提交 e63013a8 编写于 作者: C chengduoZH

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into feature/add_reduce_op_handle

...@@ -91,7 +91,6 @@ void ReduceOpHandle::RunImpl() { ...@@ -91,7 +91,6 @@ void ReduceOpHandle::RunImpl() {
if (paddle::platform::is_cpu_place(pre_place)) { if (paddle::platform::is_cpu_place(pre_place)) {
ReduceLoDTensor func(lod_tensors, trg); ReduceLoDTensor func(lod_tensors, trg);
VisitDataType(ToDataType(lod_tensors[0].type()), func); VisitDataType(ToDataType(lod_tensors[0].type()), func);
} else if (paddle::platform::is_gpu_place(pre_place)) { } else if (paddle::platform::is_gpu_place(pre_place)) {
#ifdef PADDLE_WITH_CUDA #ifdef PADDLE_WITH_CUDA
auto out_p = out_var_handles[0]->place_; auto out_p = out_var_handles[0]->place_;
......
...@@ -72,10 +72,12 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> { ...@@ -72,10 +72,12 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
auto dst_md = platform::MKLDNNMemDesc( auto dst_md = platform::MKLDNNMemDesc(
dst_tz, mkldnn::memory::data_type::f32, mkldnn::memory::format::nchw); dst_tz, mkldnn::memory::data_type::f32, mkldnn::memory::format::nchw);
auto src_memory = mkldnn::memory({src_md, mkldnn_engine}, auto src_memory =
reinterpret_cast<void*>(input_data)); mkldnn::memory({src_md, mkldnn_engine},
auto weights_memory = mkldnn::memory({weights_md, mkldnn_engine}, reinterpret_cast<void*>(const_cast<T*>(input_data)));
reinterpret_cast<void*>(filter_data)); auto weights_memory =
mkldnn::memory({weights_md, mkldnn_engine},
reinterpret_cast<void*>(const_cast<T*>(filter_data)));
auto dst_memory = mkldnn::memory({dst_md, mkldnn_engine}, output_data); auto dst_memory = mkldnn::memory({dst_md, mkldnn_engine}, output_data);
std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd = std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd =
...@@ -180,9 +182,9 @@ class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> { ...@@ -180,9 +182,9 @@ class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
dst_tz, mkldnn::memory::data_type::f32, mkldnn::memory::format::nchw); dst_tz, mkldnn::memory::data_type::f32, mkldnn::memory::format::nchw);
// create memory // create memory
auto diff_dst_memory = auto diff_dst_memory = mkldnn::memory(
mkldnn::memory({diff_weights_md, mkldnn_engine}, {diff_weights_md, mkldnn_engine},
reinterpret_cast<void*>(output_grad_data)); reinterpret_cast<void*>(const_cast<T*>(output_grad_data)));
// Retrieve conv_pd from device context // Retrieve conv_pd from device context
auto conv_pd = auto conv_pd =
std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>( std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
...@@ -202,8 +204,9 @@ class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> { ...@@ -202,8 +204,9 @@ class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
auto diff_weights_memory = auto diff_weights_memory =
mkldnn::memory({diff_weights_md, mkldnn_engine}, mkldnn::memory({diff_weights_md, mkldnn_engine},
reinterpret_cast<void*>(filter_grad_data)); reinterpret_cast<void*>(filter_grad_data));
auto src_memory = mkldnn::memory({src_md, mkldnn_engine}, auto src_memory =
reinterpret_cast<void*>(input_data)); mkldnn::memory({src_md, mkldnn_engine},
reinterpret_cast<void*>(const_cast<T*>(input_data)));
// create backward conv primitive for weights // create backward conv primitive for weights
auto conv_bwd_weights_prim = mkldnn::convolution_backward_weights( auto conv_bwd_weights_prim = mkldnn::convolution_backward_weights(
...@@ -222,11 +225,12 @@ class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> { ...@@ -222,11 +225,12 @@ class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
strides, paddings, *conv_pd, mkldnn_engine); strides, paddings, *conv_pd, mkldnn_engine);
// create memory // create memory
auto diff_src_memory = auto diff_src_memory = mkldnn::memory(
mkldnn::memory({diff_src_md, mkldnn_engine}, {diff_src_md, mkldnn_engine},
reinterpret_cast<void*>(input_grad_data)); reinterpret_cast<void*>(const_cast<T*>(input_grad_data)));
auto weights_memory = mkldnn::memory( auto weights_memory =
{weights_md, mkldnn_engine}, reinterpret_cast<void*>(filter_data)); mkldnn::memory({weights_md, mkldnn_engine},
reinterpret_cast<void*>(const_cast<T*>(filter_data)));
// create backward conv primitive for data // create backward conv primitive for data
auto conv_bwd_data_prim = mkldnn::convolution_backward_data( auto conv_bwd_data_prim = mkldnn::convolution_backward_data(
......
...@@ -73,6 +73,15 @@ class SoftmaxMKLDNNKernel : public paddle::framework::OpKernel<T> { ...@@ -73,6 +73,15 @@ class SoftmaxMKLDNNKernel : public paddle::framework::OpKernel<T> {
softmax_dst_memory); softmax_dst_memory);
std::vector<primitive> pipeline{softmax}; std::vector<primitive> pipeline{softmax};
stream(stream::kind::eager).submit(pipeline).wait(); stream(stream::kind::eager).submit(pipeline).wait();
const bool is_test = ctx.Attr<bool>("is_test");
if (!is_test) {
T threshold = exp(-64);
for (size_t i = 0; i < dst_tz[0] * dst_tz[1]; ++i) {
output_data[i] =
output_data[i] < threshold ? threshold : output_data[i];
}
}
} }
}; };
......
...@@ -97,6 +97,9 @@ class SoftmaxOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -97,6 +97,9 @@ class SoftmaxOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr<bool>("use_mkldnn", AddAttr<bool>("use_mkldnn",
"(bool, default false) Only used in mkldnn kernel") "(bool, default false) Only used in mkldnn kernel")
.SetDefault(false); .SetDefault(false);
AddAttr<bool>("is_test",
"Disable epsilon adding to softmax results. Used by MKLDNN.")
.SetDefault(false);
AddComment(R"DOC( AddComment(R"DOC(
Softmax Operator. Softmax Operator.
......
...@@ -37,6 +37,7 @@ from distribute_transpiler import DistributeTranspiler ...@@ -37,6 +37,7 @@ from distribute_transpiler import DistributeTranspiler
from distribute_transpiler_simple import SimpleDistributeTranspiler from distribute_transpiler_simple import SimpleDistributeTranspiler
from concurrency import (Go, make_channel, channel_send, channel_recv, from concurrency import (Go, make_channel, channel_send, channel_recv,
channel_close, Select) channel_close, Select)
from inference_transpiler import InferenceTranspiler
import clip import clip
from memory_optimization_transpiler import memory_optimize, release_memory from memory_optimization_transpiler import memory_optimize, release_memory
import profiler import profiler
...@@ -66,6 +67,7 @@ __all__ = framework.__all__ + executor.__all__ + concurrency.__all__ + [ ...@@ -66,6 +67,7 @@ __all__ = framework.__all__ + executor.__all__ + concurrency.__all__ + [
'clip', 'clip',
'SimpleDistributeTranspiler', 'SimpleDistributeTranspiler',
'DistributeTranspiler', 'DistributeTranspiler',
'InferenceTranspiler',
'memory_optimize', 'memory_optimize',
'release_memory', 'release_memory',
'profiler', 'profiler',
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
from framework import Program
from executor import global_scope
from . import core
class InferenceTranspiler:
def transpile(self, program, place, scope=None):
'''
Transpile the program. Support only fuse batch normalization now.
:param program: program to transpile
:type program: Program
:param place: inference place
:type place: Place
:param scope: inference scope
:type scope: Scope or None
'''
if not isinstance(program, Program):
raise TypeError("program should be as Program type")
if not isinstance(place, core.CPUPlace) and not isinstance(
place, core.CUDAPlace):
raise TypeError("place should be as CPUPlace/CUDAPlace type")
if scope is None:
scope = global_scope()
if not isinstance(scope, core.Scope):
raise TypeError("scope should be as Scope type or None")
self.fuse_batch_norm(program, place, scope)
def fuse_batch_norm(self, program, place, scope):
'''
Transpile the program by fused batch normalization.
The batch normalization followed the convolution or fully connected layer
can be integrated with them. Doing so will give us a forward acceleration,
especially in environments like mobile or embedded.
For input X:
- Conv process: X = input * W + bias
- Batch norm process: X' = (X - mean) / std
- Scale Process: Y = a * X' + b
After fuse into one operation:
Y = (input * W + bias - mean) / std * a + b
= input * a * W / std + ((bias - mean) / std * a + b)
The operator transformation is:
- before:
- conv->batch_norm->any_other_op (bias == 0)
- conv->elementwise_add->batch_norm->any_other_op (bias != 0)
- after:
- conv->elementwise_add->any_other_op
The transpile stages are:
1. insert elementwise_add op when bias == 0.
2. fuse the batch_norm's parameters to conv and elementwise_add operators.
3. remove batch_norm ops which are not used in any other ops.
4. adjust the input of any_other_op to be the output of elementwise_add operator.
5. remove unused variables.
:param program: program to transpile
:type program: Program
:param place: inference place
:type place: Place
:param scope: inference scope
:type scope: Scope
'''
self.scope = scope
self.place = place
self.block = program.block(0)
self.input_map = {} # store the input names should be adjusted
i = 0
while i < len(self.block.ops):
current_op = self.block.ops[i]
# TODO(luotao1): consider only conv2d now. fc would be delt later.
if current_op.type in ['conv2d']:
# TODO(luotao1): consider single chain network now.
# For branch network, we counldn't use block.ops[i + 1] as
# the judgment condition.
next_op = self.block.ops[i + 1]
# conv2d without bias
if (next_op.type == 'batch_norm'):
# insert bias op
bias_op = self._insert_bias_op(i + 1, current_op, next_op)
# fuse batch_norm
self._fuse_param(current_op, next_op, bias_op, 0)
# remove batch_norm_op
self.block.remove_op(i + 2)
i = i + 1
# conv2d with bias, the next_op.type is elementwise_add
elif (next_op.type == 'elementwise_add'):
next_next_op = self.block.ops[i + 2]
if (next_next_op.type == 'batch_norm'):
# fuse batch_norm
self._fuse_param(current_op, next_next_op, next_op, 1)
# remove batch_norm_op
self.block.remove_op(i + 2)
i = i + 1
i = i + 1
self._adjust_input()
self._remove_unused_var()
# TODO(luotao): use clone() method to flush the program.desc in force,
# since some large program.desc will not be flushed immediately.
# And a better solution will be considered later.
program = program.clone()
# ====================== private transpiler functions =====================
def _insert_bias_op(self, index, current_op, bn_op):
'''
Construct elementwise_add operator for adding bias
and insert it into program.
:param index: insert location of bias_op
:type index: Int
:param current_op: current operator (conv or fc)
:type current_op: Operator
:param bn_op: batch norm operator
:type bn_op: Operator
:return: bias_op
:rtype: Operator
'''
# The input of bias_op is current_op's output and Bias of bn_op
# The output of bias_op is bn_op's output
x_var = self.block.var(current_op.output("Output")[0])
y_var = self.block.var(bn_op.input("Bias")[0])
out_var = self.block.var(bn_op.output("Y")[0])
bias_op = self.block.insert_op(
index,
type="elementwise_add",
inputs={"X": x_var,
"Y": y_var},
outputs={"Out": out_var},
attrs={"axis": 1}) # dim_start=1
return bias_op
def _fuse_param(self, current_op, bn_op, bias_op, with_bias):
'''
fuse the batch_norm_op' parameters to current_op (conv or fc)
:param current_op: current operator (conv or fc)
:type current_op: Operator
:param bn_op: batch norm operator
:type bn_op: Operator
:param bias_op: elementwise_add operator for adding bias
:type bias_op: Operator
:param with_bias: If current operator has bias, with_bias = 1; otherwise 0.
:type with_bias: Int
'''
def _update_param(op, old_param_name, new_param):
# For the sake of remaining the original variables the same as before,
# create new variables in scope to store the new parameters.
old_param_name = old_param_name[0]
old_var = self.block.vars[old_param_name]
new_param_name = old_param_name + '_fuse_bn'
new_var = self.block.create_parameter(
name=new_param_name.encode('ascii'),
type=old_var.type,
dtype=old_var.dtype,
shape=old_var.shape)
op.rename_input(old_param_name, new_param_name)
self.scope.var(new_param_name)
tensor = self.scope.find_var(new_param_name).get_tensor()
tensor.set(np.array(new_param), self.place)
def _load_param(param_name):
return np.array(self.scope.find_var(param_name[0]).get_tensor())
bias_bn = _load_param(bn_op.input("Bias")) #Bias
scale_bn = _load_param(bn_op.input("Scale")) #Scale
mean_bn = _load_param(bn_op.input("Mean")) #Mean
var_bn = _load_param(bn_op.input("Variance")) #Variance
# TODO(luotao1): consider only conv2d now. fc would be delt later.
current_param = _load_param(current_op.input("Filter"))
std_bn = np.float32(np.sqrt(np.add(var_bn, 1e-5)))
tmp = np.float32(np.divide(scale_bn, std_bn))
# add bias of batch_norm_op to conv2d
if with_bias:
bias = _load_param(bias_op.input("Y"))
else:
bias = np.zeros(bias_bn.shape)
bias = np.float32(
np.add(np.multiply(np.subtract(bias, mean_bn), tmp), bias_bn))
# re-compute weight of conv2d
tmp = tmp.reshape(tmp.shape[0], -1)
dst_param = current_param.reshape((tmp.shape[0], -1))
dst_param = np.float32(np.multiply(dst_param, tmp))
dst_param = dst_param.reshape(current_param.shape)
# update parameters
_update_param(current_op, current_op.input("Filter"), dst_param)
_update_param(bias_op, bias_op.input("Y"), bias)
# collect the renamed input
self.input_map[bn_op.output("Y")[0]] = bias_op.output("Out")[0]
def _adjust_input(self):
for i in range(len(self.block.ops)):
current_op = self.block.ops[i]
for input_arg in current_op.input_arg_names:
if input_arg in self.input_map:
current_op.rename_input(input_arg,
self.input_map[input_arg])
def _remove_unused_var(self):
'''
remove unused varibles in program
'''
args = []
for i in range(len(self.block.ops)):
current_op = self.block.ops[i]
args += current_op.input_arg_names
args += current_op.output_arg_names
args = list(set(args)) # unique the input and output arguments
for var in self.block.vars.keys():
if var not in args:
self.block.remove_var(var)
...@@ -88,6 +88,7 @@ def fc(input, ...@@ -88,6 +88,7 @@ def fc(input,
bias_attr=None, bias_attr=None,
use_mkldnn=False, use_mkldnn=False,
act=None, act=None,
is_test=False,
name=None): name=None):
""" """
**Fully Connected Layer** **Fully Connected Layer**
...@@ -134,6 +135,7 @@ def fc(input, ...@@ -134,6 +135,7 @@ def fc(input,
bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
of this layer. If it is set to None, no bias will be added to the output units. of this layer. If it is set to None, no bias will be added to the output units.
act (str, default None): Activation to be applied to the output of this layer. act (str, default None): Activation to be applied to the output of this layer.
is_test(bool): A flag indicating whether execution is in test phase.
use_mkldnn(bool): Use mkldnn kernel or not, it is valid only when the mkldnn use_mkldnn(bool): Use mkldnn kernel or not, it is valid only when the mkldnn
library is installed. Default: False library is installed. Default: False
name (str, default None): The name of this layer. name (str, default None): The name of this layer.
...@@ -177,8 +179,11 @@ def fc(input, ...@@ -177,8 +179,11 @@ def fc(input,
inputs={"Input": input, inputs={"Input": input,
"W": w}, "W": w},
outputs={"Out": tmp}, outputs={"Out": tmp},
attrs={"use_mkldnn": use_mkldnn, attrs={
"bias_attr": bias_attr}) "use_mkldnn": use_mkldnn,
"is_test": is_test,
"bias_attr": bias_attr
})
return helper.append_activation(tmp) return helper.append_activation(tmp)
else: else:
for input_var, param_attr in helper.iter_inputs_and_params(): for input_var, param_attr in helper.iter_inputs_and_params():
......
...@@ -22,10 +22,17 @@ import sys ...@@ -22,10 +22,17 @@ import sys
import numpy import numpy
import unittest import unittest
import os import os
import numpy as np
def resnet_cifar10(input, depth=32): def resnet_cifar10(input, depth=32):
def conv_bn_layer(input, ch_out, filter_size, stride, padding, act='relu'): def conv_bn_layer(input,
ch_out,
filter_size,
stride,
padding,
act='relu',
bias_attr=False):
tmp = fluid.layers.conv2d( tmp = fluid.layers.conv2d(
input=input, input=input,
filter_size=filter_size, filter_size=filter_size,
...@@ -33,7 +40,7 @@ def resnet_cifar10(input, depth=32): ...@@ -33,7 +40,7 @@ def resnet_cifar10(input, depth=32):
stride=stride, stride=stride,
padding=padding, padding=padding,
act=None, act=None,
bias_attr=False) bias_attr=bias_attr)
return fluid.layers.batch_norm(input=tmp, act=act) return fluid.layers.batch_norm(input=tmp, act=act)
def shortcut(input, ch_in, ch_out, stride): def shortcut(input, ch_in, ch_out, stride):
...@@ -44,7 +51,7 @@ def resnet_cifar10(input, depth=32): ...@@ -44,7 +51,7 @@ def resnet_cifar10(input, depth=32):
def basicblock(input, ch_in, ch_out, stride): def basicblock(input, ch_in, ch_out, stride):
tmp = conv_bn_layer(input, ch_out, 3, stride, 1) tmp = conv_bn_layer(input, ch_out, 3, stride, 1)
tmp = conv_bn_layer(tmp, ch_out, 3, 1, 1, act=None) tmp = conv_bn_layer(tmp, ch_out, 3, 1, 1, act=None, bias_attr=True)
short = shortcut(input, ch_in, ch_out, stride) short = shortcut(input, ch_in, ch_out, stride)
return fluid.layers.elementwise_add(x=tmp, y=short, act='relu') return fluid.layers.elementwise_add(x=tmp, y=short, act='relu')
...@@ -219,11 +226,26 @@ def infer(use_cuda, save_dirname=None): ...@@ -219,11 +226,26 @@ def infer(use_cuda, save_dirname=None):
batch_size = 1 batch_size = 1
tensor_img = numpy.random.rand(batch_size, 3, 32, 32).astype("float32") tensor_img = numpy.random.rand(batch_size, 3, 32, 32).astype("float32")
# Use inference_transpiler to speedup
inference_transpiler_program = inference_program.clone()
t = fluid.InferenceTranspiler()
t.transpile(inference_transpiler_program, place)
# Construct feed as a dictionary of {feed_target_name: feed_target_data} # Construct feed as a dictionary of {feed_target_name: feed_target_data}
# and results will contain a list of data corresponding to fetch_targets. # and results will contain a list of data corresponding to fetch_targets.
results = exe.run(inference_program, results = exe.run(inference_program,
feed={feed_target_names[0]: tensor_img}, feed={feed_target_names[0]: tensor_img},
fetch_list=fetch_targets) fetch_list=fetch_targets)
transpiler_results = exe.run(inference_transpiler_program,
feed={feed_target_names[0]: tensor_img},
fetch_list=fetch_targets)
assert len(results[0]) == len(transpiler_results[0])
for i in range(len(results[0])):
np.testing.assert_almost_equal(
results[0][i], transpiler_results[0][i], decimal=6)
print("infer results: ", results[0]) print("infer results: ", results[0])
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册