(framework::ir::Node *node,
...
@@ -161,6 +176,7 @@ void TensorRtSubgraphPass::CreateTensorRTOp(framework::ir::Node *node,
PADDLE_ENFORCE
(
output_name_map
.
count
(
name
)
!=
0
);
PADDLE_ENFORCE
(
output_name_map
.
count
(
name
)
!=
0
);
output_mapping
.
push_back
(
output_name_map
[
name
]);
output_mapping
.
push_back
(
output_name_map
[
name
]);
}
}
PADDLE_ENFORCE
(
!
output_mapping
.
empty
());
auto
*
vars
=
block_desc
.
Proto
()
->
mutable_vars
();
auto
*
vars
=
block_desc
.
Proto
()
->
mutable_vars
();
for
(
framework
::
ir
::
Node
*
node
:
graph
->
Nodes
())
{
for
(
framework
::
ir
::
Node
*
node
:
graph
->
Nodes
())
{
...
@@ -172,22 +188,21 @@ void TensorRtSubgraphPass::CreateTensorRTOp(framework::ir::Node *node,
...
@@ -172,22 +188,21 @@ void TensorRtSubgraphPass::CreateTensorRTOp(framework::ir::Node *node,
PADDLE_ENFORCE
(
!
block_desc
.
Proto
()
->
vars
().
empty
(),
PADDLE_ENFORCE
(
!
block_desc
.
Proto
()
->
vars
().
empty
(),
"the block has no var-desc"
);
"the block has no var-desc"
);
// Set attrs
op_desc
->
SetType
(
"tensorrt_engine"
);
op_desc
->
SetInput
(
op_desc
->
SetInput
(
"Xs"
,
std
::
vector
<
std
::
string
>
(
input_names
.
begin
(),
input_names
.
end
()));
"Xs"
,
std
::
vector
<
std
::
string
>
(
input_names
.
begin
(),
input_names
.
end
()));
op_desc
->
SetOutput
(
op_desc
->
SetOutput
(
"Ys"
,
std
::
vector
<
std
::
string
>
(
output_names
.
begin
(),
output_names
.
end
()));
"Ys"
,
std
::
vector
<
std
::
string
>
(
output_names
.
begin
(),
output_names
.
end
()));
op_desc
->
SetType
(
"tensorrt_engine"
);
PADDLE_ENFORCE
(
!
output_mapping
.
empty
());
op_desc
->
SetBlockAttr
(
"sub_block"
,
new_block
);
op_desc
->
SetBlockAttr
(
"sub_block"
,
new_block
);
SetAttr
(
op_desc
->
Proto
(),
"subgraph"
,
SetAttr
(
op_desc
->
Proto
(),
"subgraph"
,
block_desc
.
Proto
()
->
SerializeAsString
());
block_desc
.
Proto
()
->
SerializeAsString
());
// Set attrs
SetAttr
(
op_desc
->
Proto
(),
"max_batch_size"
,
Get
<
int
>
(
"max_batch_size"
));
SetAttr
(
op_desc
->
Proto
(),
"max_batch_size"
,
Get
<
int
>
(
"max_batch_size"
));
SetAttr
(
op_desc
->
Proto
(),
"workspace_size"
,
Get
<
int
>
(
"workspace_size"
));
SetAttr
(
op_desc
->
Proto
(),
"workspace_size"
,
Get
<
int
>
(
"workspace_size"
));
SetAttr
(
op_desc
->
Proto
(),
"parameters"
,
ExtractParameters
(
graph
->
Nodes
()));
SetAttr
(
op_desc
->
Proto
(),
"output_name_mapping"
,
output_mapping
);
SetAttr
(
op_desc
->
Proto
(),
"output_name_mapping"
,
output_mapping
);
SetAttr
(
op_desc
->
Proto
(),
"parameters"
,
params
);
auto
enable_int8
=
Get
<
bool
>
(
"enable_int8"
);
auto
enable_int8
=
Get
<
bool
>
(
"enable_int8"
);
auto
engine_key
=
auto
engine_key
=
...
@@ -200,6 +215,11 @@ void TensorRtSubgraphPass::CreateTensorRTOp(framework::ir::Node *node,
...
@@ -200,6 +215,11 @@ void TensorRtSubgraphPass::CreateTensorRTOp(framework::ir::Node *node,
SetAttr
(
op_desc
->
Proto
(),
"enable_int8"
,
enable_int8
);
SetAttr
(
op_desc
->
Proto
(),
"enable_int8"
,
enable_int8
);
SetAttr
(
op_desc
->
Proto
(),
"engine_key"
,
engine_key
);
SetAttr
(
op_desc
->
Proto
(),
"engine_key"
,
engine_key
);
if
(
!
(
enable_int8
&&
calibration_data
.
size
()
==
0
))
{
std
::
copy
(
params
.
begin
(),
params
.
end
(),
std
::
back_inserter
(
*
repetitive_params
));
}
}
}
std
::
vector
<
std
::
string
>
ExtractParameters
(
std
::
vector
<
std
::
string
>
ExtractParameters
(
...
@@ -211,7 +231,7 @@ std::vector<std::string> ExtractParameters(
...
@@ -211,7 +231,7 @@ std::vector<std::string> ExtractParameters(
for
(
const
auto
&
node
:
nodes
)
{
for
(
const
auto
&
node
:
nodes
)
{
if
(
!
node
->
IsOp
())
continue
;
if
(
!
node
->
IsOp
())
continue
;
std
::
string
op_type
=
node
->
Op
()
->
Type
();
std
::
string
op_type
=
node
->
Op
()
->
Type
();
if
(
op_type
==
"feed"
)
{
if
(
op_type
==
"feed"
||
op_type
==
"fetch"
)
{
std
::
vector
<
std
::
string
>
output_names
=
node
->
Op
()
->
OutputArgumentNames
();
std
::
vector
<
std
::
string
>
output_names
=
node
->
Op
()
->
OutputArgumentNames
();
std
::
copy
(
output_names
.
begin
(),
output_names
.
end
(),
std
::
copy
(
output_names
.
begin
(),
output_names
.
end
(),
std
::
back_inserter
(
feed_outputs
));
std
::
back_inserter
(
feed_outputs
));
...
...
paddle/fluid/inference/analysis/ir_passes/tensorrt_subgraph_pass.h
浏览文件 @
ecc12fb4
...
@@ -14,6 +14,8 @@
...
@@ -14,6 +14,8 @@
#pragma once
#pragma once
#include <paddle/fluid/framework/ir/fuse_pass_base.h>
#include <paddle/fluid/framework/ir/fuse_pass_base.h>
#include <string>
#include <vector>
#include "paddle/fluid/framework/ir/pass.h"
#include "paddle/fluid/framework/ir/pass.h"
namespace
paddle
{
namespace
paddle
{
...
@@ -26,8 +28,9 @@ class TensorRtSubgraphPass : public framework::ir::FusePassBase {
...
@@ -26,8 +28,9 @@ class TensorRtSubgraphPass : public framework::ir::FusePassBase {
std
::
unique_ptr
<
framework
::
ir
::
Graph
>
graph
)
const
override
;
std
::
unique_ptr
<
framework
::
ir
::
Graph
>
graph
)
const
override
;
private:
private:
void
CreateTensorRTOp
(
framework
::
ir
::
Node
*
x
,
void
CreateTensorRTOp
(
framework
::
ir
::
Node
*
x
,
framework
::
ir
::
Graph
*
graph
,
framework
::
ir
::
Graph
*
graph
)
const
;
const
std
::
vector
<
std
::
string
>
&
graph_params
,
std
::
vector
<
std
::
string
>
*
repetitive_params
)
const
;
void
CleanIntermediateOutputs
(
framework
::
ir
::
Node
*
node
);
void
CleanIntermediateOutputs
(
framework
::
ir
::
Node
*
node
);
};
};
...
...
paddle/fluid/inference/analysis/passes/ir_params_sync_among_devices_pass.cc
浏览文件 @
ecc12fb4
...
@@ -31,6 +31,13 @@ void IrParamsSyncAmongDevicesPass::RunImpl(Argument *argument) {
...
@@ -31,6 +31,13 @@ void IrParamsSyncAmongDevicesPass::RunImpl(Argument *argument) {
// The parameters are on the cpu, therefore, synchronization is not necessary.
// The parameters are on the cpu, therefore, synchronization is not necessary.
if
(
!
argument
->
use_gpu
())
return
;
if
(
!
argument
->
use_gpu
())
return
;
auto
&
graph
=
argument
->
main_graph
();
std
::
vector
<
std
::
string
>
repetitive_params
;
if
(
graph
.
Has
(
framework
::
ir
::
kRepetitiveParamAttr
))
repetitive_params
=
graph
.
Get
<
std
::
vector
<
std
::
string
>>
(
framework
::
ir
::
kRepetitiveParamAttr
);
LOG
(
INFO
)
<<
"Sync params from CPU to GPU"
;
LOG
(
INFO
)
<<
"Sync params from CPU to GPU"
;
PADDLE_ENFORCE
(
argument
->
gpu_device_id_valid
());
PADDLE_ENFORCE
(
argument
->
gpu_device_id_valid
());
...
@@ -43,6 +50,10 @@ void IrParamsSyncAmongDevicesPass::RunImpl(Argument *argument) {
...
@@ -43,6 +50,10 @@ void IrParamsSyncAmongDevicesPass::RunImpl(Argument *argument) {
// Because there exists the case that new parameter variables are not added to
// Because there exists the case that new parameter variables are not added to
// the program in the analysis pass.
// the program in the analysis pass.
for
(
auto
&
var_name
:
all_vars
)
{
for
(
auto
&
var_name
:
all_vars
)
{
if
(
std
::
count
(
repetitive_params
.
begin
(),
repetitive_params
.
end
(),
var_name
))
{
continue
;
}
auto
*
var
=
scope
->
FindLocalVar
(
var_name
);
auto
*
var
=
scope
->
FindLocalVar
(
var_name
);
PADDLE_ENFORCE
(
var
!=
nullptr
);
PADDLE_ENFORCE
(
var
!=
nullptr
);
if
(
var
->
IsType
<
framework
::
LoDTensor
>
()
||
if
(
var
->
IsType
<
framework
::
LoDTensor
>
()
||
...
...
paddle/fluid/inference/analysis/passes/ir_params_sync_among_devices_pass.h
浏览文件 @
ecc12fb4
...
@@ -17,6 +17,7 @@
...
@@ -17,6 +17,7 @@
#include <string>
#include <string>
#include <vector>
#include <vector>
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/inference/analysis/analysis_pass.h"
#include "paddle/fluid/inference/analysis/analysis_pass.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/place.h"
...
...
paddle/fluid/inference/tensorrt/convert/op_converter.h
浏览文件 @
ecc12fb4
...
@@ -16,9 +16,11 @@ limitations under the License. */
...
@@ -16,9 +16,11 @@ limitations under the License. */
#include <string>
#include <string>
#include <unordered_map>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/inference/analysis/helper.h"
#include "paddle/fluid/inference/tensorrt/engine.h"
#include "paddle/fluid/inference/tensorrt/engine.h"
#include "paddle/fluid/inference/utils/singleton.h"
#include "paddle/fluid/inference/utils/singleton.h"
...
@@ -26,6 +28,37 @@ namespace paddle {
...
@@ -26,6 +28,37 @@ namespace paddle {
namespace
inference
{
namespace
inference
{
namespace
tensorrt
{
namespace
tensorrt
{
using
FluidDT
=
framework
::
proto
::
VarType_Type
;
using
TRT_DT
=
nvinfer1
::
DataType
;
namespace
{
// NOLINT
TRT_DT
FluidDataType2TRT
(
FluidDT
type
)
{
switch
(
type
)
{
case
FluidDT
::
VarType_Type_FP32
:
return
TRT_DT
::
kFLOAT
;
case
FluidDT
::
VarType_Type_INT32
:
return
TRT_DT
::
kINT32
;
default:
return
TRT_DT
::
kINT32
;
}
PADDLE_THROW
(
"unkown type"
);
return
TRT_DT
::
kINT32
;
}
nvinfer1
::
Dims
Vec2TRT_Dims
(
const
std
::
vector
<
int64_t
>&
shape
)
{
PADDLE_ENFORCE_GT
(
shape
.
size
(),
1UL
,
"TensorRT' tensor input requires at least 2 dimensions"
);
PADDLE_ENFORCE_LE
(
shape
.
size
(),
4UL
,
"TensorRT' tensor input requires at most 4 dimensions"
);
PADDLE_ENFORCE
(
shape
.
size
()
==
4UL
||
shape
.
size
()
==
2UL
);
if
(
shape
.
size
()
==
4UL
)
return
nvinfer1
::
DimsCHW
(
shape
[
1
],
shape
[
2
],
shape
[
3
]);
return
nvinfer1
::
DimsCHW
(
shape
[
1
],
1
,
1
);
}
}
// namespace // NOLINT
/*
/*
* Convert Op from Fluid to TensorRT Engine.
* Convert Op from Fluid to TensorRT Engine.
*/
*/
...
@@ -110,6 +143,35 @@ class OpConverter {
...
@@ -110,6 +143,35 @@ class OpConverter {
}
}
}
}
void
ConvertBlockToTRTEngine
(
framework
::
BlockDesc
*
block_desc
,
const
framework
::
Scope
&
scope
,
const
std
::
vector
<
std
::
string
>&
inputs
,
const
std
::
unordered_set
<
std
::
string
>&
parameters
,
const
std
::
vector
<
std
::
string
>&
outputs
,
TensorRTEngine
*
engine
)
{
engine
->
InitNetwork
();
for
(
auto
&
input
:
inputs
)
{
if
(
parameters
.
count
(
input
))
continue
;
auto
&
t
=
inference
::
analysis
::
GetFromScope
<
framework
::
LoDTensor
>
(
scope
,
input
);
auto
t_shape
=
framework
::
vectorize
(
t
.
dims
());
auto
*
var
=
block_desc
->
FindVar
(
input
);
PADDLE_ENFORCE
(
var
,
"no variable called %s"
,
input
);
PADDLE_ENFORCE_EQ
(
var
->
GetType
(),
FluidDT
::
VarType_Type_LOD_TENSOR
,
"TensorRT engine only takes LoDTensor as input"
);
engine
->
DeclareInput
(
input
,
FluidDataType2TRT
(
var
->
Proto
()
->
type
().
lod_tensor
().
tensor
().
data_type
()),
Vec2TRT_Dims
(
t_shape
));
}
framework
::
proto
::
BlockDesc
*
block_proto
=
block_desc
->
Proto
();
ConvertBlock
(
*
block_proto
,
parameters
,
scope
,
engine
);
for
(
auto
&
output
:
outputs
)
{
engine
->
DeclareOutput
(
output
);
}
engine
->
FreezeNetwork
();
}
void
SetEngine
(
TensorRTEngine
*
engine
)
{
engine_
=
engine
;
}
void
SetEngine
(
TensorRTEngine
*
engine
)
{
engine_
=
engine
;
}
virtual
~
OpConverter
()
{}
virtual
~
OpConverter
()
{}
...
...
paddle/fluid/operators/tensorrt/tensorrt_engine_op.h
浏览文件 @
ecc12fb4
...
@@ -31,37 +31,6 @@ namespace paddle {
...
@@ -31,37 +31,6 @@ namespace paddle {
namespace
operators
{
namespace
operators
{
using
FluidDT
=
framework
::
proto
::
VarType_Type
;
using
TRT_DT
=
nvinfer1
::
DataType
;
namespace
{
// NOLINT
TRT_DT
FluidDataType2TRT
(
FluidDT
type
)
{
switch
(
type
)
{
case
FluidDT
::
VarType_Type_FP32
:
return
TRT_DT
::
kFLOAT
;
case
FluidDT
::
VarType_Type_INT32
:
return
TRT_DT
::
kINT32
;
default:
return
TRT_DT
::
kINT32
;
}
PADDLE_THROW
(
"unkown type"
);
return
TRT_DT
::
kINT32
;
}
nvinfer1
::
Dims
Vec2TRT_Dims
(
const
std
::
vector
<
int64_t
>
&
shape
)
{
PADDLE_ENFORCE_GT
(
shape
.
size
(),
1UL
,
"TensorRT' tensor input requires at least 2 dimensions"
);
PADDLE_ENFORCE_LE
(
shape
.
size
(),
4UL
,
"TensorRT' tensor input requires at most 4 dimensions"
);
PADDLE_ENFORCE
(
shape
.
size
()
==
4UL
||
shape
.
size
()
==
2UL
);
if
(
shape
.
size
()
==
4UL
)
return
nvinfer1
::
DimsCHW
(
shape
[
1
],
shape
[
2
],
shape
[
3
]);
return
nvinfer1
::
DimsCHW
(
shape
[
1
],
1
,
1
);
}
}
// namespace // NOLINT
using
inference
::
Singleton
;
using
inference
::
Singleton
;
using
inference
::
tensorrt
::
TensorRTEngine
;
using
inference
::
tensorrt
::
TensorRTEngine
;
using
inference
::
tensorrt
::
TRTInt8Calibrator
;
using
inference
::
tensorrt
::
TRTInt8Calibrator
;
...
@@ -161,7 +130,7 @@ class TensorRTEngineOp : public framework::OperatorBase {
...
@@ -161,7 +130,7 @@ class TensorRTEngineOp : public framework::OperatorBase {
new
TensorRTEngine
(
max_batch_size_
,
workspace_size_
,
enable_int8_
,
new
TensorRTEngine
(
max_batch_size_
,
workspace_size_
,
enable_int8_
,
calib_res
->
calib_
.
get
()));
calib_res
->
calib_
.
get
()));
VLOG
(
3
)
<<
"start the calib trt engine thread"
;
VLOG
(
3
)
<<
"start the calib trt engine thread"
;
Prepare
(
scope
,
calib_res
->
engine_
.
get
());
Prepare
TRTEngine
(
scope
,
calib_res
->
engine_
.
get
());
}));
}));
}
}
...
@@ -259,7 +228,7 @@ class TensorRTEngineOp : public framework::OperatorBase {
...
@@ -259,7 +228,7 @@ class TensorRTEngineOp : public framework::OperatorBase {
trt_engine_
.
reset
(
new
TensorRTEngine
(
max_batch_size_
,
workspace_size_
,
trt_engine_
.
reset
(
new
TensorRTEngine
(
max_batch_size_
,
workspace_size_
,
enable_int8_
,
calibrator_
.
get
()));
enable_int8_
,
calibrator_
.
get
()));
if
(
true
)
{
if
(
true
)
{
Prepare
(
scope
,
trt_engine_
.
get
());
Prepare
TRTEngine
(
scope
,
trt_engine_
.
get
());
}
else
{
}
else
{
// create static engine
// create static engine
}
}
...
@@ -267,49 +236,21 @@ class TensorRTEngineOp : public framework::OperatorBase {
...
@@ -267,49 +236,21 @@ class TensorRTEngineOp : public framework::OperatorBase {
return
trt_engine_
.
get
();
return
trt_engine_
.
get
();
}
}
void
Prepare
(
const
framework
::
Scope
&
scope
,
TensorRTEngine
*
engine
)
const
{
void
PrepareTRTEngine
(
const
framework
::
Scope
&
scope
,
TensorRTEngine
*
engine
)
const
{
LOG
(
INFO
)
<<
"Prepare TRT engine (Optimize model structure, Select OP "
LOG
(
INFO
)
<<
"Prepare TRT engine (Optimize model structure, Select OP "
"kernel etc). This process may cost a lot of time."
;
"kernel etc). This process may cost a lot of time."
;
framework
::
proto
::
BlockDesc
block_desc
;
framework
::
proto
::
BlockDesc
block_proto
;
block_desc
.
ParseFromString
(
Attr
<
std
::
string
>
(
"subgraph"
));
block_proto
.
ParseFromString
(
Attr
<
std
::
string
>
(
"subgraph"
));
framework
::
BlockDesc
block
(
nullptr
/*programdesc*/
,
&
block_desc
);
framework
::
BlockDesc
block_desc
(
nullptr
,
&
block_proto
);
engine
->
InitNetwork
();
VLOG
(
4
)
<<
"parsed var size "
<<
block
.
AllVars
().
size
(
);
std
::
vector
<
std
::
string
>
inputs
=
Inputs
(
"Xs"
);
std
::
vector
<
std
::
string
>
output
_map
s
=
std
::
vector
<
std
::
string
>
outputs
=
Attr
<
std
::
vector
<
std
::
string
>>
(
"output_name_mapping"
);
Attr
<
std
::
vector
<
std
::
string
>>
(
"output_name_mapping"
);
// Add inputs
VLOG
(
4
)
<<
"declare inputs"
;
for
(
auto
&
input
:
Inputs
(
"Xs"
))
{
if
(
param_names_
.
count
(
input
))
continue
;
VLOG
(
4
)
<<
"declare input "
<<
input
;
auto
&
t
=
inference
::
analysis
::
GetFromScope
<
framework
::
LoDTensor
>
(
scope
,
input
);
auto
t_shape
=
framework
::
vectorize
(
t
.
dims
());
auto
*
var
=
block
.
FindVar
(
input
);
// TensorRT engine need to create parameters. The parameter's description
// should be set in
PADDLE_ENFORCE
(
var
,
"no variable called %s"
,
input
);
PADDLE_ENFORCE_EQ
(
var
->
GetType
(),
FluidDT
::
VarType_Type_LOD_TENSOR
,
"TensorRT engine only takes LoDTensor as input"
);
engine
->
DeclareInput
(
input
,
FluidDataType2TRT
(
var
->
Proto
()
->
type
().
lod_tensor
().
tensor
().
data_type
()),
Vec2TRT_Dims
(
t_shape
));
}
inference
::
Singleton
<
inference
::
tensorrt
::
OpConverter
>::
Global
()
inference
::
Singleton
<
inference
::
tensorrt
::
OpConverter
>::
Global
()
.
ConvertBlock
(
block_desc
,
param_names_
,
scope
,
engine
);
.
ConvertBlockToTRTEngine
(
&
block_desc
,
scope
,
inputs
,
param_names_
,
outputs
,
engine
);
// Add outputs
for
(
auto
&
output
:
output_maps
)
{
engine
->
DeclareOutput
(
output
);
}
engine
->
FreezeNetwork
();
}
}
};
};
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录