Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
e2a5905e
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e2a5905e
编写于
11月 22, 2017
作者:
S
sweetsky0901
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
gpu test ok unpool2dmax
上级
abb3357d
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
38 addition
and
25 deletion
+38
-25
paddle/operators/math/unpooling.cc
paddle/operators/math/unpooling.cc
+0
-2
paddle/operators/math/unpooling.cu
paddle/operators/math/unpooling.cu
+28
-14
paddle/operators/math/unpooling.h
paddle/operators/math/unpooling.h
+0
-3
paddle/operators/unpool_op.cc
paddle/operators/unpool_op.cc
+0
-3
paddle/operators/unpool_op.h
paddle/operators/unpool_op.h
+7
-2
python/paddle/v2/fluid/tests/test_unpool_op.py
python/paddle/v2/fluid/tests/test_unpool_op.py
+3
-1
未找到文件。
paddle/operators/math/unpooling.cc
浏览文件 @
e2a5905e
...
@@ -37,8 +37,6 @@ class Unpool2dMaxFunctor<platform::CPUPlace, T> {
...
@@ -37,8 +37,6 @@ class Unpool2dMaxFunctor<platform::CPUPlace, T> {
const
T
*
input_data
=
input
.
data
<
T
>
();
const
T
*
input_data
=
input
.
data
<
T
>
();
const
T
*
indices_data
=
indices
.
data
<
T
>
();
const
T
*
indices_data
=
indices
.
data
<
T
>
();
T
*
output_data
=
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
T
*
output_data
=
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
memset
(
output_data
,
0
,
\
sizeof
(
T
)
*
output_feasize
*
output_channels
*
batch_size
);
for
(
int
b
=
0
;
b
<
batch_size
;
++
b
)
{
for
(
int
b
=
0
;
b
<
batch_size
;
++
b
)
{
for
(
int
c
=
0
;
c
<
output_channels
;
++
c
)
{
for
(
int
c
=
0
;
c
<
output_channels
;
++
c
)
{
for
(
int
i
=
0
;
i
<
input_feasize
;
++
i
)
{
for
(
int
i
=
0
;
i
<
input_feasize
;
++
i
)
{
...
...
paddle/operators/math/unpooling.cu
浏览文件 @
e2a5905e
...
@@ -22,41 +22,56 @@ namespace math {
...
@@ -22,41 +22,56 @@ namespace math {
template
<
typename
T
>
template
<
typename
T
>
__global__
void
KernelUnpool2dMax
(
const
int
nthreads
,
__global__
void
KernelUnpool2dMax
(
const
int
nthreads
,
const
T
*
input_data
,
const
T
*
input_data
,
const
int
*
indices_data
,
const
T
*
indices_data
,
const
int
input_height
,
const
int
input_height
,
const
int
input_width
,
const
int
input_width
,
const
int
channels
,
T
*
output_data
,
T
*
output_data
,
const
int
output_height
,
const
int
output_height
,
const
int
output_width
)
{
const
int
output_width
)
{
int
bsize
=
input_height
*
input_width
*
channels
;
int
csize
=
input_height
*
input_width
;
int
out_bsize
=
output_height
*
output_width
*
channels
;
int
out_csize
=
output_height
*
output_width
;
int
index
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
index
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
offset
=
blockDim
.
x
*
gridDim
.
x
;
int
offset
=
blockDim
.
x
*
gridDim
.
x
;
for
(
int
i
=
index
;
i
<
nthreads
;
i
+=
offset
)
{
for
(
int
i
=
index
;
i
<
nthreads
;
i
+=
offset
)
{
int
out_offset
=
i
/
(
input_height
*
input_width
)
\
int
bidx
=
i
/
bsize
;
*
output_height
*
output_width
;
int
boffset
=
i
%
bsize
;
int
cidx
=
boffset
/
csize
;
int
out_offset
=
bidx
*
out_bsize
+
cidx
*
out_csize
;
int
out_index
=
indices_data
[
i
];
int
out_index
=
indices_data
[
i
];
PADDLE_ASSERT
(
out_index
<
(
output_height
*
output_width
));
PADDLE_ASSERT
(
out_index
<
(
output_height
*
output_width
));
printf
(
"-------%d------[%f]
\n
"
,
out_offset
+
out_index
,
input_data
[
i
]);
output_data
[
out_offset
+
out_index
]
=
input_data
[
i
];
output_data
[
out_offset
+
out_index
]
=
input_data
[
i
];
}
}
}
}
template
<
typename
T
>
template
<
typename
T
>
__global__
void
KernelUnpool2dMaxGrad
(
const
int
nthreads
,
__global__
void
KernelUnpool2dMaxGrad
(
const
int
nthreads
,
const
T
*
input_data
,
const
T
*
input_data
,
const
int
*
indices_data
,
const
T
*
indices_data
,
const
int
input_height
,
const
int
input_height
,
const
int
input_width
,
const
int
input_width
,
const
int
channels
,
const
T
*
output_data
,
const
T
*
output_data
,
const
T
*
output_grad
,
const
T
*
output_grad
,
const
int
output_height
,
const
int
output_height
,
const
int
output_width
,
const
int
output_width
,
T
*
input_grad
)
{
T
*
input_grad
)
{
int
bsize
=
input_height
*
input_width
*
channels
;
int
csize
=
input_height
*
input_width
;
int
out_bsize
=
output_height
*
output_width
*
channels
;
int
out_csize
=
output_height
*
output_width
;
int
index
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
index
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
offset
=
blockDim
.
x
*
gridDim
.
x
;
int
offset
=
blockDim
.
x
*
gridDim
.
x
;
for
(
int
i
=
index
;
i
<
nthreads
;
i
+=
offset
)
{
for
(
int
i
=
index
;
i
<
nthreads
;
i
+=
offset
)
{
int
out_offset
=
i
/
(
input_height
*
input_width
)
\
int
bidx
=
i
/
bsize
;
*
output_height
*
output_width
;
int
boffset
=
i
%
bsize
;
int
out_index
=
indices_data
[
i
];
int
cidx
=
boffset
/
csize
;
PADDLE_ASSERT
(
out_index
<
(
output_height
*
output_width
));
int
out_offset
=
bidx
*
out_bsize
+
cidx
*
out_csize
;
input_grad
[
i
]
=
output_grad
[
out_offset
+
out_index
];
int
out_index
=
indices_data
[
i
];
PADDLE_ASSERT
(
out_index
<
(
output_height
*
output_width
));
input_grad
[
i
]
=
output_grad
[
out_offset
+
out_index
];
}
}
}
}
/*
/*
...
@@ -78,8 +93,7 @@ class Unpool2dMaxFunctor<platform::GPUPlace, T> {
...
@@ -78,8 +93,7 @@ class Unpool2dMaxFunctor<platform::GPUPlace, T> {
const
T
*
input_data
=
input
.
data
<
T
>
();
const
T
*
input_data
=
input
.
data
<
T
>
();
const
T
*
indices_data
=
indices
.
data
<
T
>
();
const
T
*
indices_data
=
indices
.
data
<
T
>
();
T
*
output_data
=
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
T
*
output_data
=
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
int
nthreads
=
batch_size
*
output_channels
*
input_height
*
input_width
;
int
nthreads
=
output
->
numel
();
int
blocks
=
(
nthreads
+
1024
-
1
)
/
1024
;
int
blocks
=
(
nthreads
+
1024
-
1
)
/
1024
;
dim3
threads
(
1024
,
1
);
dim3
threads
(
1024
,
1
);
dim3
grid
(
blocks
,
1
);
dim3
grid
(
blocks
,
1
);
...
@@ -88,7 +102,7 @@ class Unpool2dMaxFunctor<platform::GPUPlace, T> {
...
@@ -88,7 +102,7 @@ class Unpool2dMaxFunctor<platform::GPUPlace, T> {
T
><<<
grid
,
threads
,
0
,
T
><<<
grid
,
threads
,
0
,
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
context
)
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
context
)
.
stream
()
>>>
(
nthreads
,
input_data
,
indices_data
,
.
stream
()
>>>
(
nthreads
,
input_data
,
indices_data
,
input_height
,
input_width
,
input_height
,
input_width
,
output_channels
,
output_data
,
output_height
,
output_width
);
output_data
,
output_height
,
output_width
);
}
}
};
};
...
@@ -115,7 +129,7 @@ class Unpool2dMaxGradFunctor<platform::GPUPlace, T> {
...
@@ -115,7 +129,7 @@ class Unpool2dMaxGradFunctor<platform::GPUPlace, T> {
const
T
*
output_data
=
output
.
data
<
T
>
();
const
T
*
output_data
=
output
.
data
<
T
>
();
const
T
*
output_grad_data
=
output_grad
.
data
<
T
>
();
const
T
*
output_grad_data
=
output_grad
.
data
<
T
>
();
T
*
input_grad_data
=
input_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
T
*
input_grad_data
=
input_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
int
nthreads
=
output
.
numel
()
;
int
nthreads
=
batch_size
*
output_channels
*
input_height
*
input_width
;
int
blocks
=
(
nthreads
+
1024
-
1
)
/
1024
;
int
blocks
=
(
nthreads
+
1024
-
1
)
/
1024
;
dim3
threads
(
1024
,
1
);
dim3
threads
(
1024
,
1
);
dim3
grid
(
blocks
,
1
);
dim3
grid
(
blocks
,
1
);
...
@@ -125,7 +139,7 @@ class Unpool2dMaxGradFunctor<platform::GPUPlace, T> {
...
@@ -125,7 +139,7 @@ class Unpool2dMaxGradFunctor<platform::GPUPlace, T> {
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
context
)
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
context
)
.
stream
()
>>>
(
.
stream
()
>>>
(
nthreads
,
input_data
,
indices_data
,
nthreads
,
input_data
,
indices_data
,
input_height
,
input_width
,
input_height
,
input_width
,
output_channels
,
output_data
,
output_grad_data
,
output_data
,
output_grad_data
,
output_height
,
output_width
,
output_height
,
output_width
,
input_grad_data
);
input_grad_data
);
...
...
paddle/operators/math/unpooling.h
浏览文件 @
e2a5905e
...
@@ -21,9 +21,6 @@ namespace paddle {
...
@@ -21,9 +21,6 @@ namespace paddle {
namespace
operators
{
namespace
operators
{
namespace
math
{
namespace
math
{
#define FLT_MAX \
__FLT_MAX__
template
<
typename
Place
,
typename
T
>
template
<
typename
Place
,
typename
T
>
class
Unpool2dMaxFunctor
{
class
Unpool2dMaxFunctor
{
...
...
paddle/operators/unpool_op.cc
浏览文件 @
e2a5905e
...
@@ -108,9 +108,6 @@ class UnpoolOpGrad : public framework::OperatorWithKernel {
...
@@ -108,9 +108,6 @@ class UnpoolOpGrad : public framework::OperatorWithKernel {
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) must not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) must not be null."
);
// PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) must not be null.");
// PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
// "Input(Out@GRAD) should not be null");
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"X"
)),
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"X"
)),
"Input(X@GRAD) should not be null."
);
"Input(X@GRAD) should not be null."
);
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
ctx
->
GetInputDim
(
"X"
));
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
ctx
->
GetInputDim
(
"X"
));
...
...
paddle/operators/unpool_op.h
浏览文件 @
e2a5905e
...
@@ -29,11 +29,16 @@ class UnpoolKernel : public framework::OpKernel<T> {
...
@@ -29,11 +29,16 @@ class UnpoolKernel : public framework::OpKernel<T> {
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
const
Tensor
*
in_x
=
context
.
Input
<
Tensor
>
(
"X"
);
const
Tensor
*
in_x
=
context
.
Input
<
Tensor
>
(
"X"
);
const
Tensor
*
in_y
=
context
.
Input
<
Tensor
>
(
"Y"
);
const
Tensor
*
in_y
=
context
.
Input
<
Tensor
>
(
"Y"
);
Tensor
*
out
=
context
.
Output
<
Tensor
>
(
"Out"
);
auto
*
out
=
context
.
Output
<
Tensor
>
(
"Out"
);
std
::
string
unpoolingtype
=
context
.
Attr
<
std
::
string
>
(
"unpoolingtype"
);
std
::
string
unpoolingtype
=
context
.
Attr
<
std
::
string
>
(
"unpoolingtype"
);
std
::
vector
<
int
>
ksize
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"ksize"
);
std
::
vector
<
int
>
ksize
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"ksize"
);
std
::
vector
<
int
>
strides
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
strides
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
std
::
vector
<
int
>
paddings
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
T
*
output_data
=
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
if
(
output_data
)
{
math
::
SetConstant
<
Place
,
T
>
set_zero
;
set_zero
(
context
.
device_context
(),
out
,
static_cast
<
T
>
(
0
));
}
switch
(
ksize
.
size
())
{
switch
(
ksize
.
size
())
{
case
2
:
{
case
2
:
{
if
(
unpoolingtype
==
"max"
)
{
if
(
unpoolingtype
==
"max"
)
{
...
@@ -66,7 +71,7 @@ class UnpoolGradKernel : public framework::OpKernel<T> {
...
@@ -66,7 +71,7 @@ class UnpoolGradKernel : public framework::OpKernel<T> {
if
(
in_x_grad
)
{
if
(
in_x_grad
)
{
in_x_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
in_x_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
zero
(
device_ctx
,
in_x_grad
,
static_cast
<
T
>
(
0.0
));
zero
(
device_ctx
,
in_x_grad
,
static_cast
<
T
>
(
0.0
));
}
}
switch
(
ksize
.
size
())
{
switch
(
ksize
.
size
())
{
case
2
:
{
case
2
:
{
if
(
unpoolingtype
==
"max"
)
{
if
(
unpoolingtype
==
"max"
)
{
...
...
python/paddle/v2/fluid/tests/test_unpool_op.py
浏览文件 @
e2a5905e
...
@@ -54,6 +54,8 @@ class TestUnpoolOp(OpTest):
...
@@ -54,6 +54,8 @@ class TestUnpoolOp(OpTest):
self
.
outputs
=
{
'Out'
:
output
.
astype
(
'float32'
)}
self
.
outputs
=
{
'Out'
:
output
.
astype
(
'float32'
)}
def
test_check_output
(
self
):
def
test_check_output
(
self
):
print
self
.
inputs
[
'X'
]
print
self
.
inputs
[
'Y'
]
print
self
.
outputs
[
'Out'
]
print
self
.
outputs
[
'Out'
]
self
.
check_output
()
self
.
check_output
()
...
@@ -63,7 +65,7 @@ class TestUnpoolOp(OpTest):
...
@@ -63,7 +65,7 @@ class TestUnpoolOp(OpTest):
def
init_test_case
(
self
):
def
init_test_case
(
self
):
self
.
Unpool2d_forward_naive
=
unpool2dmax_forward_naive
self
.
Unpool2d_forward_naive
=
unpool2dmax_forward_naive
self
.
unpoolingtype
=
"max"
self
.
unpoolingtype
=
"max"
self
.
shape
=
[
10
,
2
,
5
,
5
]
self
.
shape
=
[
6
,
4
,
5
,
5
]
self
.
ksize
=
[
3
,
3
]
self
.
ksize
=
[
3
,
3
]
self
.
strides
=
[
2
,
2
]
self
.
strides
=
[
2
,
2
]
self
.
paddings
=
[
0
,
0
]
self
.
paddings
=
[
0
,
0
]
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录