提交 e69a1cbd 编写于 作者: L Luo Tao

Merge branch 'develop' into mnist

...@@ -4,22 +4,14 @@ cache: ...@@ -4,22 +4,14 @@ cache:
- $HOME/third_party - $HOME/third_party
- $HOME/.ccache - $HOME/.ccache
- $HOME/.cache/pip - $HOME/.cache/pip
- $HOME/Library/Caches/Homebrew
sudo: required sudo: required
dist: trusty dist: trusty
os: os:
- linux - linux
- osx
env: env:
- JOB=DOCS - JOB=DOCS
- JOB=BUILD_AND_TEST - JOB=BUILD_AND_TEST
- JOB=PRE_COMMIT - JOB=PRE_COMMIT
matrix:
exclude:
- os: osx
env: JOB=DOCS # Only generate documentation in linux.
- os: osx
env: JOB=PRE_COMMIT # Only check pre-commit hook in linux
addons: addons:
apt: apt:
...@@ -53,7 +45,6 @@ before_install: ...@@ -53,7 +45,6 @@ before_install:
fi fi
fi fi
fi fi
- if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then paddle/scripts/travis/before_install.osx.sh; fi
- if [[ "$JOB" == "PRE_COMMIT" ]]; then sudo ln -s /usr/bin/clang-format-3.8 /usr/bin/clang-format; fi - if [[ "$JOB" == "PRE_COMMIT" ]]; then sudo ln -s /usr/bin/clang-format-3.8 /usr/bin/clang-format; fi
# Paddle is using protobuf 3.1 currently. Protobuf 3.2 breaks the compatibility. So we specify the python # Paddle is using protobuf 3.1 currently. Protobuf 3.2 breaks the compatibility. So we specify the python
# protobuf version. # protobuf version.
......
...@@ -14,46 +14,50 @@ ...@@ -14,46 +14,50 @@
INCLUDE(ExternalProject) INCLUDE(ExternalProject)
SET(PROTOBUF_SOURCES_DIR ${THIRD_PARTY_PATH}/protobuf) FIND_PACKAGE(Protobuf)
SET(PROTOBUF_INSTALL_DIR ${THIRD_PARTY_PATH}/install/protobuf)
SET(PROTOBUF_INCLUDE_DIR "${PROTOBUF_INSTALL_DIR}/include" CACHE PATH "protobuf include directory." FORCE)
INCLUDE_DIRECTORIES(${PROTOBUF_INCLUDE_DIR}) IF(NOT PROTOBUF_FOUND)
SET(PROTOBUF_SOURCES_DIR ${THIRD_PARTY_PATH}/protobuf)
SET(PROTOBUF_INSTALL_DIR ${THIRD_PARTY_PATH}/install/protobuf)
SET(PROTOBUF_INCLUDE_DIR "${PROTOBUF_INSTALL_DIR}/include" CACHE PATH "protobuf include directory." FORCE)
IF(WIN32)
SET(PROTOBUF_LITE_LIBRARY
"${PROTOBUF_INSTALL_DIR}/lib/libprotobuf-lite.lib" CACHE FILEPATH "protobuf lite library." FORCE)
SET(PROTOBUF_LIBRARY
"${PROTOBUF_INSTALL_DIR}/lib/libprotobuf.lib" CACHE FILEPATH "protobuf library." FORCE)
SET(PROTOBUF_PROTOC_LIBRARY
"${PROTOBUF_INSTALL_DIR}/lib/libprotoc.lib" CACHE FILEPATH "protoc library." FORCE)
SET(PROTOBUF_PROTOC_EXECUTABLE "${PROTOBUF_INSTALL_DIR}/bin/protoc.exe" CACHE FILEPATH "protobuf executable." FORCE)
ELSE(WIN32)
SET(PROTOBUF_LITE_LIBRARY
"${PROTOBUF_INSTALL_DIR}/lib/libprotobuf-lite.a" CACHE FILEPATH "protobuf lite library." FORCE)
SET(PROTOBUF_LIBRARY
"${PROTOBUF_INSTALL_DIR}/lib/libprotobuf.a" CACHE FILEPATH "protobuf library." FORCE)
SET(PROTOBUF_PROTOC_LIBRARY
"${PROTOBUF_INSTALL_DIR}/lib/libprotoc.a" CACHE FILEPATH "protoc library." FORCE)
SET(PROTOBUF_PROTOC_EXECUTABLE "${PROTOBUF_INSTALL_DIR}/bin/protoc" CACHE FILEPATH "protobuf executable." FORCE)
ENDIF(WIN32)
IF(WIN32) ExternalProject_Add(
SET(PROTOBUF_LITE_LIBRARY protobuf
"${PROTOBUF_INSTALL_DIR}/lib/libprotobuf-lite.lib" CACHE FILEPATH "protobuf lite library." FORCE) ${EXTERNAL_PROJECT_LOG_ARGS}
SET(PROTOBUF_LIBRARY PREFIX ${PROTOBUF_SOURCES_DIR}
"${PROTOBUF_INSTALL_DIR}/lib/libprotobuf.lib" CACHE FILEPATH "protobuf library." FORCE) UPDATE_COMMAND ""
SET(PROTOBUF_PROTOC_LIBRARY DEPENDS zlib
"${PROTOBUF_INSTALL_DIR}/lib/libprotoc.lib" CACHE FILEPATH "protoc library." FORCE) GIT_REPOSITORY "https://github.com/google/protobuf.git"
SET(PROTOBUF_PROTOC_EXECUTABLE "${PROTOBUF_INSTALL_DIR}/bin/protoc.exe" CACHE FILEPATH "protobuf executable." FORCE) GIT_TAG "9f75c5aa851cd877fb0d93ccc31b8567a6706546"
ELSE(WIN32) CONFIGURE_COMMAND
SET(PROTOBUF_LITE_LIBRARY ${CMAKE_COMMAND} ${PROTOBUF_SOURCES_DIR}/src/protobuf/cmake
"${PROTOBUF_INSTALL_DIR}/lib/libprotobuf-lite.a" CACHE FILEPATH "protobuf lite library." FORCE) -Dprotobuf_BUILD_TESTS=OFF
SET(PROTOBUF_LIBRARY -DZLIB_ROOT:FILEPATH=${ZLIB_ROOT}
"${PROTOBUF_INSTALL_DIR}/lib/libprotobuf.a" CACHE FILEPATH "protobuf library." FORCE) -DCMAKE_POSITION_INDEPENDENT_CODE=ON
SET(PROTOBUF_PROTOC_LIBRARY -DCMAKE_BUILD_TYPE=Release
"${PROTOBUF_INSTALL_DIR}/lib/libprotoc.a" CACHE FILEPATH "protoc library." FORCE) -DCMAKE_INSTALL_PREFIX=${PROTOBUF_INSTALL_DIR}
SET(PROTOBUF_PROTOC_EXECUTABLE "${PROTOBUF_INSTALL_DIR}/bin/protoc" CACHE FILEPATH "protobuf executable." FORCE) -DCMAKE_INSTALL_LIBDIR=lib
ENDIF(WIN32) )
ExternalProject_Add( LIST(APPEND external_project_dependencies protobuf)
protobuf ENDIF(NOT PROTOBUF_FOUND)
${EXTERNAL_PROJECT_LOG_ARGS}
PREFIX ${PROTOBUF_SOURCES_DIR}
UPDATE_COMMAND ""
DEPENDS zlib
GIT_REPOSITORY "https://github.com/google/protobuf.git"
GIT_TAG "9f75c5aa851cd877fb0d93ccc31b8567a6706546"
CONFIGURE_COMMAND
${CMAKE_COMMAND} ${PROTOBUF_SOURCES_DIR}/src/protobuf/cmake
-Dprotobuf_BUILD_TESTS=OFF
-DZLIB_ROOT:FILEPATH=${ZLIB_ROOT}
-DCMAKE_POSITION_INDEPENDENT_CODE=ON
-DCMAKE_BUILD_TYPE=Release
-DCMAKE_INSTALL_PREFIX=${PROTOBUF_INSTALL_DIR}
-DCMAKE_INSTALL_LIBDIR=lib
)
LIST(APPEND external_project_dependencies protobuf) INCLUDE_DIRECTORIES(${PROTOBUF_INCLUDE_DIR})
...@@ -221,7 +221,3 @@ ENDIF(PYTHONLIBS_FOUND AND PYTHONINTERP_FOUND) ...@@ -221,7 +221,3 @@ ENDIF(PYTHONLIBS_FOUND AND PYTHONINTERP_FOUND)
INCLUDE_DIRECTORIES(${PYTHON_INCLUDE_DIR}) INCLUDE_DIRECTORIES(${PYTHON_INCLUDE_DIR})
INCLUDE_DIRECTORIES(${PYTHON_NUMPY_INCLUDE_DIR}) INCLUDE_DIRECTORIES(${PYTHON_NUMPY_INCLUDE_DIR})
MESSAGE("[Paddle] Python Executable: ${PYTHON_EXECUTABLE}")
MESSAGE("[Paddle] Python Include: ${PYTHON_INCLUDE_DIRS}")
MESSAGE("[Paddle] Python Libraries: ${PYTHON_LIBRARIES}")
...@@ -55,7 +55,7 @@ def convolutional_neural_network(img): ...@@ -55,7 +55,7 @@ def convolutional_neural_network(img):
def main(): def main():
paddle.init(use_gpu=True, trainer_count=1) paddle.init(use_gpu=False, trainer_count=1)
# define network topology # define network topology
images = paddle.layer.data( images = paddle.layer.data(
...@@ -82,7 +82,7 @@ def main(): ...@@ -82,7 +82,7 @@ def main():
parameters=parameters, parameters=parameters,
update_equation=optimizer) update_equation=optimizer)
list = [] lists = []
def event_handler(event): def event_handler(event):
if isinstance(event, paddle.event.EndIteration): if isinstance(event, paddle.event.EndIteration):
...@@ -93,9 +93,9 @@ def main(): ...@@ -93,9 +93,9 @@ def main():
result = trainer.test(reader=paddle.reader.batched( result = trainer.test(reader=paddle.reader.batched(
paddle.dataset.mnist.test(), batch_size=128)) paddle.dataset.mnist.test(), batch_size=128))
print "Test with Pass %d, Cost %f, %s\n" % ( print "Test with Pass %d, Cost %f, %s\n" % (
event.pass_id, event.cost, result.metrics) event.pass_id, result.cost, result.metrics)
list.append((event.pass_id, event.cost, lists.append((event.pass_id, result.cost,
result.metrics['classification_error_evaluator'])) result.metrics['classification_error_evaluator']))
trainer.train( trainer.train(
reader=paddle.reader.batched( reader=paddle.reader.batched(
...@@ -106,7 +106,7 @@ def main(): ...@@ -106,7 +106,7 @@ def main():
num_passes=100) num_passes=100)
# find the best pass # find the best pass
best = sorted(list, key=lambda list: float(list[1]))[0] best = sorted(lists, key=lambda list: float(list[1]))[0]
print 'Best pass is %s, testing Avgcost is %s' % (best[0], best[1]) print 'Best pass is %s, testing Avgcost is %s' % (best[0], best[1])
print 'The classification accuracy is %.2f%%' % (100 - float(best[2]) * 100) print 'The classification accuracy is %.2f%%' % (100 - float(best[2]) * 100)
......
import sys
import math
import numpy as np
import paddle.v2 as paddle
import paddle.v2.dataset.conll05 as conll05
def db_lstm():
word_dict, verb_dict, label_dict = conll05.get_dict()
word_dict_len = len(word_dict)
label_dict_len = len(label_dict)
pred_len = len(verb_dict)
mark_dict_len = 2
word_dim = 32
mark_dim = 5
hidden_dim = 512
depth = 8
#8 features
def d_type(size):
return paddle.data_type.integer_value_sequence(size)
word = paddle.layer.data(name='word_data', type=d_type(word_dict_len))
predicate = paddle.layer.data(name='verb_data', type=d_type(pred_len))
ctx_n2 = paddle.layer.data(name='ctx_n2_data', type=d_type(word_dict_len))
ctx_n1 = paddle.layer.data(name='ctx_n1_data', type=d_type(word_dict_len))
ctx_0 = paddle.layer.data(name='ctx_0_data', type=d_type(word_dict_len))
ctx_p1 = paddle.layer.data(name='ctx_p1_data', type=d_type(word_dict_len))
ctx_p2 = paddle.layer.data(name='ctx_p2_data', type=d_type(word_dict_len))
mark = paddle.layer.data(name='mark_data', type=d_type(mark_dict_len))
target = paddle.layer.data(name='target', type=d_type(label_dict_len))
default_std = 1 / math.sqrt(hidden_dim) / 3.0
emb_para = paddle.attr.Param(name='emb', initial_std=0., learning_rate=0.)
std_0 = paddle.attr.Param(initial_std=0.)
std_default = paddle.attr.Param(initial_std=default_std)
predicate_embedding = paddle.layer.embedding(
size=word_dim,
input=predicate,
param_attr=paddle.attr.Param(
name='vemb', initial_std=default_std))
mark_embedding = paddle.layer.embedding(
size=mark_dim, input=mark, param_attr=std_0)
word_input = [word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2]
emb_layers = [
paddle.layer.embedding(
size=word_dim, input=x, param_attr=emb_para) for x in word_input
]
emb_layers.append(predicate_embedding)
emb_layers.append(mark_embedding)
hidden_0 = paddle.layer.mixed(
size=hidden_dim,
bias_attr=std_default,
input=[
paddle.layer.full_matrix_projection(
input=emb, param_attr=std_default) for emb in emb_layers
])
mix_hidden_lr = 1e-3
lstm_para_attr = paddle.attr.Param(initial_std=0.0, learning_rate=1.0)
hidden_para_attr = paddle.attr.Param(
initial_std=default_std, learning_rate=mix_hidden_lr)
lstm_0 = paddle.layer.lstmemory(
input=hidden_0,
act=paddle.activation.Relu(),
gate_act=paddle.activation.Sigmoid(),
state_act=paddle.activation.Sigmoid(),
bias_attr=std_0,
param_attr=lstm_para_attr)
#stack L-LSTM and R-LSTM with direct edges
input_tmp = [hidden_0, lstm_0]
for i in range(1, depth):
mix_hidden = paddle.layer.mixed(
size=hidden_dim,
bias_attr=std_default,
input=[
paddle.layer.full_matrix_projection(
input=input_tmp[0], param_attr=hidden_para_attr),
paddle.layer.full_matrix_projection(
input=input_tmp[1], param_attr=lstm_para_attr)
])
lstm = paddle.layer.lstmemory(
input=mix_hidden,
act=paddle.activation.Relu(),
gate_act=paddle.activation.Sigmoid(),
state_act=paddle.activation.Sigmoid(),
reverse=((i % 2) == 1),
bias_attr=std_0,
param_attr=lstm_para_attr)
input_tmp = [mix_hidden, lstm]
feature_out = paddle.layer.mixed(
size=label_dict_len,
bias_attr=std_default,
input=[
paddle.layer.full_matrix_projection(
input=input_tmp[0], param_attr=hidden_para_attr),
paddle.layer.full_matrix_projection(
input=input_tmp[1], param_attr=lstm_para_attr)
], )
crf_cost = paddle.layer.crf(size=label_dict_len,
input=feature_out,
label=target,
param_attr=paddle.attr.Param(
name='crfw',
initial_std=default_std,
learning_rate=mix_hidden_lr))
crf_dec = paddle.layer.crf_decoding(
name='crf_dec_l',
size=label_dict_len,
input=feature_out,
label=target,
param_attr=paddle.attr.Param(name='crfw'))
return crf_cost, crf_dec
def load_parameter(file_name, h, w):
with open(file_name, 'rb') as f:
f.read(16) # skip header.
return np.fromfile(f, dtype=np.float32).reshape(h, w)
def main():
paddle.init(use_gpu=False, trainer_count=1)
# define network topology
crf_cost, crf_dec = db_lstm()
# create parameters
parameters = paddle.parameters.create([crf_cost, crf_dec])
# create optimizer
optimizer = paddle.optimizer.Momentum(
momentum=0,
learning_rate=2e-2,
regularization=paddle.optimizer.L2Regularization(rate=8e-4),
model_average=paddle.optimizer.ModelAverage(
average_window=0.5, max_average_window=10000), )
def event_handler(event):
if isinstance(event, paddle.event.EndIteration):
if event.batch_id % 100 == 0:
print "Pass %d, Batch %d, Cost %f, %s" % (
event.pass_id, event.batch_id, event.cost, event.metrics)
trainer = paddle.trainer.SGD(cost=crf_cost,
parameters=parameters,
update_equation=optimizer)
parameters.set('emb', load_parameter(conll05.get_embedding(), 44068, 32))
trn_reader = paddle.reader.batched(
paddle.reader.shuffle(
conll05.test(), buf_size=8192), batch_size=10)
trainer.train(
reader=trn_reader, event_handler=event_handler, num_passes=10000)
if __name__ == '__main__':
main()
import sys
from os.path import join as join_path
import paddle.trainer_config_helpers.attrs as attrs
from paddle.trainer_config_helpers.poolings import MaxPooling
import paddle.v2.layer as layer
import paddle.v2.activation as activation
import paddle.v2.data_type as data_type
import paddle.v2.dataset.imdb as imdb
import paddle.v2 as paddle
def sequence_conv_pool(input,
input_size,
context_len,
hidden_size,
name=None,
context_start=None,
pool_type=None,
context_proj_layer_name=None,
context_proj_param_attr=False,
fc_layer_name=None,
fc_param_attr=None,
fc_bias_attr=None,
fc_act=None,
pool_bias_attr=None,
fc_attr=None,
context_attr=None,
pool_attr=None):
"""
Text convolution pooling layers helper.
Text input => Context Projection => FC Layer => Pooling => Output.
:param name: name of output layer(pooling layer name)
:type name: basestring
:param input: name of input layer
:type input: LayerOutput
:param context_len: context projection length. See
context_projection's document.
:type context_len: int
:param hidden_size: FC Layer size.
:type hidden_size: int
:param context_start: context projection length. See
context_projection's context_start.
:type context_start: int or None
:param pool_type: pooling layer type. See pooling_layer's document.
:type pool_type: BasePoolingType.
:param context_proj_layer_name: context projection layer name.
None if user don't care.
:type context_proj_layer_name: basestring
:param context_proj_param_attr: context projection parameter attribute.
None if user don't care.
:type context_proj_param_attr: ParameterAttribute or None.
:param fc_layer_name: fc layer name. None if user don't care.
:type fc_layer_name: basestring
:param fc_param_attr: fc layer parameter attribute. None if user don't care.
:type fc_param_attr: ParameterAttribute or None
:param fc_bias_attr: fc bias parameter attribute. False if no bias,
None if user don't care.
:type fc_bias_attr: ParameterAttribute or None
:param fc_act: fc layer activation type. None means tanh
:type fc_act: BaseActivation
:param pool_bias_attr: pooling layer bias attr. None if don't care.
False if no bias.
:type pool_bias_attr: ParameterAttribute or None.
:param fc_attr: fc layer extra attribute.
:type fc_attr: ExtraLayerAttribute
:param context_attr: context projection layer extra attribute.
:type context_attr: ExtraLayerAttribute
:param pool_attr: pooling layer extra attribute.
:type pool_attr: ExtraLayerAttribute
:return: output layer name.
:rtype: LayerOutput
"""
# Set Default Value to param
context_proj_layer_name = "%s_conv_proj" % name \
if context_proj_layer_name is None else context_proj_layer_name
with layer.mixed(
name=context_proj_layer_name,
size=input_size * context_len,
act=activation.Linear(),
layer_attr=context_attr) as m:
m += layer.context_projection(
input=input,
context_len=context_len,
context_start=context_start,
padding_attr=context_proj_param_attr)
fc_layer_name = "%s_conv_fc" % name \
if fc_layer_name is None else fc_layer_name
fl = layer.fc(name=fc_layer_name,
input=m,
size=hidden_size,
act=fc_act,
layer_attr=fc_attr,
param_attr=fc_param_attr,
bias_attr=fc_bias_attr)
return layer.pooling(
name=name,
input=fl,
pooling_type=pool_type,
bias_attr=pool_bias_attr,
layer_attr=pool_attr)
def convolution_net(input_dim,
class_dim=2,
emb_dim=128,
hid_dim=128,
is_predict=False):
data = layer.data("word", data_type.integer_value_sequence(input_dim))
emb = layer.embedding(input=data, size=emb_dim)
conv_3 = sequence_conv_pool(
input=emb, input_size=emb_dim, context_len=3, hidden_size=hid_dim)
conv_4 = sequence_conv_pool(
input=emb, input_size=emb_dim, context_len=4, hidden_size=hid_dim)
output = layer.fc(input=[conv_3, conv_4],
size=class_dim,
act=activation.Softmax())
lbl = layer.data("label", data_type.integer_value(2))
cost = layer.classification_cost(input=output, label=lbl)
return cost
def stacked_lstm_net(input_dim,
class_dim=2,
emb_dim=128,
hid_dim=512,
stacked_num=3,
is_predict=False):
"""
A Wrapper for sentiment classification task.
This network uses bi-directional recurrent network,
consisting three LSTM layers. This configure is referred to
the paper as following url, but use fewer layrs.
http://www.aclweb.org/anthology/P15-1109
input_dim: here is word dictionary dimension.
class_dim: number of categories.
emb_dim: dimension of word embedding.
hid_dim: dimension of hidden layer.
stacked_num: number of stacked lstm-hidden layer.
is_predict: is predicting or not.
Some layers is not needed in network when predicting.
"""
assert stacked_num % 2 == 1
layer_attr = attrs.ExtraLayerAttribute(drop_rate=0.5)
fc_para_attr = attrs.ParameterAttribute(learning_rate=1e-3)
lstm_para_attr = attrs.ParameterAttribute(initial_std=0., learning_rate=1.)
para_attr = [fc_para_attr, lstm_para_attr]
bias_attr = attrs.ParameterAttribute(initial_std=0., l2_rate=0.)
relu = activation.Relu()
linear = activation.Linear()
data = layer.data("word", data_type.integer_value_sequence(input_dim))
emb = layer.embedding(input=data, size=emb_dim)
fc1 = layer.fc(input=emb, size=hid_dim, act=linear, bias_attr=bias_attr)
lstm1 = layer.lstmemory(
input=fc1, act=relu, bias_attr=bias_attr, layer_attr=layer_attr)
inputs = [fc1, lstm1]
for i in range(2, stacked_num + 1):
fc = layer.fc(input=inputs,
size=hid_dim,
act=linear,
param_attr=para_attr,
bias_attr=bias_attr)
lstm = layer.lstmemory(
input=fc,
reverse=(i % 2) == 0,
act=relu,
bias_attr=bias_attr,
layer_attr=layer_attr)
inputs = [fc, lstm]
fc_last = layer.pooling(input=inputs[0], pooling_type=MaxPooling())
lstm_last = layer.pooling(input=inputs[1], pooling_type=MaxPooling())
output = layer.fc(input=[fc_last, lstm_last],
size=class_dim,
act=activation.Softmax(),
bias_attr=bias_attr,
param_attr=para_attr)
lbl = layer.data("label", data_type.integer_value(2))
cost = layer.classification_cost(input=output, label=lbl)
return cost
if __name__ == '__main__':
# init
paddle.init(use_gpu=True, trainer_count=4)
# network config
print 'load dictionary...'
word_dict = imdb.word_dict()
dict_dim = len(word_dict)
class_dim = 2
# Please choose the way to build the network
# by uncommenting the corresponding line.
cost = convolution_net(dict_dim, class_dim=class_dim)
# cost = stacked_lstm_net(dict_dim, class_dim=class_dim, stacked_num=3)
# create parameters
parameters = paddle.parameters.create(cost)
# create optimizer
adam_optimizer = paddle.optimizer.Adam(
learning_rate=2e-3,
regularization=paddle.optimizer.L2Regularization(rate=8e-4),
model_average=paddle.optimizer.ModelAverage(average_window=0.5))
# End batch and end pass event handler
def event_handler(event):
if isinstance(event, paddle.event.EndIteration):
if event.batch_id % 100 == 0:
print "\nPass %d, Batch %d, Cost %f, %s" % (
event.pass_id, event.batch_id, event.cost, event.metrics)
else:
sys.stdout.write('.')
sys.stdout.flush()
if isinstance(event, paddle.event.EndPass):
result = trainer.test(
reader=paddle.reader.batched(
lambda: imdb.test(word_dict), batch_size=128),
reader_dict={'word': 0,
'label': 1})
print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics)
# create trainer
trainer = paddle.trainer.SGD(cost=cost,
parameters=parameters,
update_equation=adam_optimizer)
trainer.train(
reader=paddle.reader.batched(
paddle.reader.shuffle(
lambda: imdb.train(word_dict), buf_size=1000),
batch_size=100),
event_handler=event_handler,
reader_dict={'word': 0,
'label': 1},
num_passes=10)
...@@ -4,9 +4,10 @@ At training and testing time, PaddlePaddle programs need to read data. To ease t ...@@ -4,9 +4,10 @@ At training and testing time, PaddlePaddle programs need to read data. To ease t
- A *reader* is a function that reads data (from file, network, random number generator, etc) and yields data items. - A *reader* is a function that reads data (from file, network, random number generator, etc) and yields data items.
- A *reader creator* is a function that returns a reader function. - A *reader creator* is a function that returns a reader function.
- A *reader* decorator is a function, which accepts one or more readers, and returns a reader. - A *reader decorator* is a function, which accepts one or more readers, and returns a reader.
- A *batch reader* is a function that reads data (from *reader*, file, network, random number generator, etc) and yields a batch of data items.
and provide frequently used reader creators and reader decorators. and provide function which converts reader to batch reader, frequently used reader creators and reader decorators.
## Data Reader Interface ## Data Reader Interface
...@@ -37,9 +38,54 @@ def reader_creator_random_imageand_label(widht, height, label): ...@@ -37,9 +38,54 @@ def reader_creator_random_imageand_label(widht, height, label):
return reader return reader
``` ```
## Batch Reader Interface
*batch reader* can be any function with no parameter that creates a iterable (anything can be used in `for x in iterable`). The output of the iterable should be a batch (list) of data items. Each item inside the list must be a tuple.
Here are valid outputs:
```python
# a mini batch of three data items. Each data item consist three columns of data, each of which is 1.
[(1, 1, 1),
(2, 2, 2),
(3, 3, 3)]
# a mini batch of three data items, each data item is a list (single column).
[([1,1,1],),
([2,2,2],),
([3,3,3],),
```
Please note that each item inside the list must be a tuple, below is an invalid output:
```python
# wrong, [1,1,1] needs to be inside a tuple: ([1,1,1],).
# Otherwise it's ambiguous whether [1,1,1] means a single column of data [1, 1, 1],
# or three column of datas, each of which is 1.
[[1,1,1],
[2,2,2],
[3,3,3]]
```
It's easy to convert from reader to batch reader:
```python
mnist_train = paddle.dataset.mnist.train()
mnist_train_batch_reader = paddle.batch(mnist_train, 128)
```
Also easy to create custom batch reader:
```python
def custom_batch_reader():
while True:
batch = []
for i in xrange(128):
batch.append((numpy.random.uniform(-1, 1, 28*28),)) # note that it's a tuple being appended.
yield batch
mnist_random_image_batch_reader = custom_batch_reader
```
## Usage ## Usage
data reader, mapping from item(s) read to data layer, batch size and number of total pass will be passed into `paddle.train`: batch reader, mapping from item(s) read to data layer, batch size and number of total pass will be passed into `paddle.train`:
```python ```python
# two data layer is created: # two data layer is created:
...@@ -47,8 +93,8 @@ image_layer = paddle.layer.data("image", ...) ...@@ -47,8 +93,8 @@ image_layer = paddle.layer.data("image", ...)
label_layer = paddle.layer.data("label", ...) label_layer = paddle.layer.data("label", ...)
# ... # ...
batch_reader = paddle.batch(paddle.dataset.mnist.train(), 128)
paddle.train(paddle.dataset.mnist, {"image":0, "label":1}, 128, 10, ...) paddle.train(batch_reader, {"image":0, "label":1}, 128, 10, ...)
``` ```
## Data Reader Decorator ## Data Reader Decorator
...@@ -64,7 +110,7 @@ Since reading data may take time and training can not proceed without data. It i ...@@ -64,7 +110,7 @@ Since reading data may take time and training can not proceed without data. It i
Use `paddle.reader.buffered` to prefetch data: Use `paddle.reader.buffered` to prefetch data:
```python ```python
buffered_reader = paddle.reader.buffered(paddle.dataset.mnist, 100) buffered_reader = paddle.reader.buffered(paddle.dataset.mnist.train(), 100)
``` ```
`buffered_reader` will try to buffer (prefetch) `100` data entries. `buffered_reader` will try to buffer (prefetch) `100` data entries.
...@@ -91,10 +137,10 @@ def reader_creator_bool(t): ...@@ -91,10 +137,10 @@ def reader_creator_bool(t):
true_reader = reader_creator_bool(True) true_reader = reader_creator_bool(True)
false_reader = reader_creator_bool(False) false_reader = reader_creator_bool(False)
reader = paddle.reader.compose(paddle.dataset.mnist, data_reader_creator_random_image(20, 20), true_reader, false_reader) reader = paddle.reader.compose(paddle.dataset.mnist.train(), data_reader_creator_random_image(20, 20), true_reader, false_reader)
# Skipped 1 because paddle.dataset.mnist produces two items per data entry. # Skipped 1 because paddle.dataset.mnist.train() produces two items per data entry.
# And we don't care second item at this time. # And we don't care second item at this time.
paddle.train(reader, {"true_image":0, "fake_image": 2, "true_label": 3, "false_label": 4}, ...) paddle.train(paddle.batch(reader, 128), {"true_image":0, "fake_image": 2, "true_label": 3, "false_label": 4}, ...)
``` ```
### Shuffle ### Shuffle
...@@ -103,16 +149,20 @@ Given shuffle buffer size `n`, `paddle.reader.shuffle` will return a data reader ...@@ -103,16 +149,20 @@ Given shuffle buffer size `n`, `paddle.reader.shuffle` will return a data reader
Example: Example:
```python ```python
reader = paddle.reader.shuffle(paddle.dataset.mnist, 512) reader = paddle.reader.shuffle(paddle.dataset.mnist.train(), 512)
``` ```
## Q & A ## Q & A
### Why return only a single entry, but not a mini batch? ### Why reader return only a single entry, but not a mini batch?
Always returning a single entry make reusing existing data readers much easier (e.g., if existing reader return not a single entry but 3 entries, training code will be more complex because it need to handle cases like batch size 2).
We provide function `paddle.batch` to turn (single entry) reader into batch reader.
If a mini batch is returned, data reader need to take care of batch size. But batch size is a concept for training, it makes more sense for user to specify batch size as a parameter for `train`. ### Why do we need batch reader, isn't train take reader and batch_size as arguments sufficient?
Practically, always return a single entry make reusing existing data readers much easier (e.g., if existing reader return not a single entry but 3 entries, training code will be more complex because it need to handle cases like batch size 2). In most of the case, train taking reader and batch_size as arguments would be sufficent. However sometimes user want to customize order of data entries inside a mini batch. Or even change batch size dynamically.
### Why use a dictionary but not a list to provide mapping? ### Why use a dictionary but not a list to provide mapping?
...@@ -137,7 +187,7 @@ def image_reader_creator(image_path, label_path, n): ...@@ -137,7 +187,7 @@ def image_reader_creator(image_path, label_path, n):
# images_reader_creator creates a reader # images_reader_creator creates a reader
reader = image_reader_creator("/path/to/image_file", "/path/to/label_file", 1024) reader = image_reader_creator("/path/to/image_file", "/path/to/label_file", 1024)
paddle.train(reader, {"image":0, "label":1}, ...) paddle.train(paddle.batch(reader, 128), {"image":0, "label":1}, ...)
``` ```
### How is `paddle.train` implemented ### How is `paddle.train` implemented
...@@ -145,17 +195,8 @@ paddle.train(reader, {"image":0, "label":1}, ...) ...@@ -145,17 +195,8 @@ paddle.train(reader, {"image":0, "label":1}, ...)
An example implementation of paddle.train could be: An example implementation of paddle.train could be:
```python ```python
def make_minibatch(reader, minibatch_size): def train(batch_reader, mapping, batch_size, total_pass):
def ret():
r = reader()
buf = [r.next() for x in xrange(minibatch_size)]
while len(buf) > 0:
yield buf
buf = [r.next() for x in xrange(minibatch_size)]
return ret
def train(reader, mapping, batch_size, total_pass):
for pass_idx in range(total_pass): for pass_idx in range(total_pass):
for mini_batch in make_minibatch(reader): # this loop will never end in online learning. for mini_batch in batch_reader(): # this loop will never end in online learning.
do_forward_backward(mini_batch, mapping) do_forward_backward(mini_batch, mapping)
``` ```
...@@ -132,7 +132,8 @@ def startPaddle(idMap={}, train_args_dict=None): ...@@ -132,7 +132,8 @@ def startPaddle(idMap={}, train_args_dict=None):
logDir = JOB_PATH_OUTPUT + "/node_" + str(trainerId) logDir = JOB_PATH_OUTPUT + "/node_" + str(trainerId)
if not os.path.exists(JOB_PATH_OUTPUT): if not os.path.exists(JOB_PATH_OUTPUT):
os.makedirs(JOB_PATH_OUTPUT) os.makedirs(JOB_PATH_OUTPUT)
os.mkdir(logDir) if not os.path.exists(logDir):
os.mkdir(logDir)
copyCommand = 'cp -rf ' + JOB_PATH + \ copyCommand = 'cp -rf ' + JOB_PATH + \
"/" + str(trainerId) + "/data/*" + " ./data/" "/" + str(trainerId) + "/data/*" + " ./data/"
os.system(copyCommand) os.system(copyCommand)
......
#!/bin/bash
brew update
brew tap homebrew/science
brew install openblas swig md5sha1sum
...@@ -2,18 +2,11 @@ ...@@ -2,18 +2,11 @@
source ./common.sh source ./common.sh
NPROC=1 NPROC=1
if [[ "$TRAVIS_OS_NAME" == "linux" ]]; then export PYTHONPATH=/opt/python/2.7.12/lib/python2.7/site-packages
export PYTHONPATH=/opt/python/2.7.12/lib/python2.7/site-packages export PYTHONHOME=/opt/python/2.7.12
export PYTHONHOME=/opt/python/2.7.12 export PATH=/opt/python/2.7.12/bin:${PATH}
export PATH=/opt/python/2.7.12/bin:${PATH} cmake .. -DCMAKE_Fortran_COMPILER=/usr/bin/gfortran-4.8 -DON_TRAVIS=ON -DON_COVERALLS=ON -DCOVERALLS_UPLOAD=ON ${EXTRA_CMAKE_OPTS}
cmake .. -DCMAKE_Fortran_COMPILER=/usr/bin/gfortran-4.8 -DON_TRAVIS=ON -DON_COVERALLS=ON -DCOVERALLS_UPLOAD=ON ${EXTRA_CMAKE_OPTS} NRPOC=`nproc`
NRPOC=`nproc` make -j $NPROC
make -j $NPROC make coveralls
make coveralls sudo make install
sudo make install
elif [[ "$TRAVIS_OS_NAME" == "osx" ]]; then
export PYTHONPATH=/usr/local/lib/python2.7/site-packages
cmake .. -DON_TRAVIS=ON -DON_COVERALLS=ON -DCOVERALLS_UPLOAD=ON ${EXTRA_CMAKE_OPTS}
NPROC=`sysctl -n hw.ncpu`
make -j $NPROC
fi
...@@ -20,6 +20,7 @@ import event ...@@ -20,6 +20,7 @@ import event
import data_type import data_type
import topology import topology
import data_feeder import data_feeder
import networks
from . import dataset from . import dataset
from . import reader from . import reader
import attr import attr
......
...@@ -22,6 +22,7 @@ class Layer(object): ...@@ -22,6 +22,7 @@ class Layer(object):
def __init__(self, name=None, parent_layers=None): def __init__(self, name=None, parent_layers=None):
assert isinstance(parent_layers, dict) assert isinstance(parent_layers, dict)
self.name = name self.name = name
self.__contex__ = {}
self.__parent_layers__ = parent_layers self.__parent_layers__ = parent_layers
def to_proto(self, context): def to_proto(self, context):
...@@ -39,16 +40,38 @@ class Layer(object): ...@@ -39,16 +40,38 @@ class Layer(object):
self.__parent_layers__[layer_name]) self.__parent_layers__[layer_name])
kwargs[layer_name] = v1_layer kwargs[layer_name] = v1_layer
if self.name is None: if self.context_name() is None:
return self.to_proto_impl(**kwargs) return self.to_proto_impl(**kwargs)
elif self.name not in context: elif self.context_name() not in context:
context[self.name] = self.to_proto_impl(**kwargs) context[self.context_name()] = self.to_proto_impl(**kwargs)
self.__contex__ = context
return context[self.name] if self.use_context_name():
return context[self.context_name()]
else:
return context[self.name]
def to_proto_impl(self, **kwargs): def to_proto_impl(self, **kwargs):
raise NotImplementedError() raise NotImplementedError()
def context_name(self):
"""
Context name means the context which stores `to_proto_impl` result.
If multiple layer share same context_name, the `to_proto_impl` of them
will be invoked only once.
"""
return self.name
def use_context_name(self):
return False
def calculate_size(self):
"""
lazy calculate size of the layer, should be called when to_proto_impl of
this layer is called.
:return:
"""
return self.__contex__[self.context_name()].size
def __convert_to_v2__(method_name, parent_names, is_default_name=True): def __convert_to_v2__(method_name, parent_names, is_default_name=True):
if is_default_name: if is_default_name:
......
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import mnist import mnist
import imikolov import imikolov
import imdb import imdb
import cifar import cifar
import movielens import movielens
import conll05
__all__ = ['mnist', 'imikolov', 'imdb', 'cifar', 'movielens'] __all__ = ['mnist', 'imikolov', 'imdb', 'cifar', 'movielens', 'conll05']
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" """
CIFAR dataset: https://www.cs.toronto.edu/~kriz/cifar.html CIFAR dataset: https://www.cs.toronto.edu/~kriz/cifar.html
""" """
import cPickle import cPickle
import itertools import itertools
import numpy import numpy
......
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import requests import requests
import hashlib import hashlib
import os import os
......
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tarfile
import gzip
import itertools
from common import download
__all__ = ['test, get_dict', 'get_embedding']
"""
Conll 2005 dataset. Paddle semantic role labeling Book and demo use this
dataset as an example. Because Conll 2005 is not free in public, the default
downloaded URL is test set of Conll 2005 (which is public). Users can change
URL and MD5 to their Conll dataset.
"""
DATA_URL = 'http://www.cs.upc.edu/~srlconll/conll05st-tests.tar.gz'
DATA_MD5 = '387719152ae52d60422c016e92a742fc'
WORDDICT_URL = 'http://paddlepaddle.bj.bcebos.com/demo/srl_dict_and_embedding/wordDict.txt'
WORDDICT_MD5 = 'ea7fb7d4c75cc6254716f0177a506baa'
VERBDICT_URL = 'http://paddlepaddle.bj.bcebos.com/demo/srl_dict_and_embedding/verbDict.txt'
VERBDICT_MD5 = '0d2977293bbb6cbefab5b0f97db1e77c'
TRGDICT_URL = 'http://paddlepaddle.bj.bcebos.com/demo/srl_dict_and_embedding/targetDict.txt'
TRGDICT_MD5 = 'd8c7f03ceb5fc2e5a0fa7503a4353751'
EMB_URL = 'http://paddlepaddle.bj.bcebos.com/demo/srl_dict_and_embedding/emb'
EMB_MD5 = 'bf436eb0faa1f6f9103017f8be57cdb7'
UNK_IDX = 0
def load_dict(filename):
d = dict()
with open(filename, 'r') as f:
for i, line in enumerate(f):
d[line.strip()] = i
return d
def corpus_reader(data_path, words_name, props_name):
"""
Read one corpus. It returns an iterator. Each element of
this iterator is a tuple including sentence and labels. The sentence is
consist of a list of word IDs. The labels include a list of label IDs.
:return: a iterator of data.
:rtype: iterator
"""
def reader():
tf = tarfile.open(data_path)
wf = tf.extractfile(words_name)
pf = tf.extractfile(props_name)
with gzip.GzipFile(fileobj=wf) as words_file, gzip.GzipFile(
fileobj=pf) as props_file:
sentences = []
labels = []
one_seg = []
for word, label in itertools.izip(words_file, props_file):
word = word.strip()
label = label.strip().split()
if len(label) == 0: # end of sentence
for i in xrange(len(one_seg[0])):
a_kind_lable = [x[i] for x in one_seg]
labels.append(a_kind_lable)
if len(labels) >= 1:
verb_list = []
for x in labels[0]:
if x != '-':
verb_list.append(x)
for i, lbl in enumerate(labels[1:]):
cur_tag = 'O'
is_in_bracket = False
lbl_seq = []
verb_word = ''
for l in lbl:
if l == '*' and is_in_bracket == False:
lbl_seq.append('O')
elif l == '*' and is_in_bracket == True:
lbl_seq.append('I-' + cur_tag)
elif l == '*)':
lbl_seq.append('I-' + cur_tag)
is_in_bracket = False
elif l.find('(') != -1 and l.find(')') != -1:
cur_tag = l[1:l.find('*')]
lbl_seq.append('B-' + cur_tag)
is_in_bracket = False
elif l.find('(') != -1 and l.find(')') == -1:
cur_tag = l[1:l.find('*')]
lbl_seq.append('B-' + cur_tag)
is_in_bracket = True
else:
raise RuntimeError('Unexpected label: %s' %
l)
yield sentences, verb_list[i], lbl_seq
sentences = []
labels = []
one_seg = []
else:
sentences.append(word)
one_seg.append(label)
pf.close()
wf.close()
tf.close()
return reader
def reader_creator(corpus_reader,
word_dict=None,
predicate_dict=None,
label_dict=None):
def reader():
for sentence, predicate, labels in corpus_reader():
sen_len = len(sentence)
verb_index = labels.index('B-V')
mark = [0] * len(labels)
if verb_index > 0:
mark[verb_index - 1] = 1
ctx_n1 = sentence[verb_index - 1]
else:
ctx_n1 = 'bos'
if verb_index > 1:
mark[verb_index - 2] = 1
ctx_n2 = sentence[verb_index - 2]
else:
ctx_n2 = 'bos'
mark[verb_index] = 1
ctx_0 = sentence[verb_index]
if verb_index < len(labels) - 1:
mark[verb_index + 1] = 1
ctx_p1 = sentence[verb_index + 1]
else:
ctx_p1 = 'eos'
if verb_index < len(labels) - 2:
mark[verb_index + 2] = 1
ctx_p2 = sentence[verb_index + 2]
else:
ctx_p2 = 'eos'
word_idx = [word_dict.get(w, UNK_IDX) for w in sentence]
ctx_n2_idx = [word_dict.get(ctx_n2, UNK_IDX)] * sen_len
ctx_n1_idx = [word_dict.get(ctx_n1, UNK_IDX)] * sen_len
ctx_0_idx = [word_dict.get(ctx_0, UNK_IDX)] * sen_len
ctx_p1_idx = [word_dict.get(ctx_p1, UNK_IDX)] * sen_len
ctx_p2_idx = [word_dict.get(ctx_p2, UNK_IDX)] * sen_len
pred_idx = [predicate_dict.get(predicate)] * sen_len
label_idx = [label_dict.get(w) for w in labels]
yield word_idx, ctx_n2_idx, ctx_n1_idx, \
ctx_0_idx, ctx_p1_idx, ctx_p2_idx, pred_idx, mark, label_idx
return reader
def get_dict():
word_dict = load_dict(download(WORDDICT_URL, 'conll05st', WORDDICT_MD5))
verb_dict = load_dict(download(VERBDICT_URL, 'conll05st', VERBDICT_MD5))
label_dict = load_dict(download(TRGDICT_URL, 'conll05st', TRGDICT_MD5))
return word_dict, verb_dict, label_dict
def get_embedding():
return download(EMB_URL, 'conll05st', EMB_MD5)
def test():
word_dict, verb_dict, label_dict = get_dict()
reader = corpus_reader(
download(DATA_URL, 'conll05st', DATA_MD5),
words_name='conll05st-release/test.wsj/words/test.wsj.words.gz',
props_name='conll05st-release/test.wsj/props/test.wsj.props.gz')
return reader_creator(reader, word_dict, verb_dict, label_dict)
# /usr/bin/env python
# -*- coding:utf-8 -*-
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved # Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
# #
# Licensed under the Apache License, Version 2.0 (the "License"); # Licensed under the Apache License, Version 2.0 (the "License");
...@@ -17,6 +14,7 @@ ...@@ -17,6 +14,7 @@
""" """
IMDB dataset: http://ai.stanford.edu/%7Eamaas/data/sentiment/aclImdb_v1.tar.gz IMDB dataset: http://ai.stanford.edu/%7Eamaas/data/sentiment/aclImdb_v1.tar.gz
""" """
import paddle.v2.dataset.common import paddle.v2.dataset.common
import tarfile import tarfile
import Queue import Queue
...@@ -118,3 +116,8 @@ def test(word_idx): ...@@ -118,3 +116,8 @@ def test(word_idx):
return reader_creator( return reader_creator(
re.compile("aclImdb/test/pos/.*\.txt$"), re.compile("aclImdb/test/pos/.*\.txt$"),
re.compile("aclImdb/test/neg/.*\.txt$"), word_idx, 1000) re.compile("aclImdb/test/neg/.*\.txt$"), word_idx, 1000)
def word_dict():
return build_dict(
re.compile("aclImdb/((train)|(test))/((pos)|(neg))/.*\.txt$"), 150)
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" """
imikolov's simple dataset: http://www.fit.vutbr.cz/~imikolov/rnnlm/ imikolov's simple dataset: http://www.fit.vutbr.cz/~imikolov/rnnlm/
""" """
......
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" """
MNIST dataset. MNIST dataset.
""" """
......
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import zipfile import zipfile
from common import download from common import download
import re import re
......
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.v2.dataset.cifar import paddle.v2.dataset.cifar
import unittest import unittest
......
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.v2.dataset.common import paddle.v2.dataset.common
import unittest import unittest
import tempfile import tempfile
......
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.v2.dataset.imdb import paddle.v2.dataset.imdb
import unittest import unittest
import re import re
......
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.v2.dataset.mnist import paddle.v2.dataset.mnist
import unittest import unittest
......
...@@ -34,8 +34,9 @@ class WithMetric(object): ...@@ -34,8 +34,9 @@ class WithMetric(object):
class TestResult(WithMetric): class TestResult(WithMetric):
def __init__(self, evaluator): def __init__(self, evaluator, cost):
super(TestResult, self).__init__(evaluator) super(TestResult, self).__init__(evaluator)
self.cost = cost
class BeginPass(object): class BeginPass(object):
......
...@@ -65,19 +65,24 @@ to be in a Python function but could be anywhere. ...@@ -65,19 +65,24 @@ to be in a Python function but could be anywhere.
Also, the creation of a protobuf message is hidden in the invocation of Also, the creation of a protobuf message is hidden in the invocation of
paddle.v2.parameters.create, no longer exposed to users. paddle.v2.parameters.create, no longer exposed to users.
""" """
import collections
import inspect
from config_base import Layer, __convert_to_v2__ from config_base import Layer, __convert_to_v2__
import paddle.trainer_config_helpers as conf_helps import paddle.trainer_config_helpers as conf_helps
from paddle.trainer_config_helpers.config_parser_utils import \ from paddle.trainer_config_helpers.config_parser_utils import \
parse_network_config as __parse__ parse_network_config as __parse__
from paddle.trainer_config_helpers.default_decorators import wrap_name_default
from paddle.trainer_config_helpers.default_decorators import wrap_act_default from paddle.trainer_config_helpers.default_decorators import wrap_act_default
from paddle.trainer_config_helpers.default_decorators import \ from paddle.trainer_config_helpers.default_decorators import \
wrap_bias_attr_default wrap_bias_attr_default
from paddle.trainer_config_helpers.default_decorators import wrap_name_default
from paddle.trainer_config_helpers.layers import layer_support from paddle.trainer_config_helpers.layers import layer_support
from paddle.trainer.config_parser import \
RecurrentLayerGroupWithoutOutLinksBegin, RecurrentLayerGroupSetOutLink, \
RecurrentLayerGroupEnd, model_type
import data_type
import activation import activation
import data_type
__all__ = ['parse_network', 'data'] __all__ = ['parse_network', 'data']
...@@ -130,6 +135,137 @@ class DataLayerV2(Layer): ...@@ -130,6 +135,137 @@ class DataLayerV2(Layer):
return getattr(conf_helps, self.__method_name__)(name=self.name, **args) return getattr(conf_helps, self.__method_name__)(name=self.name, **args)
class WithExtraParent(Layer):
def extra_parent(self):
return self.__extra_parent__
def __init__(self, name=None, parent_layers=None):
self.__extra_parent__ = []
super(WithExtraParent, self).__init__(
name=name, parent_layers=parent_layers)
def append_extra_parent(self, parent):
self.__extra_parent__.append(parent)
def to_proto(self, context):
"""
function to set proto attribute
"""
kwargs = dict()
for p in self.__extra_parent__:
p.to_proto(context=context)
for layer_name in self.__parent_layers__:
if not isinstance(self.__parent_layers__[layer_name],
collections.Sequence):
v1_layer = self.__parent_layers__[layer_name].to_proto(
context=context)
else:
v1_layer = map(lambda x: x.to_proto(context=context),
self.__parent_layers__[layer_name])
kwargs[layer_name] = v1_layer
if self.context_name() is None:
return self.to_proto_impl(context=context, **kwargs)
elif self.context_name() not in context:
context[self.context_name()] = self.to_proto_impl(
context=context, **kwargs)
if self.use_context_name():
return context[self.context_name()]
else:
return context[self.name]
class MemoryV2(WithExtraParent):
def __init__(self, name, **kwargs):
self.name = name
super(MemoryV2, self).__init__(name=name, parent_layers=dict())
self.__kwargs__ = kwargs
self.__boot_layer_name__ = None
if 'boot_layer' in kwargs:
begin_of_current_rnn = []
# TODO(yuyang18): Fix inspect, it could be wrong when user invoke a
# function inside step.
st = inspect.stack()
for i in xrange(len(st)):
locs = inspect.stack()[i][0].f_locals
keys = locs.keys()
for key in keys:
val = locs[key]
if isinstance(val, RecurrentLayerInput):
begin_of_current_rnn.append(val)
elif isinstance(val, collections.Sequence):
for v in val:
if isinstance(v, RecurrentLayerInput):
begin_of_current_rnn.append(v)
if begin_of_current_rnn:
break
assert begin_of_current_rnn is not None
for extra in begin_of_current_rnn:
self.append_extra_parent(extra)
assert isinstance(extra, WithExtraParent)
extra.append_extra_parent(kwargs['boot_layer'])
self.__boot_layer_name__ = kwargs['boot_layer'].name
def to_proto_impl(self, context, **kwargs):
args = dict()
for each in kwargs:
args[each] = kwargs[each]
for each in self.__kwargs__:
args[each] = self.__kwargs__[each]
if self.__boot_layer_name__ is not None:
args['boot_layer'] = context[self.__boot_layer_name__]
size = args.get('size', None)
if size is not None:
if callable(size):
real_size = size()
else:
real_size = size
args['size'] = real_size
return conf_helps.memory(name=self.name, **args)
def context_name(self):
return self.name + "#memory"
def use_context_name(self):
"""
memory layer will have the same name with some layer
:return:
"""
return True
class LayerOutputV2(Layer):
"""
LayerOutputV2 is used to store the result of LayerOutput in v1 api.
It will not store it's parents because layer_output has been parsed already.
"""
def __init__(self, layer_output):
assert isinstance(layer_output, conf_helps.LayerOutput)
self.layer_output = layer_output
super(LayerOutputV2, self).__init__(
name=layer_output.name, parent_layers=dict())
def to_proto_impl(self):
return self.layer_output
class StaticInputV2(object):
def __init__(self, input, is_seq=False, size=None):
assert isinstance(input, LayerV2)
self.name = input.name
self.input = input
self.is_seq = is_seq
self.size = size
# TODO(qiaolongfei): add size
# assert input.size is not None or size is not None
class MixedLayerV2(Layer): class MixedLayerV2(Layer):
""" """
This class is use to support `with` grammar. If not, the following code This class is use to support `with` grammar. If not, the following code
...@@ -161,7 +297,6 @@ class MixedLayerV2(Layer): ...@@ -161,7 +297,6 @@ class MixedLayerV2(Layer):
other_kwargs['act'] = act other_kwargs['act'] = act
other_kwargs['bias_attr'] = bias_attr other_kwargs['bias_attr'] = bias_attr
other_kwargs['layer_attr'] = layer_attr other_kwargs['layer_attr'] = layer_attr
parent_layers = {"input": self.__inputs__} parent_layers = {"input": self.__inputs__}
super(MixedLayerV2, self).__init__(name, parent_layers) super(MixedLayerV2, self).__init__(name, parent_layers)
self.__other_kwargs__ = other_kwargs self.__other_kwargs__ = other_kwargs
...@@ -171,7 +306,7 @@ class MixedLayerV2(Layer): ...@@ -171,7 +306,7 @@ class MixedLayerV2(Layer):
self.__inputs__.append(other) self.__inputs__.append(other)
return self return self
else: else:
raise MixedLayerTypeV2.AddToSealedMixedLayerExceptionV2() raise MixedLayerV2.AddToSealedMixedLayerExceptionV2()
def __enter__(self): def __enter__(self):
assert len(self.__inputs__) == 0 assert len(self.__inputs__) == 0
...@@ -186,6 +321,13 @@ class MixedLayerV2(Layer): ...@@ -186,6 +321,13 @@ class MixedLayerV2(Layer):
args[each] = kwargs[each] args[each] = kwargs[each]
for each in self.__other_kwargs__: for each in self.__other_kwargs__:
args[each] = self.__other_kwargs__[each] args[each] = self.__other_kwargs__[each]
size = args.get('size', None)
if size is not None:
if callable(size):
real_size = size()
else:
real_size = size
args['size'] = real_size
return getattr(conf_helps, self.__method_name__)(**args) return getattr(conf_helps, self.__method_name__)(**args)
...@@ -202,14 +344,51 @@ def mixed(size=0, ...@@ -202,14 +344,51 @@ def mixed(size=0,
return MixedLayerV2(size, input, name, act, bias_attr, layer_attr) return MixedLayerV2(size, input, name, act, bias_attr, layer_attr)
class RecurrentLayerInput(WithExtraParent):
def __init__(self, recurrent_name, index, parent_layers):
assert len(parent_layers) == 1
self.__parents__ = parent_layers.values()[0]
super(RecurrentLayerInput, self).__init__(
name=self.__parents__[index].name, parent_layers=parent_layers)
self.__recurrent_name__ = recurrent_name
def context_name(self):
return self.__recurrent_name__ + ".begin"
def to_proto_impl(self, context, **kwargs):
model_type('recurrent_nn')
RecurrentLayerGroupWithoutOutLinksBegin(
name=self.__recurrent_name__,
in_links=map(lambda x: x.name, self.__parents__))
return self
class RecurrentLayerOutput(Layer):
def __init__(self, recurrent_name, index, parent_layers):
assert len(parent_layers) == 1
self.__parents__ = parent_layers.values()[0]
super(RecurrentLayerOutput, self).__init__(
name=self.__parents__[index].name, parent_layers=parent_layers)
self.__recurrent_name__ = recurrent_name
def context_name(self):
return self.__recurrent_name__ + ".end"
def to_proto_impl(self, **kwargs):
for l in self.__parents__:
RecurrentLayerGroupSetOutLink(l.name)
RecurrentLayerGroupEnd(name=self.__recurrent_name__)
LayerV2 = Layer LayerV2 = Layer
data = DataLayerV2 data = DataLayerV2
AggregateLevel = conf_helps.layers.AggregateLevel AggregateLevel = conf_helps.layers.AggregateLevel
ExpandLevel = conf_helps.layers.ExpandLevel ExpandLevel = conf_helps.layers.ExpandLevel
memory = MemoryV2
def __layer_name_mapping__(inname): def __layer_name_mapping__(inname):
if inname in ['data_layer', 'memory', 'mixed_layer']: if inname in ['data_layer', 'memory', 'mixed_layer', 'recurrent_group']:
# Do Not handle these layers # Do Not handle these layers
return return
elif inname == 'maxid_layer': elif inname == 'maxid_layer':
...@@ -231,8 +410,10 @@ def __layer_name_mapping__(inname): ...@@ -231,8 +410,10 @@ def __layer_name_mapping__(inname):
def __layer_name_mapping_parent_names__(inname): def __layer_name_mapping_parent_names__(inname):
all_args = getattr(conf_helps, inname).argspec.args all_args = getattr(conf_helps, inname).argspec.args
return filter( return filter(
lambda x: x in ['input1', 'input2','label', 'input', 'a', 'b', 'expand_as', lambda x: x in ['input1', 'input2', 'label', 'input', 'a', 'b',
'weights', 'vectors', 'weight', 'score', 'left', 'right'], 'expand_as',
'weights', 'vectors', 'weight', 'score', 'left',
'right', 'output_mem'],
all_args) all_args)
...@@ -267,3 +448,54 @@ operator_list = [ ...@@ -267,3 +448,54 @@ operator_list = [
for op in operator_list: for op in operator_list:
globals()[op[0]] = __convert_to_v2__( globals()[op[0]] = __convert_to_v2__(
op[0], parent_names=op[1], is_default_name=False) op[0], parent_names=op[1], is_default_name=False)
@wrap_name_default()
def recurrent_group(step, input, name=None):
if not isinstance(input, collections.Sequence):
input = [input]
non_static_inputs = filter(lambda x: not isinstance(x, StaticInputV2),
input)
actual_input = [
RecurrentLayerInput(
recurrent_name=name,
index=i,
parent_layers={'recurrent_inputs': non_static_inputs})
for i in xrange(len(non_static_inputs))
]
def __real_step__(*args):
rnn_input = list(args)
static_inputs = filter(lambda x: isinstance(x, StaticInputV2), input)
for static_input in static_inputs:
mem_name = "__%s_memory__" % static_input.input.name
mem = memory(
name=mem_name,
is_seq=static_input.is_seq,
size=static_input.input.calculate_size,
boot_layer=static_input.input)
with mixed(
name=mem_name,
size=static_input.input.calculate_size,
act=activation.Identity()) as mix:
mix += identity_projection(input=mem)
rnn_input.insert(input.index(static_input), mix)
return step(*rnn_input)
actual_output = __real_step__(*actual_input)
if not isinstance(actual_output, collections.Sequence):
actual_output = [actual_output]
retv = [
RecurrentLayerOutput(
recurrent_name=name,
index=i,
parent_layers={'recurrent_outputs': actual_output})
for i in xrange(len(actual_output))
]
if len(retv) == 1:
return retv[0]
else:
return retv
add_test(NAME test_v2_api
COMMAND bash ${PROJ_ROOT}/python/paddle/v2/tests/run_tests.sh ${PYTHON_EXECUTABLE})
add_test(NAME test_v2_layer add_test(NAME test_v2_layer
COMMAND ${PROJ_ROOT}/paddle/.set_python_path.sh -d ${PROJ_ROOT}/python/ COMMAND ${PROJ_ROOT}/paddle/.set_python_path.sh -d ${PROJ_ROOT}/python/
${PYTHON_EXECUTABLE} ${PROJ_ROOT}/python/paddle/v2/tests/test_layer.py ${PYTHON_EXECUTABLE} ${PROJ_ROOT}/python/paddle/v2/tests/test_layer.py
WORKING_DIRECTORY ${PROJ_ROOT}/python/paddle) WORKING_DIRECTORY ${PROJ_ROOT}/python/paddle)
add_test(NAME test_v2_api add_test(NAME test_v2_rnn_layer
COMMAND bash ${PROJ_ROOT}/python/paddle/v2/tests/run_tests.sh ${PYTHON_EXECUTABLE}) COMMAND ${PROJ_ROOT}/paddle/.set_python_path.sh -d ${PROJ_ROOT}/python/
${PYTHON_EXECUTABLE} ${PROJ_ROOT}/python/paddle/v2/tests/test_rnn_layer.py)
add_test(NAME topology_test add_test(NAME test_topology
COMMAND ${PROJ_ROOT}/paddle/.set_python_path.sh -d ${PROJ_ROOT}/python/ COMMAND ${PROJ_ROOT}/paddle/.set_python_path.sh -d ${PROJ_ROOT}/python/
${PYTHON_EXECUTABLE} ${PROJ_ROOT}/python/paddle/v2/tests/test_topology.py ${PYTHON_EXECUTABLE} ${PROJ_ROOT}/python/paddle/v2/tests/test_topology.py
WORKING_DIRECTORY ${PROJ_ROOT}/python/paddle) WORKING_DIRECTORY ${PROJ_ROOT}/python/paddle)
# Copyright PaddlePaddle contributors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import difflib
import unittest
import paddle.trainer_config_helpers as conf_helps
import paddle.v2.activation as activation
import paddle.v2.data_type as data_type
import paddle.v2.layer as layer
from paddle.trainer_config_helpers.config_parser_utils import \
parse_network_config as parse_network
class RNNTest(unittest.TestCase):
def test_simple_rnn(self):
dict_dim = 10
word_dim = 8
hidden_dim = 8
def parse_old_rnn():
def step(y):
mem = conf_helps.memory(name="rnn_state", size=hidden_dim)
out = conf_helps.fc_layer(
input=[y, mem],
size=hidden_dim,
act=activation.Tanh(),
bias_attr=True,
name="rnn_state")
return out
def test():
data = conf_helps.data_layer(name="word", size=dict_dim)
embd = conf_helps.embedding_layer(input=data, size=word_dim)
conf_helps.recurrent_group(name="rnn", step=step, input=embd)
return str(parse_network(test))
def parse_new_rnn():
def new_step(y):
mem = layer.memory(name="rnn_state", size=hidden_dim)
out = layer.fc(input=[y, mem],
size=hidden_dim,
act=activation.Tanh(),
bias_attr=True,
name="rnn_state")
return out
data = layer.data(
name="word", type=data_type.integer_value(dict_dim))
embd = layer.embedding(input=data, size=word_dim)
rnn_layer = layer.recurrent_group(
name="rnn", step=new_step, input=embd)
return str(layer.parse_network(rnn_layer))
diff = difflib.unified_diff(parse_old_rnn().splitlines(1),
parse_new_rnn().splitlines(1))
print ''.join(diff)
def test_sequence_rnn_multi_input(self):
dict_dim = 10
word_dim = 8
hidden_dim = 8
label_dim = 3
def parse_old_rnn():
def test():
data = conf_helps.data_layer(name="word", size=dict_dim)
label = conf_helps.data_layer(name="label", size=label_dim)
emb = conf_helps.embedding_layer(input=data, size=word_dim)
boot_layer = conf_helps.data_layer(name="boot", size=10)
boot_layer = conf_helps.fc_layer(
name='boot_fc', input=boot_layer, size=10)
def step(y, wid):
z = conf_helps.embedding_layer(input=wid, size=word_dim)
mem = conf_helps.memory(
name="rnn_state",
size=hidden_dim,
boot_layer=boot_layer)
out = conf_helps.fc_layer(
input=[y, z, mem],
size=hidden_dim,
act=conf_helps.TanhActivation(),
bias_attr=True,
name="rnn_state")
return out
out = conf_helps.recurrent_group(
name="rnn", step=step, input=[emb, data])
rep = conf_helps.last_seq(input=out)
prob = conf_helps.fc_layer(
size=label_dim,
input=rep,
act=conf_helps.SoftmaxActivation(),
bias_attr=True)
conf_helps.outputs(
conf_helps.classification_cost(
input=prob, label=label))
return str(parse_network(test))
def parse_new_rnn():
data = layer.data(
name="word", type=data_type.dense_vector(dict_dim))
label = layer.data(
name="label", type=data_type.dense_vector(label_dim))
emb = layer.embedding(input=data, size=word_dim)
boot_layer = layer.data(
name="boot", type=data_type.dense_vector(10))
boot_layer = layer.fc(name='boot_fc', input=boot_layer, size=10)
def step(y, wid):
z = layer.embedding(input=wid, size=word_dim)
mem = layer.memory(
name="rnn_state", size=hidden_dim, boot_layer=boot_layer)
out = layer.fc(input=[y, z, mem],
size=hidden_dim,
act=activation.Tanh(),
bias_attr=True,
name="rnn_state")
return out
out = layer.recurrent_group(
name="rnn", step=step, input=[emb, data])
rep = layer.last_seq(input=out)
prob = layer.fc(size=label_dim,
input=rep,
act=activation.Softmax(),
bias_attr=True)
cost = layer.classification_cost(input=prob, label=label)
return str(layer.parse_network(cost))
diff = difflib.unified_diff(parse_old_rnn().splitlines(1),
parse_new_rnn().splitlines(1))
print ''.join(diff)
if __name__ == '__main__':
unittest.main()
...@@ -107,12 +107,7 @@ class SGD(ITrainer): ...@@ -107,12 +107,7 @@ class SGD(ITrainer):
event_handler(v2_event.BeginPass(pass_id)) event_handler(v2_event.BeginPass(pass_id))
pass_evaluator.start() pass_evaluator.start()
updater.startPass() updater.startPass()
total_cost_sum = 0
total_batch = 0
for batch_id, data_batch in enumerate(reader()): for batch_id, data_batch in enumerate(reader()):
pass_type = updater.startBatch(len(data_batch))
self.__gradient_machine__.forwardBackward(
feeder(data_batch), out_args, pass_type)
batch_evaluator.start() batch_evaluator.start()
event_handler( event_handler(
v2_event.BeginIteration( v2_event.BeginIteration(
...@@ -125,12 +120,8 @@ class SGD(ITrainer): ...@@ -125,12 +120,8 @@ class SGD(ITrainer):
for each_param in self.__gradient_machine__.getNonStaticParameters( for each_param in self.__gradient_machine__.getNonStaticParameters(
): ):
updater.update(each_param) updater.update(each_param)
# Get cost. We use numpy to calculate total cost for this batch. cost_sum = out_args.sumCosts()
cost_vec = out_args.getSlotValue(0) cost = cost_sum / len(data_batch)
cost_vec = cost_vec.copyToNumpyMat()
cost = cost_vec.sum() / len(data_batch)
total_cost_sum += cost_vec.sum()
total_batch += len(data_batch)
updater.finishBatch(cost) updater.finishBatch(cost)
batch_evaluator.finish() batch_evaluator.finish()
event_handler( event_handler(
...@@ -142,11 +133,7 @@ class SGD(ITrainer): ...@@ -142,11 +133,7 @@ class SGD(ITrainer):
updater.finishPass() updater.finishPass()
pass_evaluator.finish() pass_evaluator.finish()
event_handler( event_handler(v2_event.EndPass(pass_id, evaluator=pass_evaluator))
v2_event.EndPass(
pass_id,
cost=total_cost_sum / total_batch,
evaluator=pass_evaluator))
self.__gradient_machine__.finish() self.__gradient_machine__.finish()
def default_reader_dict(self): def default_reader_dict(self):
...@@ -163,13 +150,18 @@ class SGD(ITrainer): ...@@ -163,13 +150,18 @@ class SGD(ITrainer):
evaluator = self.__gradient_machine__.makeEvaluator() evaluator = self.__gradient_machine__.makeEvaluator()
out_args = api.Arguments.createArguments(0) out_args = api.Arguments.createArguments(0)
evaluator.start() evaluator.start()
total_cost = 0
num_samples = 0.0
for data_batch in reader(): for data_batch in reader():
num_samples += len(data_batch)
self.__gradient_machine__.forward( self.__gradient_machine__.forward(
feeder(data_batch), out_args, api.PASS_TEST) feeder(data_batch), out_args, api.PASS_TEST)
total_cost += out_args.sumCosts()
self.__gradient_machine__.eval(evaluator) self.__gradient_machine__.eval(evaluator)
evaluator.finish() evaluator.finish()
return v2_event.TestResult(evaluator=evaluator) return v2_event.TestResult(
evaluator=evaluator, cost=total_cost / num_samples)
def __check_train_args__(reader, event_handler, **kwargs): def __check_train_args__(reader, event_handler, **kwargs):
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册