提交 e01b0941 编写于 作者: L Luo Tao

remove test_CompareTwoOpts

上级 c1931468
...@@ -29,16 +29,6 @@ if(WITH_PYTHON) ...@@ -29,16 +29,6 @@ if(WITH_PYTHON)
WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle/) WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle/)
endif() endif()
############### test_CompareTwoOpts ###################
add_unittest_without_exec(test_CompareTwoOpts
test_CompareTwoOpts.cpp)
add_test(NAME test_CompareTwoOpts
COMMAND ${PADDLE_SOURCE_DIR}/paddle/.set_python_path.sh -d ${PADDLE_SOURCE_DIR}/python/
${CMAKE_CURRENT_BINARY_DIR}/test_CompareTwoOpts
--config_file_a=trainer/tests/sample_trainer_config_opt_a.conf --config_file_b=trainer/tests/sample_trainer_config_opt_b.conf
--num_passes=1 --need_high_accuracy=0
WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle/)
################# test_recurrent_machine_generation ############### ################# test_recurrent_machine_generation ###############
add_unittest_without_exec(test_recurrent_machine_generation add_unittest_without_exec(test_recurrent_machine_generation
test_recurrent_machine_generation.cpp) test_recurrent_machine_generation.cpp)
......
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.trainer_config_helpers import *
################################### Data Configuration ###################################
TrainData(SimpleData(
files = "trainer/tests/sample_filelist.txt",
feat_dim = 3,
context_len = 0,
buffer_capacity = 1000000))
################################### Algorithm Configuration ###################################
settings(batch_size = 1000,
learning_method = MomentumOptimizer(momentum=0.5, sparse=False))
################################### Network Configuration ###################################
data = data_layer(name ="input", size=3)
fc1 = fc_layer(input=data, size=800,
bias_attr=True,
act=SigmoidActivation())
fc2 = fc_layer(input=fc1, size=800,
bias_attr=True,
act=SigmoidActivation())
output = fc_layer(input=[fc1, fc2], size=10,
bias_attr=True,
act=SoftmaxActivation())
lbl = data_layer(name ="label", size=1)
cost = classification_cost(input=output, label=lbl)
outputs(cost)
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.trainer_config_helpers import *
################################### Data Configuration ###################################
TrainData(SimpleData(
files = "trainer/tests/sample_filelist.txt",
feat_dim = 3,
context_len = 0,
buffer_capacity = 1000000))
################################### Algorithm Configuration ###################################
settings(batch_size = 1000,
learning_method = MomentumOptimizer(momentum=0.5, sparse=False))
################################### Network Configuration ###################################
data = data_layer(name ="input", size=3)
fc1 = fc_layer(input=data, size=800,
bias_attr=True,
act=SigmoidActivation())
fc2 = fc_layer(input=fc1, size=800,
bias_attr=True,
act=SigmoidActivation())
output = fc_layer(input=[fc1, fc2], size=10,
bias_attr=True,
act=SoftmaxActivation())
lbl = data_layer(name ="label", size=1)
cost = classification_cost(input=output, label=lbl)
outputs(cost)
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include <paddle/utils/PythonUtil.h>
#include <algorithm>
#include <cstdlib>
#include "paddle/trainer/Trainer.h"
using namespace paddle; // NOLINT
using namespace std; // NOLINT
DECLARE_int32(gpu_id);
DECLARE_bool(local);
DECLARE_bool(use_gpu);
DECLARE_string(config);
DECLARE_string(nics);
DEFINE_string(config_file_a, "", "config of one network to compare");
DEFINE_string(config_file_b, "", "config of another network to compare");
DEFINE_bool(need_high_accuracy,
true,
"whether need to run in double accuracy (recommended)");
DEFINE_double(
max_diff_ratio,
0.0f,
"max diff ratio allowed for outputs and parameters (value/gradient)");
struct ComData {
vector<Argument> outArgs;
vector<ParameterPtr> parameters;
};
void calcGradient(ComData& data, const string configFile) {
FLAGS_config = configFile;
FLAGS_local = true;
FLAGS_use_gpu = false;
FLAGS_nics = "";
*ThreadLocalRand::getSeed() = 0;
srand(0);
Trainer trainer;
trainer.init(TrainerConfigHelper::createFromFlagConfig(), false);
data.parameters = trainer.getGradientMachine()->getParameters();
trainer.getDataProvider()->setSkipShuffle();
trainer.train();
}
void checkBuffer(real* A,
const char* desA,
real* B,
const char* desB,
size_t len,
size_t width = 1) {
int nNum = 0;
for (size_t i = 0; i < len; ++i) {
real diff = fabs(A[i] - B[i]);
if (diff > 0.0f &&
diff / std::max(fabs(A[i]), fabs(B[i])) > FLAGS_max_diff_ratio) {
nNum++;
LOG(INFO) << "Row: " << i / width << ", " << desA << " : " << A[i]
<< " " << desB << " : " << B[i];
}
}
EXPECT_EQ(0, nNum);
LOG(INFO) << "\n\n";
}
void compareGradient(ComData& comDataA, ComData& comDataB) {
vector<Argument> outArgsA = comDataA.outArgs;
vector<Argument> outArgsB = comDataB.outArgs;
for (size_t i = 0; i < outArgsA.size(); ++i) {
CpuMatrix matA(outArgsA[i].value->getHeight(),
outArgsA[i].value->getWidth());
CpuMatrix matB(outArgsB[i].value->getHeight(),
outArgsB[i].value->getWidth());
matA.copyFrom(*outArgsA[i].value);
matB.copyFrom(*outArgsB[i].value);
LOG(INFO) << "\n--------------------------------"
<< " Check Network Output_" << i << ":"
<< " -------------------------------------\n";
checkBuffer(matA.getData(),
"network A output",
matB.getData(),
"network B output",
matA.getElementCnt(),
matA.getWidth());
}
vector<ParameterPtr>& parametersA = comDataA.parameters;
vector<ParameterPtr>& parametersB = comDataB.parameters;
LOG(INFO) << "\n\n--------------------------------"
<< " Check Gradient Machine Parameters:"
<< " -------------------------------------\n";
for (size_t i = 0; i < parametersA.size(); ++i) {
ParameterPtr parameterA, parameterB;
parameterA = parametersA[i];
parameterB = parametersB[i];
CpuVector paraA(parameterA->getSize());
CpuVector paraB(parameterB->getSize());
paraA.copyFrom(*parameterA->getBuf(PARAMETER_VALUE));
paraB.copyFrom(*parameterB->getBuf(PARAMETER_VALUE));
LOG(INFO) << "\n\n----------- PARAMETER_VALUE: " << parameterA->getName()
<< " ; size : " << paraA.getSize() << " ------------";
checkBuffer(paraA.getData(),
"Network A",
paraB.getData(),
"Network B",
paraA.getSize());
CpuVector gradA(*parameterA->getBuf(PARAMETER_GRADIENT));
CpuVector gradB(*parameterB->getBuf(PARAMETER_GRADIENT));
LOG(INFO) << "\n\n----------- PARAMETER_GRADIENT: " << parameterA->getName()
<< " ; size : " << gradA.getSize() << " -----------";
checkBuffer(gradA.getData(),
"Network A",
gradB.getData(),
"Network B",
gradA.getSize());
}
}
TEST(Trainer, create) {
ComData dataA;
calcGradient(dataA, FLAGS_config_file_a);
LOG(INFO) << "\n\ntraining of Network A is finished\n\n";
ComData dataB;
calcGradient(dataB, FLAGS_config_file_b);
LOG(INFO) << "\n\ntraining of the Network B is finished\n\n";
compareGradient(dataA, dataB);
}
int main(int argc, char** argv) {
paddle::initMain(argc, argv);
testing::InitGoogleTest(&argc, argv);
initPython(argc, argv);
#ifndef PADDLE_TYPE_DOUBLE
if (FLAGS_need_high_accuracy) {
LOG(INFO) << "skip test due to it's need high accuracy";
return 0;
}
if (FLAGS_max_diff_ratio == 0.0f) {
FLAGS_max_diff_ratio = 2e-4;
LOG(INFO) << "auto set max_diff_ratio " << FLAGS_max_diff_ratio
<< " in low accuracy mode";
}
#else
if (FLAGS_max_diff_ratio == 0.0f) {
FLAGS_max_diff_ratio = 2e-7;
LOG(INFO) << "auto set max_diff_ratio " << FLAGS_max_diff_ratio
<< " in high accuracy mode";
}
#endif
int ret = RUN_ALL_TESTS();
return ret;
}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册