Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
e275e423
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
e275e423
编写于
10月 11, 2021
作者:
J
JingZhuangzhuang
提交者:
GitHub
10月 12, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add pool2d test convert (#36338)
上级
d247cf17
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
73 addition
and
25 deletion
+73
-25
paddle/fluid/inference/tensorrt/convert/pool2d_op.cc
paddle/fluid/inference/tensorrt/convert/pool2d_op.cc
+27
-0
paddle/fluid/inference/tensorrt/op_teller.cc
paddle/fluid/inference/tensorrt/op_teller.cc
+22
-19
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_pool2d.py
...d/tests/unittests/ir/inference/test_trt_convert_pool2d.py
+24
-6
未找到文件。
paddle/fluid/inference/tensorrt/convert/pool2d_op.cc
浏览文件 @
e275e423
...
...
@@ -107,6 +107,9 @@ class Pool2dOpConverter : public OpConverter {
plugin_pool_type
=
plugin
::
PoolPlugin
::
PoolType
::
avg
;
}
if
(
padding_algorithm
==
"VALID"
)
{
std
::
fill
(
paddings
.
begin
(),
paddings
.
end
(),
0
);
}
nvinfer1
::
DimsHW
nv_ksize
(
ksize
[
0
],
ksize
[
1
]);
nvinfer1
::
DimsHW
nv_strides
(
strides
[
0
],
strides
[
1
]);
nvinfer1
::
DimsHW
nv_paddings
(
paddings
[
0
],
paddings
[
1
]);
...
...
@@ -123,6 +126,30 @@ class Pool2dOpConverter : public OpConverter {
if
(
engine_
->
with_dynamic_shape
())
{
if
(
!
adaptive
&&
!
global_pooling
&&
!
ceil_mode
)
{
auto
*
pool_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Pooling
,
*
input1
,
nv_pool_type
,
nv_ksize
);
pool_layer
->
setStride
(
nv_strides
);
pool_layer
->
setPadding
(
nv_paddings
);
pool_layer
->
setAverageCountExcludesPadding
(
exclusive
);
if
(
padding_algorithm
==
"SAME"
)
{
pool_layer
->
setPaddingMode
(
nvinfer1
::
PaddingMode
::
kSAME_UPPER
);
}
layer
=
pool_layer
;
}
else
if
(
!
adaptive
&&
!
global_pooling
&&
ceil_mode
)
{
nvinfer1
::
DimsHW
pre_pad
(
0
,
0
);
nvinfer1
::
DimsHW
post_pad
(
0
,
0
);
// If ceil mode is true, we will pad the appropriate size to the input.
DealCeilMode
(
input_shape
,
ksize
,
strides
,
paddings
,
&
pre_pad
,
&
post_pad
,
input_dims
);
auto
*
pad_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Padding
,
*
const_cast
<
nvinfer1
::
ITensor
*>
(
input1
),
pre_pad
,
post_pad
);
PADDLE_ENFORCE_NOT_NULL
(
pad_layer
,
platform
::
errors
::
Fatal
(
"Pad layer in poolOp converter could not be "
"created. The pointer to pad layer is `NULL`."
));
input1
=
pad_layer
->
getOutput
(
0
);
auto
*
pool_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Pooling
,
*
input1
,
nv_pool_type
,
nv_ksize
);
pool_layer
->
setStride
(
nv_strides
);
...
...
paddle/fluid/inference/tensorrt/op_teller.cc
浏览文件 @
e275e423
...
...
@@ -174,22 +174,8 @@ bool OpTeller::Tell(const framework::ir::Node* node, bool use_no_calib_int8,
if
(
op_type
==
"pool2d"
)
{
std
::
vector
<
int
>
paddings
=
BOOST_GET_CONST
(
std
::
vector
<
int
>
,
desc
.
GetAttr
(
"paddings"
));
if
(
paddings
.
size
()
>
2
)
return
false
;
if
(
desc
.
HasAttr
(
"exclusive"
))
{
if
(
BOOST_GET_CONST
(
bool
,
desc
.
GetAttr
(
"exclusive"
)))
{
std
::
vector
<
int
>
ksize
=
BOOST_GET_CONST
(
std
::
vector
<
int
>
,
desc
.
GetAttr
(
"ksize"
));
for
(
size_t
i
=
0
;
i
<
ksize
.
size
();
i
++
)
{
if
(
ksize
[
i
]
<=
paddings
[
i
])
{
VLOG
(
3
)
<<
"the padding size should be less than the filter size "
"for exclusive-counting pooling."
;
return
false
;
}
}
}
}
if
(
desc
.
HasAttr
(
"ceil_mode"
))
{
if
(
BOOST_GET_CONST
(
bool
,
desc
.
GetAttr
(
"ceil_mode"
)))
return
false
;
if
(
paddings
.
size
()
>
2
)
{
return
false
;
}
if
(
desc
.
Input
(
"X"
).
size
()
!=
1
)
{
VLOG
(
3
)
<<
"TRT Pool2d expect 1 input, but got "
...
...
@@ -211,15 +197,32 @@ bool OpTeller::Tell(const framework::ir::Node* node, bool use_no_calib_int8,
<<
pool_type
<<
" pool type."
;
return
false
;
}
if
(
pool_type
==
"avg"
)
{
if
(
desc
.
HasAttr
(
"global_pooling"
))
{
if
(
!
BOOST_GET_CONST
(
bool
,
desc
.
GetAttr
(
"global_pooling"
)))
{
if
(
desc
.
HasAttr
(
"exclusive"
))
{
if
(
BOOST_GET_CONST
(
bool
,
desc
.
GetAttr
(
"exclusive"
)))
{
std
::
vector
<
int
>
ksize
=
BOOST_GET_CONST
(
std
::
vector
<
int
>
,
desc
.
GetAttr
(
"ksize"
));
for
(
size_t
i
=
0
;
i
<
ksize
.
size
();
i
++
)
{
if
(
ksize
[
i
]
<=
paddings
[
i
])
{
VLOG
(
3
)
<<
"the padding size should be less than the "
"filter size "
"for exclusive-counting pooling."
;
return
false
;
}
}
}
}
}
}
}
}
}
if
(
op_type
==
"conv2d"
||
op_type
==
"conv2d_transpose"
||
op_type
==
"conv2d_fusion"
||
op_type
==
"depthwise_conv2d"
||
op_type
==
"depthwise_conv2d_transpose"
)
{
std
::
vector
<
int
>
paddings
=
BOOST_GET_CONST
(
std
::
vector
<
int
>
,
desc
.
GetAttr
(
"paddings"
));
if
(
desc
.
Input
(
"Input"
).
size
()
!=
1
)
{
VLOG
(
3
)
<<
"TRT Conv2d expect 1 input, but got "
<<
desc
.
Input
(
"Input"
).
size
()
<<
" input."
;
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_pool2d.py
浏览文件 @
e275e423
...
...
@@ -21,9 +21,22 @@ from typing import Optional, List, Callable, Dict, Any, Set
class
TrtConvertPool2dTest
(
TrtLayerAutoScanTest
):
def
is_program_valid
(
self
,
program_config
:
ProgramConfig
)
->
bool
:
def
is_paddings_valid
(
self
,
program_config
:
ProgramConfig
)
->
bool
:
exclusive
=
program_config
.
ops
[
0
].
attrs
[
'exclusive'
]
paddings
=
program_config
.
ops
[
0
].
attrs
[
'paddings'
]
ksize
=
program_config
.
ops
[
0
].
attrs
[
'ksize'
]
pooling_type
=
program_config
.
ops
[
0
].
attrs
[
'pooling_type'
]
global_pooling
=
program_config
.
ops
[
0
].
attrs
[
'global_pooling'
]
if
global_pooling
==
False
:
if
pooling_type
==
'avg'
:
for
index
in
range
(
len
(
ksize
)):
if
ksize
[
index
]
<=
paddings
[
index
]:
return
False
return
True
def
is_program_valid
(
self
,
program_config
:
ProgramConfig
)
->
bool
:
return
self
.
is_paddings_valid
(
program_config
)
def
sample_program_configs
(
self
):
self
.
trt_param
.
workspace_size
=
1073741824
...
...
@@ -34,7 +47,7 @@ class TrtConvertPool2dTest(TrtLayerAutoScanTest):
return
np
.
random
.
random
([
24
,
3
,
3
,
3
]).
astype
(
np
.
float32
)
for
strides
in
[[
1
,
1
],
[
2
,
2
],
[
1
,
2
]]:
for
paddings
in
[[
0
,
2
],
[
0
,
3
],
[
1
,
2
,
3
,
4
]]:
for
paddings
in
[[
0
,
2
],
[
0
,
3
],
[
0
,
1
,
2
,
3
]]:
for
pooling_type
in
[
'max'
,
'avg'
]:
for
padding_algotithm
in
[
'EXPLICIT'
,
'SAME'
,
'VAILD'
]:
for
ksize
in
[[
2
,
3
],
[
3
,
3
]]:
...
...
@@ -43,7 +56,6 @@ class TrtConvertPool2dTest(TrtLayerAutoScanTest):
for
exclusive
in
[
True
,
False
]:
for
adaptive
in
[
True
,
False
]:
for
ceil_mode
in
[
True
,
False
]:
self
.
paddings
=
paddings
dics
=
[{
"pooling_type"
:
...
...
@@ -102,9 +114,6 @@ class TrtConvertPool2dTest(TrtLayerAutoScanTest):
self
.
dynamic_shape
.
opt_input_shape
=
{}
def
generate_trt_nodes_num
(
attrs
,
dynamic_shape
):
if
self
.
paddings
==
[
0
,
3
]
or
attrs
[
0
][
'global_pooling'
]
==
True
or
attrs
[
0
][
'ceil_mode'
]
==
True
:
return
0
,
3
return
1
,
2
attrs
=
[
...
...
@@ -139,6 +148,15 @@ class TrtConvertPool2dTest(TrtLayerAutoScanTest):
self
.
add_skip_case
(
teller1
,
SkipReasons
.
TRT_NOT_IMPLEMENTED
,
"4-dims paddings are not support for trt now."
)
def
teller2
(
program_config
,
predictor_config
):
if
program_config
.
ops
[
0
].
attrs
[
'global_pooling'
]
==
True
:
return
True
return
False
self
.
add_skip_case
(
teller2
,
SkipReasons
.
TRT_NOT_IMPLEMENTED
,
"It is not support that global_pooling is true for trt now."
)
def
test
(
self
):
self
.
add_skip_trt_case
()
self
.
run_test
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录