Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
e3296559
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
e3296559
编写于
4月 18, 2017
作者:
Q
QI JUN
提交者:
GitHub
4月 18, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #1719 from QiJune/feature/add_v2_api_doc
Add more docs for paddle v2 api
上级
7384966f
398d50dd
变更
17
隐藏空白更改
内联
并排
Showing
17 changed file
with
419 addition
and
40 deletion
+419
-40
doc/api/v2/config/optimizer.rst
doc/api/v2/config/optimizer.rst
+0
-2
doc/api/v2/data.rst
doc/api/v2/data.rst
+11
-6
doc/api/v2/run_logic.rst
doc/api/v2/run_logic.rst
+4
-0
python/paddle/v2/data_feeder.py
python/paddle/v2/data_feeder.py
+1
-1
python/paddle/v2/dataset/cifar.py
python/paddle/v2/dataset/cifar.py
+49
-2
python/paddle/v2/dataset/conll05.py
python/paddle/v2/dataset/conll05.py
+25
-8
python/paddle/v2/dataset/imdb.py
python/paddle/v2/dataset/imdb.py
+41
-3
python/paddle/v2/dataset/imikolov.py
python/paddle/v2/dataset/imikolov.py
+34
-2
python/paddle/v2/dataset/mnist.py
python/paddle/v2/dataset/mnist.py
+3
-3
python/paddle/v2/dataset/movielens.py
python/paddle/v2/dataset/movielens.py
+41
-1
python/paddle/v2/dataset/sentiment.py
python/paddle/v2/dataset/sentiment.py
+1
-1
python/paddle/v2/dataset/uci_housing.py
python/paddle/v2/dataset/uci_housing.py
+21
-1
python/paddle/v2/dataset/wmt14.py
python/paddle/v2/dataset/wmt14.py
+26
-1
python/paddle/v2/event.py
python/paddle/v2/event.py
+2
-3
python/paddle/v2/inference.py
python/paddle/v2/inference.py
+11
-0
python/paddle/v2/optimizer.py
python/paddle/v2/optimizer.py
+131
-0
python/paddle/v2/trainer.py
python/paddle/v2/trainer.py
+18
-6
未找到文件。
doc/api/v2/config/optimizer.rst
浏览文件 @
e3296559
.. _api_v2.optimizer:
==========
Optimizer
==========
...
...
doc/api/v2/data.rst
浏览文件 @
e3296559
========
Data
s
ets
========
========
==========================
Data
Reader Interface and DataS
ets
========
==========================
DataTypes
...
...
@@ -49,7 +49,6 @@ mnist
:members:
:noindex:
cifar
+++++
...
...
@@ -61,7 +60,7 @@ conll05
+++++++
.. automodule:: paddle.v2.dataset.conll05
:members:
:members:
get_dict,get_embedding,test
:noindex:
imdb
...
...
@@ -85,6 +84,12 @@ movielens
:members:
:noindex:
.. autoclass:: paddle.v2.dataset.movielens.MovieInfo
:noindex:
.. autoclass:: paddle.v2.dataset.movielens.UserInfo
:noindex:
sentiment
+++++++++
...
...
@@ -102,7 +107,7 @@ uci_housing
wmt14
+++++
.. automodule:: paddle.v2.dataset.
uci_housing
.. automodule:: paddle.v2.dataset.
wmt14
:members:
:noindex:
doc/api/v2/run_logic.rst
浏览文件 @
e3296559
...
...
@@ -6,18 +6,21 @@ Parameters
==========
.. automodule:: paddle.v2.parameters
:members: Parameters
:noindex:
Trainer
=======
.. automodule:: paddle.v2.trainer
:members: SGD
:noindex:
Event
=====
.. automodule:: paddle.v2.event
:members:
:noindex:
Inference
...
...
@@ -25,3 +28,4 @@ Inference
.. autofunction:: paddle.v2.infer
:noindex:
\ No newline at end of file
python/paddle/v2/data_feeder.py
浏览文件 @
e3296559
...
...
@@ -67,7 +67,7 @@ class DataFeeder(DataProviderConverter):
# [ [1.0,2.0,3.0,4.0], 5, [6,7,8] ], # first sample
# [ [1.0,2.0,3.0,4.0], 5, [6,7,8] ] # second sample
# ]
arg = feeder(minibatch_data)
arg = feeder
.convert
(minibatch_data)
.. note::
...
...
python/paddle/v2/dataset/cifar.py
浏览文件 @
e3296559
...
...
@@ -12,9 +12,20 @@
# See the License for the specific language governing permissions and
# limitations under the License.
"""
CIFAR dataset: https://www.cs.toronto.edu/~kriz/cifar.html
CIFAR dataset.
This module will download dataset from
https://www.cs.toronto.edu/~kriz/cifar.html and parse train/test set into
paddle reader creators.
The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes,
with 6000 images per class. There are 50000 training images and 10000 test
images.
The CIFAR-100 dataset is just like the CIFAR-10, except it has 100 classes
containing 600 images each. There are 500 training images and 100 testing
images per class.
TODO(yuyang18): Complete the comments.
"""
import
cPickle
...
...
@@ -54,20 +65,56 @@ def reader_creator(filename, sub_name):
def
train100
():
"""
CIFAR-100 training set creator.
It returns a reader creator, each sample in the reader is image pixels in
[0, 1] and label in [0, 99].
:return: Training reader creator
:rtype: callable
"""
return
reader_creator
(
download
(
CIFAR100_URL
,
'cifar'
,
CIFAR100_MD5
),
'train'
)
def
test100
():
"""
CIFAR-100 test set cretor.
It returns a reader creator, each sample in the reader is image pixels in
[0, 1] and label in [0, 9].
:return: Test reader creator.
:rtype: callable
"""
return
reader_creator
(
download
(
CIFAR100_URL
,
'cifar'
,
CIFAR100_MD5
),
'test'
)
def
train10
():
"""
CIFAR-10 training set creator.
It returns a reader creator, each sample in the reader is image pixels in
[0, 1] and label in [0, 9].
:return: Training reader creator
:rtype: callable
"""
return
reader_creator
(
download
(
CIFAR10_URL
,
'cifar'
,
CIFAR10_MD5
),
'data_batch'
)
def
test10
():
"""
CIFAR-10 test set cretor.
It returns a reader creator, each sample in the reader is image pixels in
[0, 1] and label in [0, 9].
:return: Test reader creator.
:rtype: callable
"""
return
reader_creator
(
download
(
CIFAR10_URL
,
'cifar'
,
CIFAR10_MD5
),
'test_batch'
)
...
...
python/paddle/v2/dataset/conll05.py
浏览文件 @
e3296559
...
...
@@ -11,19 +11,19 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Conll05 dataset.
Paddle semantic role labeling Book and demo use this dataset as an example.
Because Conll05 is not free in public, the default downloaded URL is test set
of Conll05 (which is public). Users can change URL and MD5 to their Conll
dataset. And a pre-trained word vector model based on Wikipedia corpus is used
to initialize SRL model.
"""
import
tarfile
import
gzip
import
itertools
from
common
import
download
"""
Conll 2005 dataset. Paddle semantic role labeling Book and demo use this
dataset as an example. Because Conll 2005 is not free in public, the default
downloaded URL is test set of Conll 2005 (which is public). Users can change
URL and MD5 to their Conll dataset.
TODO(yuyang18): Complete comments.
"""
__all__
=
[
'test, get_dict'
,
'get_embedding'
]
...
...
@@ -179,6 +179,9 @@ def reader_creator(corpus_reader,
def
get_dict
():
"""
Get the word, verb and label dictionary of Wikipedia corpus.
"""
word_dict
=
load_dict
(
download
(
WORDDICT_URL
,
'conll05st'
,
WORDDICT_MD5
))
verb_dict
=
load_dict
(
download
(
VERBDICT_URL
,
'conll05st'
,
VERBDICT_MD5
))
label_dict
=
load_dict
(
download
(
TRGDICT_URL
,
'conll05st'
,
TRGDICT_MD5
))
...
...
@@ -186,10 +189,24 @@ def get_dict():
def
get_embedding
():
"""
Get the trained word vector based on Wikipedia corpus.
"""
return
download
(
EMB_URL
,
'conll05st'
,
EMB_MD5
)
def
test
():
"""
Conll05 test set creator.
Because the training dataset is not free, the test dataset is used for
training. It returns a reader creator, each sample in the reader is nine
features, including sentence sequence, predicate, predicate context,
predicate context flag and tagged sequence.
:return: Training reader creator
:rtype: callable
"""
word_dict
,
verb_dict
,
label_dict
=
get_dict
()
reader
=
corpus_reader
(
download
(
DATA_URL
,
'conll05st'
,
DATA_MD5
),
...
...
python/paddle/v2/dataset/imdb.py
浏览文件 @
e3296559
...
...
@@ -12,9 +12,12 @@
# See the License for the specific language governing permissions and
# limitations under the License.
"""
IMDB dataset
: http://ai.stanford.edu/%7Eamaas/data/sentiment/aclImdb_v1.tar.gz
IMDB dataset
.
TODO(yuyang18): Complete comments.
This module downloads IMDB dataset from
http://ai.stanford.edu/%7Eamaas/data/sentiment/. This dataset contains a set
of 25,000 highly polar movie reviews for training, and 25,000 for testing.
Besides, this module also provides API for building dictionary.
"""
import
paddle.v2.dataset.common
...
...
@@ -31,8 +34,11 @@ URL = 'http://ai.stanford.edu/%7Eamaas/data/sentiment/aclImdb_v1.tar.gz'
MD5
=
'7c2ac02c03563afcf9b574c7e56c153a'
# Read files that match pattern. Tokenize and yield each file.
def
tokenize
(
pattern
):
"""
Read files that match the given pattern. Tokenize and yield each file.
"""
with
tarfile
.
open
(
paddle
.
v2
.
dataset
.
common
.
download
(
URL
,
'imdb'
,
MD5
))
as
tarf
:
# Note that we should use tarfile.next(), which does
...
...
@@ -49,6 +55,10 @@ def tokenize(pattern):
def
build_dict
(
pattern
,
cutoff
):
"""
Build a word dictionary from the corpus. Keys of the dictionary are words,
and values are zero-based IDs of these words.
"""
word_freq
=
collections
.
defaultdict
(
int
)
for
doc
in
tokenize
(
pattern
):
for
word
in
doc
:
...
...
@@ -110,18 +120,46 @@ def reader_creator(pos_pattern, neg_pattern, word_idx, buffer_size):
def
train
(
word_idx
):
"""
IMDB training set creator.
It returns a reader creator, each sample in the reader is an zero-based ID
sequence and label in [0, 1].
:param word_idx: word dictionary
:type word_idx: dict
:return: Training reader creator
:rtype: callable
"""
return
reader_creator
(
re
.
compile
(
"aclImdb/train/pos/.*\.txt$"
),
re
.
compile
(
"aclImdb/train/neg/.*\.txt$"
),
word_idx
,
1000
)
def
test
(
word_idx
):
"""
IMDB test set creator.
It returns a reader creator, each sample in the reader is an zero-based ID
sequence and label in [0, 1].
:param word_idx: word dictionary
:type word_idx: dict
:return: Test reader creator
:rtype: callable
"""
return
reader_creator
(
re
.
compile
(
"aclImdb/test/pos/.*\.txt$"
),
re
.
compile
(
"aclImdb/test/neg/.*\.txt$"
),
word_idx
,
1000
)
def
word_dict
():
"""
Build a word dictionary from the corpus.
:return: Word dictionary
:rtype: dict
"""
return
build_dict
(
re
.
compile
(
"aclImdb/((train)|(test))/((pos)|(neg))/.*\.txt$"
),
150
)
...
...
python/paddle/v2/dataset/imikolov.py
浏览文件 @
e3296559
...
...
@@ -12,9 +12,11 @@
# See the License for the specific language governing permissions and
# limitations under the License.
"""
imikolov's simple dataset
: http://www.fit.vutbr.cz/~imikolov/rnnlm/
imikolov's simple dataset
.
Complete comments.
This module will download dataset from
http://www.fit.vutbr.cz/~imikolov/rnnlm/ and parse training set and test set
into paddle reader creators.
"""
import
paddle.v2.dataset.common
import
collections
...
...
@@ -40,6 +42,10 @@ def word_count(f, word_freq=None):
def
build_dict
():
"""
Build a word dictionary from the corpus, Keys of the dictionary are words,
and values are zero-based IDs of these words.
"""
train_filename
=
'./simple-examples/data/ptb.train.txt'
test_filename
=
'./simple-examples/data/ptb.valid.txt'
with
tarfile
.
open
(
...
...
@@ -84,10 +90,36 @@ def reader_creator(filename, word_idx, n):
def
train
(
word_idx
,
n
):
"""
imikolov training set creator.
It returns a reader creator, each sample in the reader is a word ID
tuple.
:param word_idx: word dictionary
:type word_idx: dict
:param n: sliding window size
:type n: int
:return: Training reader creator
:rtype: callable
"""
return
reader_creator
(
'./simple-examples/data/ptb.train.txt'
,
word_idx
,
n
)
def
test
(
word_idx
,
n
):
"""
imikolov test set creator.
It returns a reader creator, each sample in the reader is a word ID
tuple.
:param word_idx: word dictionary
:type word_idx: dict
:param n: sliding window size
:type n: int
:return: Test reader creator
:rtype: callable
"""
return
reader_creator
(
'./simple-examples/data/ptb.valid.txt'
,
word_idx
,
n
)
...
...
python/paddle/v2/dataset/mnist.py
浏览文件 @
e3296559
...
...
@@ -15,7 +15,7 @@
MNIST dataset.
This module will download dataset from http://yann.lecun.com/exdb/mnist/ and
parse train set and test set into paddle reader creators.
parse train
ing
set and test set into paddle reader creators.
"""
import
paddle.v2.dataset.common
import
subprocess
...
...
@@ -76,12 +76,12 @@ def reader_creator(image_filename, label_filename, buffer_size):
def
train
():
"""
MNIST train set creator.
MNIST train
ing
set creator.
It returns a reader creator, each sample in the reader is image pixels in
[0, 1] and label in [0, 9].
:return: Train reader creator
:return: Train
ing
reader creator
:rtype: callable
"""
return
reader_creator
(
...
...
python/paddle/v2/dataset/movielens.py
浏览文件 @
e3296559
...
...
@@ -14,7 +14,12 @@
"""
Movielens 1-M dataset.
TODO(yuyang18): Complete comments.
Movielens 1-M dataset contains 1 million ratings from 6000 users on 4000
movies, which was collected by GroupLens Research. This module will download
Movielens 1-M dataset from
http://files.grouplens.org/datasets/movielens/ml-1m.zip and parse training
set and test set into paddle reader creators.
"""
import
zipfile
...
...
@@ -35,12 +40,19 @@ MD5 = 'c4d9eecfca2ab87c1945afe126590906'
class
MovieInfo
(
object
):
"""
Movie id, title and categories information are stored in MovieInfo.
"""
def
__init__
(
self
,
index
,
categories
,
title
):
self
.
index
=
int
(
index
)
self
.
categories
=
categories
self
.
title
=
title
def
value
(
self
):
"""
Get information from a movie.
"""
return
[
self
.
index
,
[
CATEGORIES_DICT
[
c
]
for
c
in
self
.
categories
],
[
MOVIE_TITLE_DICT
[
w
.
lower
()]
for
w
in
self
.
title
.
split
()]
...
...
@@ -55,6 +67,10 @@ class MovieInfo(object):
class
UserInfo
(
object
):
"""
User id, gender, age, and job information are stored in UserInfo.
"""
def
__init__
(
self
,
index
,
gender
,
age
,
job_id
):
self
.
index
=
int
(
index
)
self
.
is_male
=
gender
==
'M'
...
...
@@ -62,6 +78,9 @@ class UserInfo(object):
self
.
job_id
=
int
(
job_id
)
def
value
(
self
):
"""
Get information from a user.
"""
return
[
self
.
index
,
0
if
self
.
is_male
else
1
,
self
.
age
,
self
.
job_id
]
def
__str__
(
self
):
...
...
@@ -148,6 +167,9 @@ test = functools.partial(__reader_creator__, is_test=True)
def
get_movie_title_dict
():
"""
Get movie title dictionary.
"""
__initialize_meta_info__
()
return
MOVIE_TITLE_DICT
...
...
@@ -160,11 +182,17 @@ def __max_index_info__(a, b):
def
max_movie_id
():
"""
Get the maximum value of movie id.
"""
__initialize_meta_info__
()
return
reduce
(
__max_index_info__
,
MOVIE_INFO
.
viewvalues
()).
index
def
max_user_id
():
"""
Get the maximum value of user id.
"""
__initialize_meta_info__
()
return
reduce
(
__max_index_info__
,
USER_INFO
.
viewvalues
()).
index
...
...
@@ -177,21 +205,33 @@ def __max_job_id_impl__(a, b):
def
max_job_id
():
"""
Get the maximum value of job id.
"""
__initialize_meta_info__
()
return
reduce
(
__max_job_id_impl__
,
USER_INFO
.
viewvalues
()).
job_id
def
movie_categories
():
"""
Get movie categoriges dictionary.
"""
__initialize_meta_info__
()
return
CATEGORIES_DICT
def
user_info
():
"""
Get user info dictionary.
"""
__initialize_meta_info__
()
return
USER_INFO
def
movie_info
():
"""
Get movie info dictionary.
"""
__initialize_meta_info__
()
return
MOVIE_INFO
...
...
python/paddle/v2/dataset/sentiment.py
浏览文件 @
e3296559
...
...
@@ -113,7 +113,7 @@ def reader_creator(data):
def
train
():
"""
Default train set reader creator
Default train
ing
set reader creator
"""
data_set
=
load_sentiment_data
()
return
reader_creator
(
data_set
[
0
:
NUM_TRAINING_INSTANCES
])
...
...
python/paddle/v2/dataset/uci_housing.py
浏览文件 @
e3296559
...
...
@@ -14,7 +14,9 @@
"""
UCI Housing dataset.
TODO(yuyang18): Complete comments.
This module will download dataset from
https://archive.ics.uci.edu/ml/machine-learning-databases/housing/ and
parse training set and test set into paddle reader creators.
"""
import
numpy
as
np
...
...
@@ -70,6 +72,15 @@ def load_data(filename, feature_num=14, ratio=0.8):
def
train
():
"""
UCI_HOUSING training set creator.
It returns a reader creator, each sample in the reader is features after
normalization and price number.
:return: Training reader creator
:rtype: callable
"""
global
UCI_TRAIN_DATA
load_data
(
download
(
URL
,
'uci_housing'
,
MD5
))
...
...
@@ -81,6 +92,15 @@ def train():
def
test
():
"""
UCI_HOUSING test set creator.
It returns a reader creator, each sample in the reader is features after
normalization and price number.
:return: Test reader creator
:rtype: callable
"""
global
UCI_TEST_DATA
load_data
(
download
(
URL
,
'uci_housing'
,
MD5
))
...
...
python/paddle/v2/dataset/wmt14.py
浏览文件 @
e3296559
...
...
@@ -12,7 +12,12 @@
# See the License for the specific language governing permissions and
# limitations under the License.
"""
wmt14 dataset
WMT14 dataset.
The original WMT14 dataset is too large and a small set of data for set is
provided. This module will download dataset from
http://paddlepaddle.cdn.bcebos.com/demo/wmt_shrinked_data/wmt14.tgz and
parse training set and test set into paddle reader creators.
"""
import
tarfile
import
gzip
...
...
@@ -99,11 +104,31 @@ def reader_creator(tar_file, file_name, dict_size):
def
train
(
dict_size
):
"""
WMT14 training set creator.
It returns a reader creator, each sample in the reader is source language
word ID sequence, target language word ID sequence and next word ID
sequence.
:return: Training reader creator
:rtype: callable
"""
return
reader_creator
(
download
(
URL_TRAIN
,
'wmt14'
,
MD5_TRAIN
),
'train/train'
,
dict_size
)
def
test
(
dict_size
):
"""
WMT14 test set creator.
It returns a reader creator, each sample in the reader is source language
word ID sequence, target language word ID sequence and next word ID
sequence.
:return: Test reader creator
:rtype: callable
"""
return
reader_creator
(
download
(
URL_TRAIN
,
'wmt14'
,
MD5_TRAIN
),
'test/test'
,
dict_size
)
...
...
python/paddle/v2/event.py
浏览文件 @
e3296559
"""
All
training events.
Testing and
training events.
There are:
* TestResult
* BeginIteration
* EndIteration
* BeginPass
* EndPass
TODO(yuyang18): Complete it!
"""
import
py_paddle.swig_paddle
as
api
...
...
python/paddle/v2/inference.py
浏览文件 @
e3296559
...
...
@@ -9,6 +9,17 @@ __all__ = ['infer']
class
Inference
(
object
):
"""
Inference combines neural network output and parameters together
to do inference.
:param outptut_layer: The neural network that should be inferenced.
:type output_layer: paddle.v2.config_base.Layer or the sequence
of paddle.v2.config_base.Layer
:param parameters: The parameters dictionary.
:type parameters: paddle.v2.parameters.Parameters
"""
def
__init__
(
self
,
output_layer
,
parameters
):
topo
=
topology
.
Topology
(
output_layer
)
gm
=
api
.
GradientMachine
.
createFromConfigProto
(
...
...
python/paddle/v2/optimizer.py
浏览文件 @
e3296559
...
...
@@ -47,6 +47,35 @@ class Optimizer(object):
class
Momentum
(
Optimizer
):
"""
SGD Optimizer.
SGD is an optimization method, trying to find a neural network that
minimize the "cost/error" of it by iteration. In paddle's implementation
SGD Optimizer is synchronized, which means all gradients will be wait to
calculate and reduced into one gradient, then do optimize operation.
The neural network consider the learning problem of minimizing an objective
function, that has the form of a sum
.. math::
Q(w) =
\\
sum_{i}^{n} Q_i(w)
The value of function Q sometimes is the cost of neural network (Mean
Square Error between prediction and label for example). The function Q is
parametrised by w, the weight/bias of neural network. And weights is what to
be learned. The i is the i-th observation in (trainning) data.
So, the SGD method will optimize the weight by
.. math::
w = w -
\\
eta
\\
nabla Q(w) = w -
\\
eta
\\
sum_{i}^{n}
\\
nabla Q_i(w)
where :math:`
\\
eta` is learning rate. And :math:`n` is batch size.
"""
def
__init__
(
self
,
momentum
=
None
,
sparse
=
False
,
**
kwargs
):
learning_method
=
v1_optimizers
.
MomentumOptimizer
(
momentum
=
momentum
,
sparse
=
sparse
)
...
...
@@ -55,6 +84,26 @@ class Momentum(Optimizer):
class
Adam
(
Optimizer
):
"""
Adam optimizer.
The details of please refer `Adam: A Method for Stochastic Optimization
<https://arxiv.org/abs/1412.6980>`_
.. math::
m(w, t) & =
\\
beta_1 m(w, t-1) + (1 -
\\
beta_1)
\\
nabla Q_i(w)
\\\\
v(w, t) & =
\\
beta_2 v(w, t-1) + (1 -
\\
beta_2)(
\\
nabla Q_i(w)) ^2
\\\\
w & = w -
\\
frac{
\\
eta}{
\\
sqrt{v(w,t) +
\\
epsilon}}
:param beta1: the :math:`
\\
beta_1` in equation.
:type beta1: float
:param beta2: the :math:`
\\
beta_2` in equation.
:type beta2: float
:param epsilon: the :math:`
\\
epsilon` in equation. It is used to prevent
divided by zero.
:type epsilon: float
"""
def
__init__
(
self
,
beta1
=
0.9
,
beta2
=
0.999
,
epsilon
=
1e-8
,
**
kwargs
):
learning_method
=
v1_optimizers
.
AdamOptimizer
(
beta1
=
beta1
,
beta2
=
beta2
,
epsilon
=
epsilon
)
...
...
@@ -62,6 +111,24 @@ class Adam(Optimizer):
class
Adamax
(
Optimizer
):
"""
Adamax optimizer.
The details of please refer this `Adam: A Method for Stochastic Optimization
<https://arxiv.org/abs/1412.6980>`_
.. math::
m_t & =
\\
beta_1 * m_{t-1} + (1-
\\
beta_1)*
\\
nabla Q_i(w)
\\\\
u_t & = max(
\\
beta_2*u_{t-1}, abs(
\\
nabla Q_i(w)))
\\\\
w_t & = w_{t-1} - (
\\
eta/(1-
\\
beta_1^t))*m_t/u_t
:param beta1: the :math:`
\\
beta_1` in the equation.
:type beta1: float
:param beta2: the :math:`
\\
beta_2` in the equation.
:type beta2: float
"""
def
__init__
(
self
,
beta1
=
0.9
,
beta2
=
0.999
,
**
kwargs
):
learning_method
=
v1_optimizers
.
AdamaxOptimizer
(
beta1
=
beta1
,
beta2
=
beta2
)
...
...
@@ -69,12 +136,40 @@ class Adamax(Optimizer):
class
AdaGrad
(
Optimizer
):
"""
Adagrad(for ADAptive GRAdient algorithm) optimizer.
For details please refer this `Adaptive Subgradient Methods for
Online Learning and Stochastic Optimization
<http://www.magicbroom.info/Papers/DuchiHaSi10.pdf>`_.
.. math::
G &=
\\
sum_{
\\
tau=1}^{t} g_{
\\
tau} g_{
\\
tau}^T
\\\\
w & = w -
\\
eta diag(G)^{-
\\
frac{1}{2}}
\\
circ g
"""
def
__init__
(
self
,
**
kwargs
):
learning_method
=
v1_optimizers
.
AdaGradOptimizer
()
super
(
AdaGrad
,
self
).
__init__
(
learning_method
=
learning_method
,
**
kwargs
)
class
DecayedAdaGrad
(
Optimizer
):
"""
AdaGrad method with decayed sum gradients. The equations of this method
show as follow.
.. math::
E(g_t^2) &=
\\
rho * E(g_{t-1}^2) + (1-
\\
rho) * g^2
\\\\
learning
\\
_rate &= 1/sqrt( ( E(g_t^2) +
\\
epsilon )
:param rho: The :math:`
\\
rho` parameter in that equation
:type rho: float
:param epsilon: The :math:`
\\
epsilon` parameter in that equation.
:type epsilon: float
"""
def
__init__
(
self
,
rho
=
0.95
,
epsilon
=
1e-06
,
**
kwargs
):
learning_method
=
v1_optimizers
.
DecayedAdaGradOptimizer
(
rho
=
rho
,
epsilon
=
epsilon
)
...
...
@@ -83,6 +178,24 @@ class DecayedAdaGrad(Optimizer):
class
AdaDelta
(
Optimizer
):
"""
AdaDelta method. The details of adadelta please refer to this
`ADADELTA: AN ADAPTIVE LEARNING RATE METHOD
<http://www.matthewzeiler.com/pubs/googleTR2012/googleTR2012.pdf>`_.
.. math::
E(g_t^2) &=
\\
rho * E(g_{t-1}^2) + (1-
\\
rho) * g^2
\\\\
learning
\\
_rate &= sqrt( ( E(dx_{t-1}^2) +
\\
epsilon ) / (
\\
E(g_t^2) +
\\
epsilon ) )
\\\\
E(dx_t^2) &=
\\
rho * E(dx_{t-1}^2) + (1-
\\
rho) * (-g*learning
\\
_rate)^2
:param rho: :math:`
\\
rho` in equation
:type rho: float
:param epsilon: :math:`
\\
rho` in equation
:type epsilon: float
"""
def
__init__
(
self
,
rho
=
0.95
,
epsilon
=
1e-06
,
**
kwargs
):
learning_method
=
v1_optimizers
.
AdaDeltaOptimizer
(
rho
=
rho
,
epsilon
=
epsilon
)
...
...
@@ -91,6 +204,24 @@ class AdaDelta(Optimizer):
class
RMSProp
(
Optimizer
):
"""
RMSProp(for Root Mean Square Propagation) optimizer. For details please
refer this `slide <http://www.cs.toronto.edu/~tijmen/csc321/slides/
lecture_slides_lec6.pdf>`_.
The equations of this method as follows:
.. math::
v(w, t) & =
\\
rho v(w, t-1) + (1 -
\\
rho)(
\\
nabla Q_{i}(w))^2
\\\\
w & = w -
\\
frac{
\\
eta} {
\\
sqrt{v(w,t) +
\\
epsilon}}
\\
nabla Q_{i}(w)
:param rho: the :math:`
\\
rho` in the equation. The forgetting factor.
:type rho: float
:param epsilon: the :math:`
\\
epsilon` in the equation.
:type epsilon: float
"""
def
__init__
(
self
,
rho
=
0.95
,
epsilon
=
1e-6
,
**
kwargs
):
learning_method
=
v1_optimizers
.
RMSPropOptimizer
(
rho
=
rho
,
epsilon
=
epsilon
)
...
...
python/paddle/v2/trainer.py
浏览文件 @
e3296559
"""
Module Trainer
"""
import
collections
import
py_paddle.swig_paddle
as
api
...
...
@@ -9,10 +12,6 @@ from . import optimizer as v2_optimizer
from
.
import
parameters
as
v2_parameters
__all__
=
[
'SGD'
]
"""
Trainer package
TODO(yuyang18): Complete comments.
"""
def
default_event_handler
(
event
):
...
...
@@ -29,7 +28,8 @@ def default_event_handler(event):
class
SGD
(
object
):
"""
Simple SGD Trainer.
TODO(yuyang18): Complete comments
SGD Trainer combines data reader, network topolopy and update_equation together
to train/test a neural network.
:param update_equation: The optimizer object.
:type update_equation: paddle.v2.optimizer.Optimizer
...
...
@@ -74,7 +74,9 @@ class SGD(object):
"""
Training method. Will train num_passes of input data.
:param reader:
:param reader: A reader that reads and yeilds data items. Usually we use a
batched reader to do mini-batch training.
:type reader: collections.Iterable
:param num_passes: The total train passes.
:param event_handler: Event handler. A method will be invoked when event
occurred.
...
...
@@ -132,6 +134,16 @@ class SGD(object):
self
.
__gradient_machine__
.
finish
()
def
test
(
self
,
reader
,
feeding
=
None
):
"""
Testing method. Will test input data.
:param reader: A reader that reads and yeilds data items.
:type reader: collections.Iterable
:param feeding: Feeding is a map of neural network input name and array
index that reader returns.
:type feeding: dict
:return:
"""
feeder
=
DataFeeder
(
self
.
__data_types__
,
feeding
)
evaluator
=
self
.
__gradient_machine__
.
makeEvaluator
()
out_args
=
api
.
Arguments
.
createArguments
(
0
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录