未验证 提交 e52ffb70 编写于 作者: Z zhangkaihuo 提交者: GitHub

Add Sparse OP Maxpool (#40569)

sparse maxpool; kernel_registry support sparse tensor
上级 aed6faf2
...@@ -98,6 +98,28 @@ struct KernelArgsParseFunctor<Return_ (*)(Args_...)> { ...@@ -98,6 +98,28 @@ struct KernelArgsParseFunctor<Return_ (*)(Args_...)> {
default_tensor_layout, default_tensor_layout,
default_key.dtype(), default_key.dtype(),
arg_type); arg_type);
} else if (arg_type == std::type_index(typeid(const SparseCooTensor&))) {
args_def->AppendInput(default_key.backend(),
default_tensor_layout,
default_key.dtype(),
arg_type);
} else if (arg_type == std::type_index(typeid(
paddle::optional<const SparseCooTensor&>))) {
args_def->AppendInput(default_key.backend(),
default_tensor_layout,
default_key.dtype(),
arg_type);
} else if (arg_type == std::type_index(typeid(const SparseCsrTensor&))) {
args_def->AppendInput(default_key.backend(),
default_tensor_layout,
default_key.dtype(),
arg_type);
} else if (arg_type == std::type_index(typeid(
paddle::optional<const SparseCsrTensor&>))) {
args_def->AppendInput(default_key.backend(),
default_tensor_layout,
default_key.dtype(),
arg_type);
} else if (arg_type == std::type_index(typeid(DenseTensor*))) { } else if (arg_type == std::type_index(typeid(DenseTensor*))) {
args_def->AppendOutput(default_key.backend(), args_def->AppendOutput(default_key.backend(),
default_tensor_layout, default_tensor_layout,
...@@ -114,6 +136,16 @@ struct KernelArgsParseFunctor<Return_ (*)(Args_...)> { ...@@ -114,6 +136,16 @@ struct KernelArgsParseFunctor<Return_ (*)(Args_...)> {
default_tensor_layout, default_tensor_layout,
default_key.dtype(), default_key.dtype(),
arg_type); arg_type);
} else if (arg_type == std::type_index(typeid(SparseCooTensor*))) {
args_def->AppendOutput(default_key.backend(),
default_tensor_layout,
default_key.dtype(),
arg_type);
} else if (arg_type == std::type_index(typeid(SparseCsrTensor*))) {
args_def->AppendOutput(default_key.backend(),
default_tensor_layout,
default_key.dtype(),
arg_type);
} else { } else {
// Attribute deal with // Attribute deal with
// TODO(chenweihang): now here allow any types of attribute, maybe // TODO(chenweihang): now here allow any types of attribute, maybe
......
...@@ -43,7 +43,7 @@ template <class T> ...@@ -43,7 +43,7 @@ template <class T>
class MaxPool { class MaxPool {
public: public:
DEVICE inline T initial() { return static_cast<T>(-FLT_MAX); } DEVICE inline T initial() { return static_cast<T>(-FLT_MAX); }
DEVICE inline void compute(const T& x, T* y) { *y = *y > x ? *y : x; } HOSTDEVICE inline void compute(const T& x, T* y) { *y = *y > x ? *y : x; }
DEVICE inline void finalize(const T& pool_field, T* y) {} DEVICE inline void finalize(const T& pool_field, T* y) {}
}; };
......
...@@ -165,6 +165,26 @@ inline void SubmPreProcess(const Context& dev_ctx, ...@@ -165,6 +165,26 @@ inline void SubmPreProcess(const Context& dev_ctx,
x_grad_ptr); x_grad_ptr);
} }
inline const std::vector<int> PoolResetKernel(
const std::vector<int>& kernel_sizes,
const int in_channels,
const int out_channels) {
std::vector<int> res(kernel_sizes);
res.resize(5);
res[3] = in_channels;
res[4] = out_channels;
return res;
}
inline void PrefixSum(const int* counter, int* offsets, const int n) {
int offset = 0;
for (int i = 0; i < n; i++) {
offsets[i] = offset;
offset += counter[i];
}
offsets[n] = offset;
}
} // namespace sparse } // namespace sparse
} // namespace funcs } // namespace funcs
} // namespace phi } // namespace phi
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/phi/kernels/sparse/sparse_pool_grad_kernel.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/pooling.h"
#include "paddle/phi/kernels/funcs/sparse/convolution.h"
namespace phi {
namespace sparse {
template <typename T, typename Context>
void MaxPoolGradKernel(const Context& dev_ctx,
const SparseCooTensor& x,
const DenseTensor& rulebook,
const SparseCooTensor& out,
const DenseTensor& out_grad,
const std::vector<int>& kernel_sizes,
DenseTensor* x_grad) {
int kernel_size = kernel_sizes[0] * kernel_sizes[1] * kernel_sizes[2];
const int channels = x.dims()[4];
int rulebook_len = rulebook.dims()[1];
const int* rulebook_ptr = rulebook.data<int>();
std::vector<int> offsets(kernel_size + 1), counter(kernel_size, 0);
for (int i = 0; i < rulebook_len; i++) {
counter[rulebook_ptr[i]] += 1;
}
phi::funcs::sparse::PrefixSum(&counter[0], &offsets[0], kernel_size);
const T* in_features_ptr = x.non_zero_elements().data<T>();
const T* out_features_ptr = out.non_zero_elements().data<T>();
const T* out_grad_ptr = out_grad.data<T>();
T* x_grad_ptr = x_grad->data<T>();
memset(x_grad_ptr, 0, sizeof(T) * x_grad->numel());
phi::funcs::MaxPoolGrad<T> grad_functor;
for (int i = 0; i < kernel_size; i++) {
for (int j = 0; j < counter[i]; j++) {
int in_i = rulebook_ptr[rulebook_len + offsets[i] + j];
int out_i = rulebook_ptr[rulebook_len * 2 + offsets[i] + j];
for (int c = 0; c < channels; c++) {
grad_functor.compute(in_features_ptr[in_i * channels + c],
out_features_ptr[out_i * channels + c],
out_grad_ptr[out_i * channels + c],
1,
&x_grad_ptr[in_i * channels + c]);
}
}
}
}
} // namespace sparse
} // namespace phi
PD_REGISTER_KERNEL(sparse_maxpool_grad,
CPU,
ALL_LAYOUT,
phi::sparse::MaxPoolGradKernel,
float,
double) {
kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO);
}
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/phi/kernels/sparse/sparse_pool_kernel.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/tensor_meta.h"
#include "paddle/phi/kernels/funcs/pooling.h"
#include "paddle/phi/kernels/funcs/sparse/convolution.h"
#include "paddle/phi/kernels/sparse/cpu/convolution.h"
namespace phi {
namespace sparse {
/**
* x: (N, D, H, W, C)
* kernel: (D, H, W, C, OC)
* out: (N, D, H, W, OC)
**/
template <typename T, typename Context>
void MaxPoolKernel(const Context& dev_ctx,
const SparseCooTensor& x,
const std::vector<int>& kernel_sizes,
const std::vector<int>& paddings,
const std::vector<int>& dilations,
const std::vector<int>& strides,
SparseCooTensor* out,
DenseTensor* rulebook) {
const auto& x_dims = x.dims();
int kernel_size = kernel_sizes[0] * kernel_sizes[1] * kernel_sizes[2];
const std::vector<int>& real_kernel_sizes =
phi::funcs::sparse::PoolResetKernel(kernel_sizes, x_dims[4], x_dims[4]);
DDim out_dims = {1, 1, 1, 1, 1};
phi::funcs::sparse::GetOutShape(
x_dims, real_kernel_sizes, paddings, dilations, strides, &out_dims);
const int in_channels = real_kernel_sizes[3];
DenseTensorMeta counter_meta(
DataType::INT32, {kernel_size}, DataLayout::NCHW);
DenseTensor counter_per_kernel = phi::Empty(dev_ctx, std::move(counter_meta));
const T* in_features_ptr = x.non_zero_elements().data<T>();
// 1. product rule book
ProductRuleBook<T, Context>(dev_ctx,
x,
real_kernel_sizes,
paddings,
dilations,
strides,
out_dims,
false,
rulebook,
&counter_per_kernel);
UpdateRulebookAndOutIndex<T>(
dev_ctx, x, kernel_size, in_channels, out_dims, rulebook, out);
int rulebook_len = rulebook->dims()[1];
const int* rulebook_ptr = rulebook->data<int>();
const int* counter_ptr = counter_per_kernel.data<int>();
std::vector<int> offsets(kernel_size + 1);
phi::funcs::sparse::PrefixSum(counter_ptr, &offsets[0], kernel_size);
std::vector<bool> out_flags(out->nnz(), false);
// 2. max pool
T* out_features_ptr = out->mutable_non_zero_elements()->data<T>();
phi::funcs::MaxPool<T> max_pool_functor;
for (int i = 0; i < kernel_size; i++) {
for (int j = 0; j < counter_ptr[i]; j++) {
int in_i = rulebook_ptr[rulebook_len + offsets[i] + j];
int out_i = rulebook_ptr[rulebook_len * 2 + offsets[i] + j];
if (!out_flags[out_i]) {
out_flags[out_i] = true;
memcpy(&out_features_ptr[out_i * in_channels],
&in_features_ptr[in_i * in_channels],
in_channels * sizeof(T));
} else {
for (int c = 0; c < in_channels; c++) {
max_pool_functor.compute(in_features_ptr[in_i * in_channels + c],
&out_features_ptr[out_i * in_channels + c]);
}
}
}
}
}
} // namespace sparse
} // namespace phi
PD_REGISTER_KERNEL(sparse_maxpool,
CPU,
ALL_LAYOUT,
phi::sparse::MaxPoolKernel,
float,
double) {
kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO);
}
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/backends/gpu/gpu_info.h"
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/math_function.h"
#include "paddle/phi/kernels/funcs/pooling.h"
#include "paddle/phi/kernels/funcs/sparse/convolution.h"
#include "paddle/phi/kernels/sparse/sparse_pool_grad_kernel.h"
namespace phi {
namespace sparse {
template <typename T>
__global__ void MaxPoolGradCudaKernel(const T* in_features_ptr,
const T* out_features_ptr,
const T* out_grad_ptr,
const int* rulebook_ptr,
const int n,
const int rulebook_len,
const int channels,
T* x_grad_ptr) {
phi::funcs::MaxPoolGrad<T> grad_functor;
CUDA_KERNEL_LOOP_TYPE(i, n * channels, int64_t) {
int real_i = i / channels;
int c = i - real_i * channels;
int in_i = rulebook_ptr[real_i];
int out_i = rulebook_ptr[real_i + rulebook_len];
grad_functor.compute(in_features_ptr[in_i * channels + c],
out_features_ptr[out_i * channels + c],
out_grad_ptr[out_i * channels + c],
1,
&x_grad_ptr[in_i * channels + c]);
}
}
template <typename T, typename Context>
void MaxPoolGradKernel(const Context& dev_ctx,
const SparseCooTensor& x,
const DenseTensor& rulebook,
const SparseCooTensor& out,
const DenseTensor& out_grad,
const std::vector<int>& kernel_sizes,
DenseTensor* x_grad) {
int kernel_size = kernel_sizes[0] * kernel_sizes[1] * kernel_sizes[2];
const int in_channels = x.dims()[4];
int rulebook_len = rulebook.dims()[1];
const int* rulebook_ptr = rulebook.data<int>();
std::vector<int> offsets(kernel_size + 1), counter(kernel_size, 0),
h_counter(kernel_size);
phi::backends::gpu::GpuMemcpyAsync(&h_counter[0],
rulebook_ptr,
rulebook_len * sizeof(int),
#ifdef PADDLE_WITH_HIP
hipMemcpyDeviceToHost,
#else
cudaMemcpyDeviceToHost,
#endif
dev_ctx.stream());
dev_ctx.Wait();
for (int i = 0; i < rulebook_len; i++) {
counter[h_counter[i]] += 1;
}
phi::funcs::sparse::PrefixSum(&counter[0], &offsets[0], kernel_size);
const T* in_features_ptr = x.non_zero_elements().data<T>();
const T* out_features_ptr = out.non_zero_elements().data<T>();
const T* out_grad_ptr = out_grad.data<T>();
T* x_grad_ptr = x_grad->data<T>();
phi::funcs::SetConstant<Context, T> set_zero;
set_zero(dev_ctx, x_grad, static_cast<T>(0.0f));
for (int i = 0; i < kernel_size; i++) {
if (counter[i] <= 0) {
continue;
}
auto config = phi::backends::gpu::GetGpuLaunchConfig1D(
dev_ctx, counter[i] * in_channels, 1);
MaxPoolGradCudaKernel<T><<<config.block_per_grid.x,
config.thread_per_block.x,
0,
dev_ctx.stream()>>>(
in_features_ptr,
out_features_ptr,
out_grad_ptr,
rulebook_ptr + offsets[i] + rulebook_len,
counter[i],
rulebook_len,
in_channels,
x_grad_ptr);
}
}
} // namespace sparse
} // namespace phi
PD_REGISTER_KERNEL(sparse_maxpool_grad,
GPU,
ALL_LAYOUT,
phi::sparse::MaxPoolGradKernel,
float,
double) {
kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO);
}
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/tensor_meta.h"
#include "paddle/phi/kernels/funcs/pooling.h"
#include "paddle/phi/kernels/funcs/sparse/convolution.h"
#include "paddle/phi/kernels/sparse/gpu/convolution.cu.h"
#include "paddle/phi/kernels/sparse/sparse_pool_kernel.h"
namespace phi {
namespace sparse {
template <typename T>
__global__ void MaxPoolCudaKernel(const T* in_features_ptr,
const int* rulebook_ptr,
const int n,
const int rulebook_len,
const int channels,
T* out_features_ptr) {
phi::funcs::MaxPool<T> max_pool_functor;
CUDA_KERNEL_LOOP_TYPE(i, n * channels, int64_t) {
int real_i = i / channels;
int channel_i = i - real_i * channels;
int in_i = rulebook_ptr[real_i];
int out_i = rulebook_ptr[real_i + rulebook_len];
max_pool_functor.compute(in_features_ptr[in_i * channels + channel_i],
&out_features_ptr[out_i * channels + channel_i]);
}
}
/**
* x: (N, D, H, W, C)
* kernel: (D, H, W, C, OC)
* out: (N, D, H, W, OC)
**/
template <typename T, typename Context>
void MaxPoolKernel(const Context& dev_ctx,
const SparseCooTensor& x,
const std::vector<int>& kernel_sizes,
const std::vector<int>& paddings,
const std::vector<int>& dilations,
const std::vector<int>& strides,
SparseCooTensor* out,
DenseTensor* rulebook) {
const auto& x_dims = x.dims();
int kernel_size = kernel_sizes[0] * kernel_sizes[1] * kernel_sizes[2];
const std::vector<int>& real_kernel_sizes =
phi::funcs::sparse::PoolResetKernel(kernel_sizes, x_dims[4], x_dims[4]);
DDim out_dims = {1, 1, 1, 1, 1};
phi::funcs::sparse::GetOutShape(
x_dims, real_kernel_sizes, paddings, dilations, strides, &out_dims);
const int in_channels = real_kernel_sizes[3];
std::vector<int> offsets(kernel_size + 1), counter(kernel_size);
DenseTensorMeta counter_meta(
DataType::INT32, {kernel_size}, DataLayout::NCHW);
DenseTensor counter_per_kernel = phi::Empty(dev_ctx, std::move(counter_meta));
DenseTensor offsets_per_kernel = phi::Empty(dev_ctx, std::move(counter_meta));
DenseTensorMeta index_meta(DataType::INT32, {1}, DataLayout::NCHW);
DenseTensor out_index = phi::Empty(dev_ctx, std::move(index_meta));
DenseTensor unique_key = phi::Empty(dev_ctx, std::move(index_meta));
DenseTensor unique_value = phi::Empty(dev_ctx, std::move(index_meta));
// 1. product rulebook
int rulebook_len = ProductRuleBook<T, Context>(dev_ctx,
x,
real_kernel_sizes,
paddings,
dilations,
strides,
out_dims,
false,
rulebook,
&counter_per_kernel,
&offsets_per_kernel,
&out_index,
&unique_key,
&unique_value,
out,
&counter,
&offsets);
const int* rulebook_ptr = rulebook->data<int>();
T* out_features_ptr = out->mutable_non_zero_elements()->data<T>();
const T* in_features_ptr = x.non_zero_elements().data<T>();
// 2. max pool
#ifdef PADDLE_WITH_HIP
thrust::fill(thrust::hip::par.on(dev_ctx.stream()),
#else
thrust::fill(thrust::cuda::par.on(dev_ctx.stream()),
#endif
out_features_ptr,
out_features_ptr + out->non_zero_elements().numel(),
static_cast<T>(-FLT_MAX));
// TODO(zhangkaihuo) Replacing multiple calls with one kernel may be faster
for (int i = 0; i < kernel_size; i++) {
if (counter[i] <= 0) {
continue;
}
auto config = phi::backends::gpu::GetGpuLaunchConfig1D(
dev_ctx, counter[i] * in_channels, 1);
MaxPoolCudaKernel<T><<<config.block_per_grid.x,
config.thread_per_block.x,
0,
dev_ctx.stream()>>>(
in_features_ptr,
rulebook_ptr + offsets[i] + rulebook_len,
counter[i],
rulebook_len,
in_channels,
out_features_ptr);
}
}
} // namespace sparse
} // namespace phi
PD_REGISTER_KERNEL(sparse_maxpool,
GPU,
ALL_LAYOUT,
phi::sparse::MaxPoolKernel,
float,
double,
phi::dtype::float16) {
kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO);
}
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/kernels/empty_kernel.h"
namespace phi {
namespace sparse {
template <typename T, typename Context>
void MaxPoolGradKernel(const Context& dev_ctx,
const SparseCooTensor& x,
const DenseTensor& rulebook,
const SparseCooTensor& out,
const DenseTensor& out_grad,
const std::vector<int>& kernel_sizes,
DenseTensor* x_grad);
template <typename T, typename Context>
DenseTensor MaxPoolGrad(const Context& dev_ctx,
const SparseCooTensor& x,
const DenseTensor& rulebook,
const SparseCooTensor& out,
const DenseTensor& out_grad,
const std::vector<int>& kernel_sizes) {
DenseTensor x_grad = phi::Empty<Context>(
dev_ctx,
DenseTensorMeta(x.dtype(), x.non_zero_elements().dims(), x.layout()));
MaxPoolGradKernel<T, Context>(
dev_ctx, x, rulebook, out, out_grad, kernel_sizes, &x_grad);
return x_grad;
}
} // namespace sparse
} // namespace phi
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/kernels/empty_kernel.h"
namespace phi {
namespace sparse {
template <typename T, typename Context>
void MaxPoolKernel(const Context& dev_ctx,
const SparseCooTensor& x,
const std::vector<int>& kernel_sizes,
const std::vector<int>& paddings,
const std::vector<int>& dilations,
const std::vector<int>& strides,
SparseCooTensor* out,
DenseTensor* rulebook);
template <typename T, typename Context>
SparseCooTensor MaxPool(const Context& dev_ctx,
const SparseCooTensor& x,
const std::vector<int>& kernel_sizes,
const std::vector<int>& paddings,
const std::vector<int>& dilations,
const std::vector<int>& strides,
DenseTensor* rulebook) {
DenseTensor indices = phi::Empty<Context>(
dev_ctx, DenseTensorMeta(DataType::INT32, {1}, DataLayout::NCHW));
DenseTensor values =
phi::Empty<Context>(dev_ctx, DenseTensorMeta(x.dtype(), {1}, x.layout()));
SparseCooTensor coo(indices, values, x.dims());
MaxPoolKernel<T, Context>(
dev_ctx, x, kernel_sizes, paddings, dilations, strides, &coo, rulebook);
return coo;
}
} // namespace sparse
} // namespace phi
...@@ -14,6 +14,7 @@ cc_test(test_concat_dev_api SRCS test_concat_dev_api.cc DEPS phi phi_api_utils) ...@@ -14,6 +14,7 @@ cc_test(test_concat_dev_api SRCS test_concat_dev_api.cc DEPS phi phi_api_utils)
cc_test(test_split_dev_api SRCS test_split_dev_api.cc DEPS phi phi_api_utils) cc_test(test_split_dev_api SRCS test_split_dev_api.cc DEPS phi phi_api_utils)
cc_test(test_sparse_utils_dev_api SRCS test_sparse_utils_dev_api.cc DEPS phi phi_api_utils) cc_test(test_sparse_utils_dev_api SRCS test_sparse_utils_dev_api.cc DEPS phi phi_api_utils)
cc_test(test_sparse_conv3d_dev_api SRCS test_sparse_conv3d_dev_api.cc DEPS phi phi_api_utils) cc_test(test_sparse_conv3d_dev_api SRCS test_sparse_conv3d_dev_api.cc DEPS phi phi_api_utils)
cc_test(test_sparse_pool_dev_api SRCS test_sparse_pool_dev_api.cc DEPS phi phi_api_utils)
cc_test(test_math_function SRCS test_math_function.cc DEPS math_function) cc_test(test_math_function SRCS test_math_function.cc DEPS math_function)
if(WITH_GPU) if(WITH_GPU)
......
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include <memory>
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/common/place.h"
#include "paddle/phi/kernels/copy_kernel.h"
#include "paddle/phi/kernels/sparse/sparse_pool_grad_kernel.h"
#include "paddle/phi/kernels/sparse/sparse_pool_kernel.h"
#include "paddle/fluid/memory/allocation/allocator_facade.h"
#include "paddle/phi/api/lib/utils/allocator.h"
#include "paddle/phi/core/kernel_registry.h"
namespace phi {
namespace tests {
template <typename T1, typename T2>
std::vector<T2> cast(const std::vector<T1>& in) {
std::vector<T2> out(in.size());
for (uint64_t i = 0; i < in.size(); i++) {
out[i] = static_cast<T2>(in[i]);
}
return out;
}
template <typename T>
void TestMaxPoolBase(const std::vector<int>& indices,
const std::vector<T>& features,
const DDim& x_dims,
const std::vector<int>& correct_out_indices,
const std::vector<T>& correct_out_features,
const DDim& correct_out_dims,
const int non_zero_num,
const std::vector<int>& kernel_sizes,
const std::vector<int>& paddings,
const std::vector<int>& strides,
const std::vector<int>& dilations,
const float diff = 1e-3,
const bool backward = false,
const std::vector<T> features_grad = {}) {
phi::CPUContext dev_ctx_cpu;
dev_ctx_cpu.SetAllocator(
paddle::memory::allocation::AllocatorFacade::Instance()
.GetAllocator(paddle::platform::CPUPlace())
.get());
dev_ctx_cpu.Init();
const int in_channels = x_dims[4];
const int out_channels = in_channels;
DenseTensor indices_tensor = phi::Empty(
dev_ctx_cpu,
DenseTensorMeta(DataType::INT32, {4, non_zero_num}, DataLayout::NCHW));
memcpy(
indices_tensor.data<int>(), indices.data(), indices.size() * sizeof(int));
DenseTensor features_tensor = phi::Empty(
dev_ctx_cpu,
DenseTensorMeta(paddle::experimental::CppTypeToDataType<T>::Type(),
{non_zero_num, in_channels},
DataLayout::NHWC));
memcpy(
features_tensor.data<T>(), features.data(), features.size() * sizeof(T));
SparseCooTensor x_tensor(indices_tensor, features_tensor, x_dims);
auto f_verify = [&](const T* real_data, const std::vector<T>& correct_data) {
for (uint64_t i = 0; i < correct_data.size(); i++) {
float tmp = std::fabs(static_cast<float>(correct_data[i] - real_data[i]));
ASSERT_LT(tmp, diff);
}
};
if (!std::is_same<T, phi::dtype::float16>::value) {
DenseTensor rulebook = phi::Empty(
dev_ctx_cpu, DenseTensorMeta(DataType::INT32, {1}, DataLayout::NCHW));
SparseCooTensor out = sparse::MaxPool<T>(dev_ctx_cpu,
x_tensor,
kernel_sizes,
paddings,
dilations,
strides,
&rulebook);
ASSERT_EQ(correct_out_dims.size(), out.dims().size());
for (int i = 0; i < correct_out_dims.size(); i++) {
ASSERT_EQ(correct_out_dims[i], out.dims()[i]);
}
ASSERT_EQ((int64_t)correct_out_features.size() / out_channels, out.nnz());
int cmp_indices = memcmp(correct_out_indices.data(),
out.non_zero_indices().data<int>(),
correct_out_indices.size() * sizeof(int));
ASSERT_EQ(cmp_indices, 0);
f_verify(out.non_zero_elements().data<T>(), correct_out_features);
if (backward) {
DenseTensor x_grad = sparse::MaxPoolGrad<T>(dev_ctx_cpu,
x_tensor,
rulebook,
out,
out.non_zero_elements(),
kernel_sizes);
f_verify(x_grad.data<T>(), features_grad);
}
}
// test gpu
#if defined(PADDLE_WITH_CUDA)
phi::GPUContext dev_ctx_gpu;
dev_ctx_gpu.PartialInitWithoutAllocator();
dev_ctx_gpu.SetAllocator(
paddle::memory::allocation::AllocatorFacade::Instance()
.GetAllocator(dev_ctx_gpu.GetPlace(), dev_ctx_gpu.stream())
.get());
dev_ctx_gpu.SetHostAllocator(
paddle::memory::allocation::AllocatorFacade::Instance()
.GetAllocator(phi::CPUPlace())
.get());
dev_ctx_gpu.PartialInitWithAllocator();
DenseTensor d_indices_tensor = phi::Empty(
dev_ctx_gpu,
DenseTensorMeta(DataType::INT32, {4, non_zero_num}, DataLayout::NCHW));
phi::Copy(
dev_ctx_gpu, indices_tensor, phi::GPUPlace(), true, &d_indices_tensor);
DenseTensor d_features_tensor = phi::Empty(
dev_ctx_gpu,
DenseTensorMeta(paddle::experimental::CppTypeToDataType<T>::Type(),
{non_zero_num, in_channels},
DataLayout::NHWC));
phi::Copy(
dev_ctx_gpu, features_tensor, phi::GPUPlace(), true, &d_features_tensor);
SparseCooTensor d_x_tensor(d_indices_tensor, d_features_tensor, x_dims);
DenseTensor d_rulebook = phi::Empty(
dev_ctx_gpu, DenseTensorMeta(DataType::INT32, {1}, DataLayout::NCHW));
SparseCooTensor d_out = sparse::MaxPool<T>(dev_ctx_gpu,
d_x_tensor,
kernel_sizes,
paddings,
dilations,
strides,
&d_rulebook);
ASSERT_EQ(correct_out_dims.size(), d_out.dims().size());
ASSERT_EQ((int64_t)correct_out_features.size() / out_channels, d_out.nnz());
for (int i = 0; i < correct_out_dims.size(); i++) {
ASSERT_EQ(correct_out_dims[i], d_out.dims()[i]);
}
DenseTensor h_indices_tensor = phi::Empty(
dev_ctx_cpu,
DenseTensorMeta(DataType::INT32, {4, d_out.nnz()}, DataLayout::NCHW));
phi::Copy(dev_ctx_gpu,
d_out.non_zero_indices(),
phi::CPUPlace(),
true,
&h_indices_tensor);
int cmp_indices2 = memcmp(correct_out_indices.data(),
h_indices_tensor.data<int>(),
correct_out_indices.size() * sizeof(int));
ASSERT_EQ(cmp_indices2, 0);
DenseTensor h_features_tensor = phi::Empty(
dev_ctx_cpu,
DenseTensorMeta(paddle::experimental::CppTypeToDataType<T>::Type(),
{d_out.nnz()},
d_out.layout()));
phi::Copy(dev_ctx_gpu,
d_out.non_zero_elements(),
phi::CPUPlace(),
true,
&h_features_tensor);
f_verify(h_features_tensor.data<T>(), correct_out_features);
if (backward) {
DenseTensor x_grad = sparse::MaxPoolGrad<T>(dev_ctx_gpu,
d_x_tensor,
d_rulebook,
d_out,
d_out.non_zero_elements(),
kernel_sizes);
DenseTensor h_features_grad = phi::Empty(
dev_ctx_cpu,
DenseTensorMeta(x_grad.dtype(), x_grad.dims(), x_grad.layout()));
phi::Copy(dev_ctx_gpu, x_grad, phi::CPUPlace(), true, &h_features_grad);
f_verify(h_features_grad.data<T>(), features_grad);
}
#endif
}
void TestMaxPool(const std::vector<int>& indices,
const std::vector<float>& features,
const DDim& x_dims,
const std::vector<int>& correct_out_indices,
const std::vector<float>& correct_out_features,
const DDim& correct_out_dims,
const int non_zero_num,
const std::vector<int>& kernel_sizes,
const std::vector<int>& paddings,
const std::vector<int>& strides,
const std::vector<int>& dilations,
const float diff = 1e-3,
const bool backward = false,
const std::vector<float> features_grad = {}) {
// test float
TestMaxPoolBase<float>(indices,
features,
x_dims,
correct_out_indices,
correct_out_features,
correct_out_dims,
non_zero_num,
kernel_sizes,
paddings,
strides,
dilations,
diff,
backward,
features_grad);
// test double
TestMaxPoolBase<double>(indices,
cast<float, double>(features),
x_dims,
correct_out_indices,
cast<float, double>(correct_out_features),
correct_out_dims,
non_zero_num,
kernel_sizes,
paddings,
strides,
dilations,
diff,
backward,
cast<float, double>(features_grad));
}
TEST(DEV_API, sparse_maxpool) {
const int channels = 1;
DDim x_dims = {1, 1, 4, 4, channels};
DDim out_dims = {1, 1, 2, 2, channels};
std::vector<int> kernel_sizes = {1, 3, 3};
std::vector<int> paddings = {0, 0, 0};
std::vector<int> strides = {1, 1, 1};
std::vector<int> dilations = {1, 1, 1};
const int non_zero_num = 3;
std::vector<int> indices = {0, 0, 0, 0, 0, 0, 0, 1, 3, 0, 1, 2};
std::vector<float> features = {1, 2, 3};
std::vector<int> out_indices = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1,
};
std::vector<float> out_features = {2, 2, 3, 3};
std::vector<float> x_grad = {0, 4, 6};
TestMaxPool(indices,
features,
x_dims,
out_indices,
out_features,
out_dims,
non_zero_num,
kernel_sizes,
paddings,
strides,
dilations,
1e-6,
true,
x_grad);
}
TEST(DEV_API, sparse_maxpool_stride) {
const int channels = 1;
DDim x_dims = {1, 1, 4, 4, channels};
DDim out_dims = {1, 1, 1, 1, channels};
std::vector<int> kernel_sizes = {1, 3, 3};
std::vector<int> paddings = {0, 0, 0};
std::vector<int> strides = {2, 2, 2};
std::vector<int> dilations = {1, 1, 1};
const int non_zero_num = 3;
std::vector<int> indices = {0, 0, 0, 0, 0, 0, 0, 1, 3, 0, 1, 2};
std::vector<float> features = {1, 2, 3};
std::vector<int> out_indices = {0, 0, 0, 0};
std::vector<float> out_features = {2};
std::vector<float> x_grad = {0, 2, 0};
TestMaxPool(indices,
features,
x_dims,
out_indices,
out_features,
out_dims,
non_zero_num,
kernel_sizes,
paddings,
strides,
dilations,
1e-6,
true,
x_grad);
}
TEST(DEV_API, sparse_maxpool_channel) {
const int channels = 2;
DDim x_dims = {1, 1, 4, 4, channels};
DDim out_dims = {1, 1, 2, 2, channels};
std::vector<int> kernel_sizes = {1, 3, 3};
std::vector<int> paddings = {0, 0, 0};
std::vector<int> strides = {1, 1, 1};
std::vector<int> dilations = {1, 1, 1};
const int non_zero_num = 3;
std::vector<int> indices = {0, 0, 0, 0, 0, 0, 0, 1, 3, 0, 1, 2};
std::vector<float> features = {1, 1, 2, 2, 3, 3};
std::vector<int> out_indices = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1,
};
std::vector<float> out_features = {2, 2, 2, 2, 3, 3, 3, 3};
std::vector<float> x_grad = {0, 0, 4, 4, 6, 6};
TestMaxPool(indices,
features,
x_dims,
out_indices,
out_features,
out_dims,
non_zero_num,
kernel_sizes,
paddings,
strides,
dilations,
1e-6,
true,
x_grad);
}
TEST(DEV_API, sparse_maxpool3d) {
const int channels = 2;
DDim x_dims = {1, 5, 4, 4, channels};
DDim out_dims = {1, 3, 2, 2, channels};
std::vector<int> kernel_sizes = {3, 3, 3};
std::vector<int> paddings = {0, 0, 0};
std::vector<int> strides = {1, 1, 1};
std::vector<int> dilations = {1, 1, 1};
const int non_zero_num = 3;
std::vector<int> indices = {0, 0, 0, 0, 0, 0, 0, 1, 3, 0, 1, 2};
std::vector<float> features = {1, 1, 2, 2, 3, 3};
std::vector<int> out_indices = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1,
};
std::vector<float> out_features = {2, 2, 2, 2, 3, 3, 3, 3};
std::vector<float> x_grad = {0, 0, 4, 4, 6, 6};
TestMaxPool(indices,
features,
x_dims,
out_indices,
out_features,
out_dims,
non_zero_num,
kernel_sizes,
paddings,
strides,
dilations,
1e-6,
true,
x_grad);
}
} // namespace tests
} // namespace phi
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册