Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
e4f39904
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e4f39904
编写于
4月 25, 2017
作者:
H
Helin Wang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update docker install Chinese version
上级
e0a46684
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
86 addition
and
76 deletion
+86
-76
doc/getstarted/build_and_install/docker_install_cn.rst
doc/getstarted/build_and_install/docker_install_cn.rst
+86
-76
未找到文件。
doc/getstarted/build_and_install/docker_install_cn.rst
浏览文件 @
e4f39904
...
...
@@ -7,80 +7,99 @@ PaddlePaddle目前唯一官方支持的运行的方式是Docker容器。因为Do
PaddlePaddle发布的docker镜像使用说明
------------------------------
对于每一个PaddlePaddle版本,我们都会发布两种Docker镜像:开发镜像、运行镜像。运行镜像包括纯CPU版本和GPU版本以及其对应的非AVX版本。
我们会在 `dockerhub.com <https://hub.docker.com/r/paddledev/paddle/>`_ 提供最新的docker镜像,可以在"tags"标签下找到最新的Paddle镜像版本。
我们把PaddlePaddle的编译环境打包成一个镜像,称为开发镜像,里面涵盖了
PaddlePaddle需要的所有编译工具。把编译出来的PaddlePaddle也打包成一个镜
像,称为生产镜像,里面涵盖了PaddlePaddle运行所需的所有环境。每次
PaddlePaddle发布新版本的时候都会发布对应版本的生产镜像以及开发镜像。运
行镜像包括纯CPU版本和GPU版本以及其对应的非AVX版本。我们会在
`dockerhub.com <https://hub.docker.com/r/paddledev/paddle/>`_ 提供最新
的docker镜像,可以在"tags"标签下找到最新的Paddle镜像版本。为了方便在国
内的开发者下载Docker镜像,我们提供了国内的镜像服务器供大家使用。如果您
在国内,请把文档里命令中的paddlepaddle/paddle替换成
docker.paddlepaddle.org/paddle。
1. 开发镜像::code:`paddlepaddle/paddle:<version>-dev`
这个镜像包含了Paddle相关的开发工具以及编译和运行环境。用户可以使用开发镜像代替配置本地环境,完成开发,编译,发布,
文档编写等工作。由于不同的Paddle的版本可能需要不同的依赖和工具,所以如果需要自行配置开发环境需要考虑版本的因素。
开发镜像包含了以下工具:
- gcc/clang
- nvcc
- Python
- sphinx
- woboq
- sshd
很多开发者会使用远程的安装有GPU的服务器工作,用户可以使用ssh登录到这台服务器上并执行 :code:`docker exec`进入开发镜像并开始工作,
也可以在开发镜像中启动一个SSHD服务,方便开发者直接登录到镜像中进行开发:
这个镜像包含了Paddle相关的开发工具以及编译和运行环境。用户可以使用开发镜像代替配置本地环境,完成开发,编译,发布,
文档编写等工作。由于不同的Paddle的版本可能需要不同的依赖和工具,所以如果需要自行配置开发环境需要考虑版本的因素。
开发镜像包含了以下工具:
- gcc/clang
- nvcc
- Python
- sphinx
- woboq
- sshd
很多开发者会使用远程的安装有GPU的服务器工作,用户可以使用ssh登录到这台服务器上并执行 :code:`docker exec`进入开发镜像并开始工作,
也可以在开发镜像中启动一个SSHD服务,方便开发者直接登录到镜像中进行开发:
以交互容器方式运行开发镜像:
.. code-block:: bash
docker run -it --rm paddlepaddle/paddle:<version>-dev /bin/bash
或者,可以以后台进程方式运行容器:
.. code-block:: bash
docker run -d -p 2202:22 -p 8888:8888 paddledev/paddle:<version>-dev
以交互容器方式运行开发镜像
:
然后用密码 :code:`root` SSH进入容器
:
.. code-block:: bash
.. code-block:: bash
docker run -it --rm paddledev/paddle:<version>-dev /bin/bash
ssh -p 2202 root@localhost
或者,可以以后台进程方式运行容器:
SSH方式的一个优点是我们可以从多个终端进入容器。比如,一个终端运行vi,另一个终端运行Python。另一个好处是我们可以把PaddlePaddle容器运行在远程服务器上,并在笔记本上通过SSH与其连接。
.. code-block:: bash
2. 生产镜像:根据CPU、GPU和非AVX区分了如下4个镜像:
docker run -d -p 2202:22 -p 8888:8888 paddledev/paddle:<version>-dev
- GPU/AVX::code:`paddlepaddle/paddle:<version>-gpu`
- GPU/no-AVX::code:`paddlepaddle/paddle:<version>-gpu-noavx`
- CPU/AVX::code:`paddlepaddle/paddle:<version>`
- CPU/no-AVX::code:`paddlepaddle/paddle:<version>-noavx`
然后用密码 :code:`root` SSH进入容器
:
纯CPU镜像以及GPU镜像都会用到AVX指令集,但是2008年之前生产的旧电脑不支持AVX。以下指令能检查Linux电脑是否支持AVX
:
.. code-block:: bash
.. code-block:: bash
ssh -p 2202 root@localhost
if cat /proc/cpuinfo | grep -i avx; then echo Yes; else echo No; fi
SSH方式的一个优点是我们可以从多个终端进入容器。比如,一个终端运行vi,另一个终端运行Python。另一个好处是我们可以把PaddlePaddle容器运行在远程服务器上,并在笔记本上通过SSH与其连接。
如果输出是No,就需要选择使用no-AVX的镜像
2. 运行镜像:根据CPU、GPU和非AVX区分了如下4个镜像:
- GPU/AVX::code:`paddlepaddle/paddle:<version>-gpu`
- GPU/no-AVX::code:`paddlepaddle/paddle:<version>-gpu-noavx`
- CPU/AVX::code:`paddlepaddle/paddle:<version>`
- CPU/no-AVX::code:`paddlepaddle/paddle:<version>-noavx`
以上方法在GPU镜像里也能用,只是请不要忘记提前在物理机上安装GPU最新驱动。
为了保证GPU驱动能够在镜像里面正常运行,我们推荐使用[nvidia-docker](https://github.com/NVIDIA/nvidia-docker)来运行镜像。
纯CPU镜像以及GPU镜像都会用到AVX指令集,但是2008年之前生产的旧电脑不支持AVX。以下指令能检查Linux电脑是否支持AVX:
.. code-block:: bash
.. code-block::
bash
nvidia-docker run -it --rm paddledev/paddle:0.10.0rc1-gpu /bin/
bash
if cat /proc/cpuinfo | grep -i avx; then echo Yes; else echo No; fi
注意: 如果使用nvidia-docker存在问题,你也许可以尝试更老的方法,具体如下,但是我们并不推荐这种方法。:
如果输出是No,就需要选择使用no-AVX的镜像
.. code-block:: bash
以上方法在GPU镜像里也能用,只是请不要忘记提前在物理机上安装GPU最新驱动。
为了保证GPU驱动能够在镜像里面正常运行,我们推荐使用[nvidia-docker](https://github.com/NVIDIA/nvidia-docker)来运行镜像。
export CUDA_SO="$(\ls /usr/lib64/libcuda* | xargs -I{} echo '-v {}:{}') $(\ls /usr/lib64/libnvidia* | xargs -I{} echo '-v {}:{}')"
export DEVICES=$(\ls /dev/nvidia* | xargs -I{} echo '--device {}:{}')
docker run ${CUDA_SO} ${DEVICES} -it paddledev/paddle:<version>-gpu
.. code-block:: bash
3. 运行以及发布您的AI程序
nvidia-docker run -it --rm paddledev/paddle:0.10.0rc1-gpu /bin/bash
假设您已经完成了一个AI训练的python程序 :code:`a.py`,这个程序是您在开发机上使用开发镜像完成开发。此时您可以运行这个命令在开发机上进行测试运行:
注意: 如果使用nvidia-docker存在问题,你也许可以尝试更老的方法,具体如下,但是我们并不推荐这种方法。:
.. code-block:: bash
.. code-block:: bash
docker run -it -v $PWD:/work paddle /work/a.py
export CUDA_SO="$(\ls /usr/lib64/libcuda* | xargs -I{} echo '-v {}:{}') $(\ls /usr/lib64/libnvidia* | xargs -I{} echo '-v {}:{}')"
export DEVICES=$(\ls /dev/nvidia* | xargs -I{} echo '--device {}:{}')
docker run ${CUDA_SO} ${DEVICES} -it paddledev/paddle:<version>-gpu
如果要使用GPU,请运行:
3. 使用运行镜像发布你的AI程序
假设您已经完成了一个AI训练的python程序 :code:`a.py`,这个程序是您在开发机上使用开发镜像完成开发。此时您可以运行这个命令在开发机上进行测试运行:
.. code-block:: bash
.. code-block:: bash
nvidia-docker run -it -v $PWD:/work paddle /work/a.py
docker run -it -v $PWD:/work paddle /work/a.py
这里`a.py`包含的所有依赖假设都可以在Paddle的运行容器中。如果需要包含更多的依赖、或者需要发布您的应用的镜像,可以编写`Dockerfile`使用`FROM paddledev/paddle:<version>`
创建和发布自己的AI程序镜像。
这里`a.py`包含的所有依赖假设都可以在Paddle的运行容器中。如果需要包含更多的依赖、或者需要发布您的应用的镜像,可以编写`Dockerfile`使用`FROM paddledev/paddle:<version>`
创建和发布自己的AI程序镜像。
运行PaddlePaddle书籍
---------------------
...
...
@@ -109,53 +128,44 @@ PaddlePaddle书籍是为用户和开发者制作的一个交互式的Jupyter Nod
开发人员可以在Docker开发镜像中开发PaddlePaddle。这样开发人员可以以一致的方式在不同的平台上工作 - Linux,Mac OS X和Windows。
1.
构建
开发镜像
1.
制作PaddlePaddle
开发镜像
.. code-block:: bash
PaddlePaddle每次发布新版本都会发布对应的开发镜像供开发者直接使用。这里介绍如生成造这个开发镜像。
生成Docker镜像的方式有两个,一个是直接把一个容器转换成镜像,另一个是创建Dockerfile并运行docker build指令按照Dockerfile生成镜像。第一个方法的好处是简单快捷,适合自己实验,可以快速迭代。第二个方法的好处是Dockerfile可以把整个生成流程描述很清楚,其他人很容易看懂镜像生成过程,持续集成系统也可以简单地复现这个过程。我们采用第二个方法。Dockerfile位于PaddlePaddle repo的根目录。生成生产镜像只需要运行:
git clone --recursive https://github.com/PaddlePaddle/Paddle
.. code-block:: bash
git clone https://github.com/PaddlePaddle/Paddle.git
cd Paddle
docker build -t paddle:dev .
docker build这个命令的-t指定了生成的镜像的名字,这里我们用paddle:dev。到此,PaddlePaddle开发镜像就被构建完毕了。
请注意,默认情况下,:code:`docker build` 不会将源码导入到镜像中并编译它。如果我们想这样做,需要构建完开发镜像,然后执行:
.. code-block:: bash
docker run -v $PWD:/paddle -e "WITH_GPU=OFF" -e "WITH_AVX=ON" -e "TEST=OFF" paddle:dev
2. 运行开发环境
2. 制作PaddlePaddle生产镜像
当我们编译好了 :code:`paddle:dev`, 我们可以在docker容器里做开发,源代码可以通过挂载本地文件来被载入Docker的开发环境里面
:
生产镜像的生成分为两步,第一步是运行
:
.. code-block:: bash
docker run -v $(pwd):/paddle -e "WITH_GPU=OFF" -e "WITH_AVX=OFF" -e "WITH_TEST=ON" paddle:dev
docker run -d -p 2202:22 -v $PWD:/paddle paddle:dev sshd
以上命令会编译PaddlePaddle,生成运行程序,以及生成创建生产镜像的Dockerfile。所有生成的的文件都在build目录下。“WITH_GPU”控制生成的生产镜像是否支持GPU,“WITH_AVX”控制生成的生产镜像是否支持AVX,”WITH_TEST“控制是否生成单元测试。
以上代码会启动一个带有PaddlePaddle开发环境的docker容器,源代码会被挂载到 :code:`/paddle` 。
以上的 :code:`docker run` 命令其实会启动一个在2202端口监听的SSHD服务器。这样,我们就能SSH进入我们的开发容器了:
第二步是运行:
.. code-block:: bash
docker build -t paddle:prod -f build/Dockerfile .
ssh root@localhost -p 2202
以上命令会按照生成的Dockerfile把生成的程序拷贝到生产镜像中并做相应的配置,最终生成名为paddle:prod的生产镜像。
3.
在Docker开发环境中编译与安装PaddlPaddle代码
3.
运行单元测试
当在容器里面的时候,可以用脚本 :code:`paddle/scripts/docker/build.sh` 来编译、安装与测试PaddlePaddle
:
运行以下指令
:
.. code-block:: bash
/paddle/paddle/scripts/docker/build.sh
以上指令会在 :code:`/paddle/build` 中编译PaddlePaddle。通过以下指令可以运行单元测试:
.. code-block:: bash
cd /paddle/build
ctest
docker run -it -v $(pwd):/paddle paddle:dev bash -c "cd /paddle/build && ctest"
文档
----
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录