提交 e21dcc5b 编写于 作者: Z zchen0211

gan api

上级 71dff503
''' '''
GAN implementation, just a demo. GAN implementation, just a demo.
''' '''
```python
# pd for short, should be more concise. # pd for short, should be more concise.
from paddle.v2 as pd from paddle.v2 as pd
import numpy as np import numpy as np
import logging import logging
X = pd.data(pd.float_vector(784)) X = pd.data(pd.float_vector(784))
```
# Conditional-GAN should be a class. # Conditional-GAN should be a class.
### Class member function: the initializer. ### Class member function: the initializer.
```python
class DCGAN(object): class DCGAN(object):
def __init__(self, y_dim=None): def __init__(self, y_dim=None):
...@@ -19,22 +21,26 @@ class DCGAN(object): ...@@ -19,22 +21,26 @@ class DCGAN(object):
self.z_dim = z_dim # input noise dimension self.z_dim = z_dim # input noise dimension
# define parameters of discriminators # define parameters of discriminators
self.D_W0 = pd.Variable(shape=[784, 128], data=pd.gaussian_normal_randomizer())
self.D_b0 = pd.Variable(np.zeros(128)) # variable also support initialization using a numpy data
self.D_W1 = pd.Variable(shape=[784, 128], data=pd.gaussian_normal_randomizer()) self.D_W1 = pd.Variable(shape=[784, 128], data=pd.gaussian_normal_randomizer())
self.D_b1 = pd.Variable(np.zeros(128)) # variable also support initialization using a numpy data self.D_b1 = pd.Variable(np.zeros(128)) # variable also support initialization using a numpy data
self.D_W2 = pd.Varialble(np.random.rand(128, 1)) self.D_W2 = pd.Varialble(np.random.rand(128, 1))
self.D_b2 = pd.Variable(np.zeros(128)) self.D_b2 = pd.Variable(np.zeros(128))
self.theta_D = [D_W1, D_b1, D_W2, D_b2] self.theta_D = [self.D_W0, self.D_b0, self.D_W1, self.D_b1, self.D_W2, self.D_b2]
# define parameters of generators # define parameters of generators
self.G_W0 = pd.Variable(shape=[784, 128], data=pd.gaussian_normal_randomizer())
self.G_b0 = pd.Variable(np.zeros(128)) # variable also support initialization using a numpy data
self.G_W1 = pd.Variable(shape=[784, 128], data=pd.gaussian_normal_randomizer()) self.G_W1 = pd.Variable(shape=[784, 128], data=pd.gaussian_normal_randomizer())
self.G_b1 = pd.Variable(np.zeros(128)) # variable also support initialization using a numpy data self.G_b1 = pd.Variable(np.zeros(128)) # variable also support initialization using a numpy data
self.G_W2 = pd.Varialble(np.random.rand(128, 1)) self.G_W2 = pd.Varialble(np.random.rand(128, 1))
self.G_b2 = pd.Variable(np.zeros(128)) self.G_b2 = pd.Variable(np.zeros(128))
self.theta_G = [D_W1, D_b1, D_W2, D_b2] self.theta_G = [self.G_W0, self.G_b0, self.G_W1, self.G_b1, self.G_W2, self.G_b2]
```
self.build_model()
### Class member function: Generator Net ### Class member function: Generator Net
```python
def generator(self, z, y = None): def generator(self, z, y = None):
# Generator Net # Generator Net
...@@ -52,8 +58,10 @@ def generator(self, z, y = None): ...@@ -52,8 +58,10 @@ def generator(self, z, y = None):
G_h2 = pd.deconv(G_h1_relu, self.G_W2, self.G_b2)) G_h2 = pd.deconv(G_h1_relu, self.G_W2, self.G_b2))
G_im = pd.tanh(G_im) G_im = pd.tanh(G_im)
return G_im return G_im
```
### Class member function: Discriminator Net ### Class member function: Discriminator Net
```python
def discriminator(self, image): def discriminator(self, image):
# Discriminator Net # Discriminator Net
...@@ -67,8 +75,10 @@ def discriminator(self, image): ...@@ -67,8 +75,10 @@ def discriminator(self, image):
D_h2 = pd.fc(D_h1_relu, self.D_w2, self.D_b2) D_h2 = pd.fc(D_h1_relu, self.D_w2, self.D_b2)
return D_h2 return D_h2
```
### Class member function: Build the model ### Class member function: Build the model
```python
def build_model(self): def build_model(self):
# input data # input data
...@@ -97,8 +107,10 @@ def build_model(self): ...@@ -97,8 +107,10 @@ def build_model(self):
self.d_loss = self.d_loss_real + self.d_loss_fake self.d_loss = self.d_loss_real + self.d_loss_fake
self.g_loss = pd.reduce_mean(pd.cross_entropy(self.D_f, np.ones(self.batch_szie)) self.g_loss = pd.reduce_mean(pd.cross_entropy(self.D_f, np.ones(self.batch_szie))
```
# Main function for the demo: # Main function for the demo:
```python
if __name__ == "__main__": if __name__ == "__main__":
# dcgan # dcgan
...@@ -109,7 +121,7 @@ if __name__ == "__main__": ...@@ -109,7 +121,7 @@ if __name__ == "__main__":
data_X, data_y = self.load_mnist() data_X, data_y = self.load_mnist()
# Two subgraphs required!!! # Two subgraphs required!!!
d_optim = pd.train.Adam(lr = .001, beta= .1).minimize(self.d_loss) d_optim = pd.train.Adam(lr = .001, beta= .1).minimize(self.d_loss, )
g_optim = pd.train.Adam(lr = .001, beta= .1).minimize(self.g_loss) g_optim = pd.train.Adam(lr = .001, beta= .1).minimize(self.g_loss)
# executor # executor
...@@ -125,10 +137,11 @@ if __name__ == "__main__": ...@@ -125,10 +137,11 @@ if __name__ == "__main__":
batch_z = np.random.uniform(-1., 1., [batch_size, z_dim]) batch_z = np.random.uniform(-1., 1., [batch_size, z_dim])
if batch_id % 2 == 0: if batch_id % 2 == 0:
sess.run(d_optim, sess.eval(d_optim,
feed_dict = {dcgan.images: batch_im, feed_dict = {dcgan.images: batch_im,
dcgan.y: batch_label, dcgan.y: batch_label,
dcgan.z: batch_z}) dcgan.z: batch_z})
else: else:
sess.run(g_optim, sess.eval(g_optim,
feed_dict = {dcgan.z: batch_z}) feed_dict = {dcgan.z: batch_z})
```
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册