未验证 提交 e96fc6ab 编写于 作者: T tangwei12 提交者: GitHub

Fix/embedding doc (#27816)

* fix fluid doc

* fix fluid doc

* fix fluid doc, test=document_fix

* fix fluid doc, test=document_fix
上级 9005c5a2
......@@ -220,24 +220,96 @@ def embedding(input,
Returns:
Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
Examples:
Static Examples:
.. code-block:: python
import paddle
import numpy as np
paddle.enable_static()
x = paddle.static.data(name="x", shape = [2, 4], dtype=np.int64)
embedding = paddle.nn.Embedding(10, 3,
weight_attr=paddle.nn.initializer.Constant(value=1.0))
adam = paddle.optimizer.SGD(parameters=[embedding.weight], learning_rate=0.01)
output = embedding(x)
m_output=paddle.mean(output)
adam.minimize(m_output)
place = paddle.CPUPlace()
exe = paddle.static.Executor(place)
exe.run(paddle.static.default_startup_program())
x = np.array([[7, 2, 4, 5],[4, 3, 2, 9]], dtype=np.int64)
# x is a Numpy.
# x.data = [[7, 2, 4, 5], [4, 3, 2, 9]]
# x.shape = [2, 4]
out, = exe.run(paddle.static.default_main_program(), feed={'x':x}, fetch_list=[output])
# out is a Numpy.
# out.data = [[1., 1., 1.],
# [1., 1., 1.],
# [1., 1., 1.],
# [1., 1., 1.]],
#
# [[1., 1., 1.],
# [1., 1., 1.],
# [1., 1., 1.],
# [0., 0., 0.]]]
# out.shape = [2, 4, 3]
Dygraph Examples:
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
data = fluid.data(name='x', shape=[None, 10], dtype='int64')
# example 1
emb_1 = fluid.embedding(input=data, size=[128, 64])
# example 2: load custom or pre-trained word vectors
weight_data = np.random.random(size=(128, 100)) # word vectors with numpy format
w_param_attrs = fluid.ParamAttr(
name="emb_weight",
learning_rate=0.5,
initializer=fluid.initializer.NumpyArrayInitializer(weight_data),
trainable=True)
emb_2 = fluid.embedding(input=data, size=(128, 100), param_attr=w_param_attrs, dtype='float32')
import paddle
import numpy as np
paddle.disable_static()
x_data = np.arange(3, 6).reshape((3, 1)).astype(np.int64)
# x is a Tensor.
# x.data = [[3], [4], [5]]
# x.shape = [3, 1]
x = paddle.to_tensor(x_data, stop_gradient=False)
# embedding weight shape = [10, 3]
embedding = paddle.nn.Embedding(10, 3, sparse=True)
# embedding weight data = [10, 3]
w0 = np.full(shape=(10, 3), fill_value=2).astype(np.float32)
# embedding.weight.shape = [10, 3]
# embedding.weight.data =
# [[2., 2., 2.],
# [2., 2., 2.],
# [2., 2., 2.],
# [2., 2., 2.],
# [2., 2., 2.],
# [2., 2., 2.],
# [2., 2., 2.],
# [2., 2., 2.],
# [2., 2., 2.],
# [2., 2., 2.]]
embedding.weight.set_value(w0)
adam = paddle.optimizer.Adam(
parameters=[embedding.weight], learning_rate=0.01)
adam.clear_grad()
# out is Tensor
# out.shape: [3, 1, 3]
# out.layout: NCHW
# out.dtype: float
# out.data: [2 2 2 2 2 2 2 2 2]
out = embedding(x)
out.backward()
adam.step()
"""
helper = LayerHelper('embedding', **locals())
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册