未验证 提交 e1f93161 编写于 作者: Z Zhen Wang 提交者: GitHub

Fix save/load error in imperative qat UT. (#31937)

上级 e50bc2c2
......@@ -17,6 +17,8 @@ from __future__ import print_function
import os
import numpy as np
import random
import shutil
import time
import unittest
import logging
import paddle
......@@ -157,6 +159,20 @@ class TestImperativeQat(unittest.TestCase):
QAT = quantization-aware training
"""
@classmethod
def setUpClass(cls):
timestamp = time.strftime('%Y-%m-%d-%H-%M-%S', time.localtime())
cls.root_path = os.path.join(os.getcwd(), "imperative_qat_" + timestamp)
cls.save_path = os.path.join(cls.root_path, "lenet")
cls.dynamic_root_path = os.path.join(os.getcwd(),
"dynamic_mnist_" + timestamp)
cls.dynamic_save_path = os.path.join(cls.dynamic_root_path, "model")
@classmethod
def tearDownClass(cls):
shutil.rmtree(cls.root_path)
shutil.rmtree(cls.dynamic_root_path)
def test_qat_save(self):
imperative_qat = ImperativeQuantAware(
weight_quantize_type='abs_max',
......@@ -206,6 +222,8 @@ class TestImperativeQat(unittest.TestCase):
"Train | At epoch {} step {}: loss = {:}, acc= {:}".
format(epoch, batch_id,
avg_loss.numpy(), acc.numpy()))
if batch_id == 500: # For shortening CI time
break
lenet.eval()
for batch_id, data in enumerate(test_reader()):
......@@ -242,11 +260,9 @@ class TestImperativeQat(unittest.TestCase):
before_save = lenet(test_img)
# save inference quantized model
path = "./qat_infer_model/lenet"
save_dir = "./qat_infer_model"
paddle.jit.save(
layer=lenet,
path=path,
path=TestImperativeQat.save_path,
input_spec=[
paddle.static.InputSpec(
shape=[None, 1, 28, 28], dtype='float32')
......@@ -259,7 +275,7 @@ class TestImperativeQat(unittest.TestCase):
exe = fluid.Executor(place)
[inference_program, feed_target_names,
fetch_targets] = fluid.io.load_inference_model(
dirname=save_dir,
dirname=TestImperativeQat.root_path,
executor=exe,
model_filename="lenet" + INFER_MODEL_SUFFIX,
params_filename="lenet" + INFER_PARAMS_SUFFIX)
......@@ -351,7 +367,7 @@ class TestImperativeQat(unittest.TestCase):
paddle.jit.save(
layer=lenet,
path="./dynamic_mnist/model",
path=TestImperativeQat.dynamic_save_path,
input_spec=[
paddle.static.InputSpec(
shape=[None, 1, 28, 28], dtype='float32')
......
......@@ -17,6 +17,8 @@ from __future__ import print_function
import os
import numpy as np
import random
import shutil
import time
import unittest
import logging
import paddle
......@@ -185,6 +187,21 @@ class ImperativeLenet(fluid.dygraph.Layer):
class TestImperativeAddQuantDequant(unittest.TestCase):
@classmethod
def setUpClass(cls):
timestamp = time.strftime('%Y-%m-%d-%H-%M-%S', time.localtime())
cls.root_path = os.path.join(os.getcwd(),
"imperative_qat_aqd_" + timestamp)
cls.save_path = os.path.join(cls.root_path, "lenet")
cls.dynamic_root_path = os.path.join(os.getcwd(),
"dynamic_mnist_aqd_" + timestamp)
cls.dynamic_save_path = os.path.join(cls.dynamic_root_path, "model")
@classmethod
def tearDownClass(cls):
shutil.rmtree(cls.root_path)
shutil.rmtree(cls.dynamic_root_path)
def test_qat_save(self):
imperative_qat = ImperativeQuantAware(
......@@ -228,6 +245,8 @@ class TestImperativeAddQuantDequant(unittest.TestCase):
"Train | At epoch {} step {}: loss = {:}, acc= {:}".
format(epoch, batch_id,
avg_loss.numpy(), acc.numpy()))
if batch_id == 500: # For shortening CI time
break
lenet.eval()
for batch_id, data in enumerate(test_reader()):
......@@ -264,11 +283,9 @@ class TestImperativeAddQuantDequant(unittest.TestCase):
before_save = lenet(test_img)
# save inference quantized model
path = "./qat_infer_model/lenet"
save_dir = "./qat_infer_model"
paddle.jit.save(
layer=lenet,
path=path,
path=TestImperativeAddQuantDequant.save_path,
input_spec=[
paddle.static.InputSpec(
shape=[None, 1, 28, 28], dtype='float32')
......@@ -280,7 +297,7 @@ class TestImperativeAddQuantDequant(unittest.TestCase):
exe = fluid.Executor(place)
[inference_program, feed_target_names,
fetch_targets] = fluid.io.load_inference_model(
dirname=save_dir,
dirname=TestImperativeAddQuantDequant.root_path,
executor=exe,
model_filename="lenet" + INFER_MODEL_SUFFIX,
params_filename="lenet" + INFER_PARAMS_SUFFIX)
......@@ -378,7 +395,7 @@ class TestImperativeAddQuantDequant(unittest.TestCase):
lenet.eval()
paddle.jit.save(
layer=lenet,
path="./dynamic_mnist/model",
path=TestImperativeAddQuantDequant.dynamic_save_path,
input_spec=[
paddle.static.InputSpec(
shape=[None, 1, 28, 28], dtype='float32')
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册