提交 e9dd763c 编写于 作者: P pangyoki

add multinomial python api

上级 dab6fa97
......@@ -199,6 +199,7 @@ from .tensor.math import isfinite #DEFINE_ALIAS
from .tensor.math import isinf #DEFINE_ALIAS
from .tensor.math import isnan #DEFINE_ALIAS
from .tensor.math import prod #DEFINE_ALIAS
from .tensor.random import multinomial #DEFINE_ALIAS
from .tensor.random import standard_normal
from .tensor.random import normal
from .tensor.random import uniform #DEFINE_ALIAS
......
......@@ -102,5 +102,25 @@ class TestReplacementError(unittest.TestCase):
self.attrs = {"num_samples": 10, "replacement": False}
"""
class TestMultinomialApi(unittest.TestCase):
def test_dygraph(self):
paddle.disable_static()
x = paddle.rand([4])
out = paddle.multinomial(x, num_samples=100000, replacement=True)
x_numpy = x.numpy()
paddle.enable_static()
sample_prob = np.unique(
out.numpy(), return_counts=True)[1].astype("float32")
sample_prob /= sample_prob.sum()
prob = x_numpy / x_numpy.sum(axis=-1, keepdims=True)
self.assertTrue(
np.allclose(
sample_prob, prob, rtol=0, atol=0.01),
"sample_prob: " + str(sample_prob) + "\nprob: " + str(prob))
if __name__ == "__main__":
unittest.main()
......@@ -166,6 +166,7 @@ from .math import isfinite #DEFINE_ALIAS
from .math import isinf #DEFINE_ALIAS
from .math import isnan #DEFINE_ALIAS
from .math import prod #DEFINE_ALIAS
from .random import multinomial #DEFINE_ALIAS
from .random import standard_normal
from .random import normal
from .random import uniform #DEFINE_ALIAS
......
......@@ -25,6 +25,7 @@ from ..fluid.io import shuffle #DEFINE_ALIAS
__all__ = [
'bernoulli',
'multinomial',
'standard_normal',
'normal',
'uniform',
......@@ -88,6 +89,47 @@ def bernoulli(x, name=None):
return out
def multinomial(x, num_samples=1, replacement=False, name=None):
"""
Examples:
.. code-block:: python
import paddle
paddle.disable_static()
x = paddle.rand([2, 3])
print(x.numpy())
# [[0.11272584 0.3890902 0.7730957 ]
# [0.10351662 0.8510418 0.63806665]]
out = paddle.bernoulli(x)
print(out.numpy())
# [[0. 0. 1.]
# [0. 0. 1.]]
"""
if in_dygraph_mode():
return core.ops.multinomial(x, 'num_samples', num_samples,
'replacement', replacement)
check_variable_and_dtype(x, "x", ["float32", "float64"], "multinomial")
helper = LayerHelper("multinomial", **locals())
out = helper.create_variable_for_type_inference(
dtype=convert_np_dtype_to_dtype_('int64'))
helper.append_op(
type='multinomial',
inputs={"X": x},
outputs={'Out': out},
attrs={'num_samples': num_samples,
'replacement': replacement})
return out
def gaussian(shape, mean=0.0, std=1.0, dtype=None, name=None):
"""
This OP returns a Tensor filled with random values sampled from a Gaussian
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册