Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
df4a3544
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
df4a3544
编写于
11月 01, 2018
作者:
D
dengkaipeng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
nearest neighbor interp add cuda kernel. test=develop
上级
97556119
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
111 addition
and
93 deletion
+111
-93
paddle/fluid/API.spec
paddle/fluid/API.spec
+1
-0
paddle/fluid/operators/nearest_neighbor_interp_op.cc
paddle/fluid/operators/nearest_neighbor_interp_op.cc
+5
-4
paddle/fluid/operators/nearest_neighbor_interp_op.cu
paddle/fluid/operators/nearest_neighbor_interp_op.cu
+63
-86
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+32
-3
python/paddle/fluid/tests/unittests/test_layers.py
python/paddle/fluid/tests/unittests/test_layers.py
+10
-0
未找到文件。
paddle/fluid/API.spec
浏览文件 @
df4a3544
...
@@ -121,6 +121,7 @@ paddle.fluid.layers.dice_loss ArgSpec(args=['input', 'label', 'epsilon'], vararg
...
@@ -121,6 +121,7 @@ paddle.fluid.layers.dice_loss ArgSpec(args=['input', 'label', 'epsilon'], vararg
paddle.fluid.layers.image_resize ArgSpec(args=['input', 'out_shape', 'scale', 'name', 'resample'], varargs=None, keywords=None, defaults=(None, None, None, 'BILINEAR'))
paddle.fluid.layers.image_resize ArgSpec(args=['input', 'out_shape', 'scale', 'name', 'resample'], varargs=None, keywords=None, defaults=(None, None, None, 'BILINEAR'))
paddle.fluid.layers.image_resize_short ArgSpec(args=['input', 'out_short_len', 'resample'], varargs=None, keywords=None, defaults=('BILINEAR',))
paddle.fluid.layers.image_resize_short ArgSpec(args=['input', 'out_short_len', 'resample'], varargs=None, keywords=None, defaults=('BILINEAR',))
paddle.fluid.layers.resize_bilinear ArgSpec(args=['input', 'out_shape', 'scale', 'name'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.layers.resize_bilinear ArgSpec(args=['input', 'out_shape', 'scale', 'name'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.layers.resize_nearest ArgSpec(args=['input', 'out_shape', 'scale', 'name'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.layers.gather ArgSpec(args=['input', 'index'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.gather ArgSpec(args=['input', 'index'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.scatter ArgSpec(args=['input', 'index', 'updates', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.scatter ArgSpec(args=['input', 'index', 'updates', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.sequence_scatter ArgSpec(args=['input', 'index', 'updates', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.sequence_scatter ArgSpec(args=['input', 'index', 'updates', 'name'], varargs=None, keywords=None, defaults=(None,))
...
...
paddle/fluid/operators/nearest_neighbor_interp_op.cc
浏览文件 @
df4a3544
...
@@ -25,9 +25,9 @@ class NearestNeighborInterpOp : public framework::OperatorWithKernel {
...
@@ -25,9 +25,9 @@ class NearestNeighborInterpOp : public framework::OperatorWithKernel {
protected:
protected:
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) of
Bilinea
rInterOp should not be null."
);
"Input(X) of
NearestNeighbo
rInterOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) of
Bilinea
rInterOp should not be null."
);
"Output(Out) of
NearestNeighbo
rInterOp should not be null."
);
auto
dim_x
=
ctx
->
GetInputDim
(
"X"
);
// NCHW format
auto
dim_x
=
ctx
->
GetInputDim
(
"X"
);
// NCHW format
int
out_h
=
ctx
->
Attrs
().
Get
<
int
>
(
"out_h"
);
int
out_h
=
ctx
->
Attrs
().
Get
<
int
>
(
"out_h"
);
...
@@ -64,8 +64,9 @@ class NearestNeighborInterpOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -64,8 +64,9 @@ class NearestNeighborInterpOpMaker : public framework::OpProtoAndCheckerMaker {
.
AsDispensable
();
.
AsDispensable
();
AddOutput
(
"Out"
,
"The dimension of output is (N x C x out_h x out_w)"
);
AddOutput
(
"Out"
,
"The dimension of output is (N x C x out_h x out_w)"
);
AddAttr
<
int
>
(
"out_h"
,
"output height of bilinear interpolation op."
);
AddAttr
<
int
>
(
"out_h"
,
AddAttr
<
int
>
(
"out_w"
,
"output width of bilinear interpolation op."
);
"output height of nearest neighbor interpolation op."
);
AddAttr
<
int
>
(
"out_w"
,
"output width of nearest neighbor interpolation op."
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
Nearest neighbor interpolation is to perform nearest neighbor interpolation
Nearest neighbor interpolation is to perform nearest neighbor interpolation
in bot the 3rd dimention(in height direction) and the 4th dimention(in width
in bot the 3rd dimention(in height direction) and the 4th dimention(in width
...
...
paddle/fluid/operators/nearest_neighbor_interp_op.cu
浏览文件 @
df4a3544
...
@@ -15,17 +15,14 @@
...
@@ -15,17 +15,14 @@
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
namespace
operators
{
template
<
typename
T
,
size_t
D
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenTensor
=
framework
::
EigenTensor
<
T
,
D
,
MajorType
,
IndexType
>
;
using
framework
::
Tensor
;
using
framework
::
Tensor
;
template
<
typename
T
>
template
<
typename
T
>
__global__
void
Ke
Bilinea
rInterpFw
(
__global__
void
Ke
NearestNeighbo
rInterpFw
(
const
T
*
in
,
const
size_t
in_img_h
,
const
size_t
in_img_w
,
const
T
*
in
,
const
size_t
in_img_h
,
const
size_t
in_img_w
,
const
size_t
input_h
,
const
size_t
input_w
,
T
*
out
,
const
size_t
out_img_h
,
const
size_t
input_h
,
const
size_t
input_w
,
T
*
out
,
const
size_t
out_img_h
,
const
size_t
out_img_w
,
const
size_t
output_h
,
const
size_t
output_w
,
const
size_t
out_img_w
,
const
size_t
output_h
,
const
size_t
output_w
,
const
size_t
num_channels
,
const
T
ratio_h
,
const
T
ratio
W
)
{
const
size_t
num_channels
,
const
T
ratio_h
,
const
T
ratio
_w
)
{
int
nthreads
=
output_h
*
output_w
;
int
nthreads
=
output_h
*
output_w
;
int
tid
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
tid
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
if
(
tid
<
nthreads
)
{
if
(
tid
<
nthreads
)
{
...
@@ -36,34 +33,22 @@ __global__ void KeBilinearInterpFw(
...
@@ -36,34 +33,22 @@ __global__ void KeBilinearInterpFw(
int
channel_id
=
out_id_w
/
out_img_size
;
int
channel_id
=
out_id_w
/
out_img_size
;
int
out_img_idy
=
(
out_id_w
%
out_img_size
)
/
out_img_w
;
int
out_img_idy
=
(
out_id_w
%
out_img_size
)
/
out_img_w
;
int
in_img_idy
=
ratio_h
*
out_img_idy
;
int
in_img_idy
=
static_cast
<
int
>
(
round
(
ratio_h
*
out_img_idy
));
int
h_id
=
(
in_img_idy
<
in_img_h
-
1
)
?
1
:
0
;
T
h1lambda
=
ratio_h
*
out_img_idy
-
in_img_idy
;
T
h2lambda
=
1.
f
-
h1lambda
;
int
out_img_idx
=
tid
%
out_img_w
;
int
out_img_idx
=
tid
%
out_img_w
;
int
in_img_idx
=
ratioW
*
out_img_idx
;
int
in_img_idx
=
static_cast
<
int
>
(
round
(
ratio_w
*
out_img_idx
));
int
w_id
=
(
in_img_idx
<
in_img_w
-
1
)
?
1
:
0
;
T
w1lambda
=
ratioW
*
out_img_idx
-
in_img_idx
;
out
[
tid
]
=
in
[
out_id_h
*
input_w
+
channel_id
*
in_img_size
+
T
w2lambda
=
1.
f
-
w1lambda
;
in_img_idy
*
in_img_w
+
in_img_idx
];
const
T
*
in_pos
=
&
in
[
out_id_h
*
input_w
+
channel_id
*
in_img_size
+
in_img_idy
*
in_img_w
+
in_img_idx
];
// bilinear interpolation
out
[
out_id_h
*
output_w
+
out_id_w
]
=
h2lambda
*
(
w2lambda
*
in_pos
[
0
]
+
w1lambda
*
in_pos
[
w_id
])
+
h1lambda
*
(
w2lambda
*
in_pos
[
h_id
*
in_img_w
]
+
w1lambda
*
in_pos
[
h_id
*
in_img_w
+
w_id
]);
}
}
}
}
template
<
typename
T
>
template
<
typename
T
>
__global__
void
Ke
Bilinea
rInterpBw
(
__global__
void
Ke
NearestNeighbo
rInterpBw
(
T
*
in
,
const
size_t
in_img_h
,
const
size_t
in_img_w
,
const
size_t
input_h
,
T
*
in
,
const
size_t
in_img_h
,
const
size_t
in_img_w
,
const
size_t
input_h
,
const
size_t
input_w
,
const
T
*
out
,
const
size_t
out_img_h
,
const
size_t
input_w
,
const
T
*
out
,
const
size_t
out_img_h
,
const
size_t
out_img_w
,
const
size_t
output_h
,
const
size_t
output_w
,
const
size_t
out_img_w
,
const
size_t
output_h
,
const
size_t
output_w
,
const
size_t
num_channels
,
const
T
ratio_h
,
const
T
ratio
W
)
{
const
size_t
num_channels
,
const
T
ratio_h
,
const
T
ratio
_w
)
{
int
nthreads
=
output_h
*
output_w
;
int
nthreads
=
output_h
*
output_w
;
int
tid
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
tid
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
if
(
tid
<
nthreads
)
{
if
(
tid
<
nthreads
)
{
...
@@ -74,25 +59,15 @@ __global__ void KeBilinearInterpBw(
...
@@ -74,25 +59,15 @@ __global__ void KeBilinearInterpBw(
int
channel_id
=
out_id_w
/
out_img_size
;
int
channel_id
=
out_id_w
/
out_img_size
;
int
out_img_idy
=
(
out_id_w
%
out_img_size
)
/
out_img_w
;
int
out_img_idy
=
(
out_id_w
%
out_img_size
)
/
out_img_w
;
int
in_img_idy
=
ratio_h
*
out_img_idy
;
int
in_img_idy
=
static_cast
<
int
>
(
round
(
ratio_h
*
out_img_idy
));
int
h_id
=
(
in_img_idy
<
in_img_h
-
1
)
?
1
:
0
;
T
h1lambda
=
ratio_h
*
out_img_idy
-
in_img_idy
;
T
h2lambda
=
1.
f
-
h1lambda
;
int
out_img_idx
=
tid
%
out_img_w
;
int
out_img_idx
=
tid
%
out_img_w
;
int
in_img_idx
=
ratioW
*
out_img_idx
;
int
in_img_idx
=
static_cast
<
int
>
(
round
(
ratio_w
*
out_img_idx
));
int
w_id
=
(
in_img_idx
<
in_img_w
-
1
)
?
1
:
0
;
T
w1lambda
=
ratioW
*
out_img_idx
-
in_img_idx
;
T
w2lambda
=
1.
f
-
w1lambda
;
T
*
in_pos
=
&
in
[
out_id_h
*
input_w
+
channel_id
*
in_img_size
+
T
*
in_pos
=
&
in
[
out_id_h
*
input_w
+
channel_id
*
in_img_size
+
in_img_idy
*
in_img_w
+
in_img_idx
];
in_img_idy
*
in_img_w
+
in_img_idx
];
const
T
*
out_pos
=
&
out
[
out_id_h
*
output_w
+
out_id_w
];
const
T
out_pos
=
out
[
out_id_h
*
output_w
+
out_id_w
];
atomicAdd
(
&
in_pos
[
0
],
h2lambda
*
w2lambda
*
out_pos
[
0
]);
atomicAdd
(
in_pos
,
out_pos
);
atomicAdd
(
&
in_pos
[
w_id
],
h2lambda
*
w1lambda
*
out_pos
[
0
]);
atomicAdd
(
&
in_pos
[
h_id
*
in_img_w
],
h1lambda
*
w2lambda
*
out_pos
[
0
]);
atomicAdd
(
&
in_pos
[
h_id
*
in_img_w
+
w_id
],
h1lambda
*
w1lambda
*
out_pos
[
0
]);
}
}
}
}
...
@@ -102,48 +77,49 @@ class NearestNeighborInterpOpCUDAKernel : public framework::OpKernel<T> {
...
@@ -102,48 +77,49 @@ class NearestNeighborInterpOpCUDAKernel : public framework::OpKernel<T> {
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()),
PADDLE_ENFORCE
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()),
"This kernel only runs on GPU device."
);
"This kernel only runs on GPU device."
);
auto
*
input
_t
=
ctx
.
Input
<
Tensor
>
(
"X"
);
// float tensor
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
// float tensor
auto
*
output
_t
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
// float tensor
auto
*
output
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
// float tensor
auto
*
input
=
input_
t
->
data
<
T
>
();
auto
*
input
_data
=
inpu
t
->
data
<
T
>
();
int
out_h
=
ctx
.
Attr
<
int
>
(
"out_h"
);
int
out_h
=
ctx
.
Attr
<
int
>
(
"out_h"
);
int
out_w
=
ctx
.
Attr
<
int
>
(
"out_w"
);
int
out_w
=
ctx
.
Attr
<
int
>
(
"out_w"
);
auto
out_dims
=
output_t
->
dims
();
auto
out_size
=
ctx
.
Input
<
Tensor
>
(
"OutSize"
);
auto
out_size_t
=
ctx
.
Input
<
Tensor
>
(
"OutSize"
);
if
(
out_size
!=
nullptr
)
{
if
(
out_size_t
!=
nullptr
)
{
Tensor
sizes
;
Tensor
sizes
;
framework
::
TensorCopy
(
*
out_size
_t
,
platform
::
CPUPlace
(),
&
sizes
);
framework
::
TensorCopy
(
*
out_size
,
platform
::
CPUPlace
(),
&
sizes
);
auto
size_data
=
sizes
.
data
<
int
>
();
auto
size_data
=
sizes
.
data
<
int
>
();
out_h
=
size_data
[
0
];
out_h
=
size_data
[
0
];
out_w
=
size_data
[
1
];
out_w
=
size_data
[
1
];
}
}
auto
*
output
=
output_t
->
mutable_data
<
T
>
(
{
out_dims
[
0
],
out_dims
[
1
],
out_h
,
out_w
},
ctx
.
GetPlace
());
int
batch_size
=
input_t
->
dims
()[
0
];
int
n
=
input
->
dims
()[
0
];
int
channels
=
input_t
->
dims
()[
1
];
int
c
=
input
->
dims
()[
1
];
int
in_h
=
input_t
->
dims
()[
2
];
int
in_h
=
input
->
dims
()[
2
];
int
in_w
=
input_t
->
dims
()[
3
];
int
in_w
=
input
->
dims
()[
3
];
auto
*
output_data
=
output
->
mutable_data
<
T
>
({
n
,
c
,
out_h
,
out_w
},
ctx
.
GetPlace
());
int
in_hw
=
in_h
*
in_w
;
int
in_hw
=
in_h
*
in_w
;
int
out_hw
=
out_h
*
out_w
;
int
out_hw
=
out_h
*
out_w
;
int
in_chw
=
c
hannels
*
in_hw
;
int
in_chw
=
c
*
in_hw
;
int
out_chw
=
c
hannels
*
out_hw
;
int
out_chw
=
c
*
out_hw
;
T
ratio_h
=
(
out_h
>
1
)
?
static_cast
<
T
>
(
in_h
-
1
)
/
(
out_h
-
1
)
:
0.
f
;
T
ratio_h
=
(
out_h
>
1
)
?
static_cast
<
T
>
(
in_h
-
1
)
/
(
out_h
-
1
)
:
0.
f
;
T
ratio_w
=
(
out_w
>
1
)
?
static_cast
<
T
>
(
in_w
-
1
)
/
(
out_w
-
1
)
:
0.
f
;
T
ratio_w
=
(
out_w
>
1
)
?
static_cast
<
T
>
(
in_w
-
1
)
/
(
out_w
-
1
)
:
0.
f
;
if
(
in_h
==
out_h
&&
in_w
==
out_w
)
{
if
(
in_h
==
out_h
&&
in_w
==
out_w
)
{
memcpy
(
output
,
input
,
input_t
->
numel
()
*
sizeof
(
T
));
memcpy
(
output_data
,
input_data
,
input
->
numel
()
*
sizeof
(
T
));
}
else
{
return
;
int
threadNum
=
batch_size
*
out_chw
;
int
blocks
=
(
threadNum
+
1024
-
1
)
/
1024
;
KeBilinearInterpFw
<
T
><<<
blocks
,
1024
,
0
,
ctx
.
cuda_device_context
().
stream
()
>>>
(
input
,
in_h
,
in_w
,
batch_size
,
in_chw
,
output
,
out_h
,
out_w
,
batch_size
,
out_chw
,
channels
,
ratio_h
,
ratio_w
);
}
}
int
threadNum
=
n
*
out_chw
;
int
blocks
=
(
threadNum
+
1024
-
1
)
/
1024
;
KeNearestNeighborInterpFw
<
T
><<<
blocks
,
1024
,
0
,
ctx
.
cuda_device_context
().
stream
()
>>>
(
input_data
,
in_h
,
in_w
,
n
,
in_chw
,
output_data
,
out_h
,
out_w
,
n
,
out_chw
,
c
,
ratio_h
,
ratio_w
);
}
}
};
};
...
@@ -151,52 +127,53 @@ template <typename T>
...
@@ -151,52 +127,53 @@ template <typename T>
class
NearestNeighborInterpGradOpCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
class
NearestNeighborInterpGradOpCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
d_input_t
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
input_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
d_output_t
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
output_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
d_output
=
d_output_t
->
data
<
T
>
();
auto
*
output_grad_data
=
output_grad
->
data
<
T
>
();
auto
*
d_input
=
d_input_t
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
input_grad_data
=
input_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
&
device_ctx
=
auto
&
device_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
math
::
SetConstant
<
platform
::
CUDADeviceContext
,
T
>
zero
;
math
::
SetConstant
<
platform
::
CUDADeviceContext
,
T
>
zero
;
zero
(
device_ctx
,
d_input_t
,
static_cast
<
T
>
(
0.0
));
zero
(
device_ctx
,
input_grad
,
static_cast
<
T
>
(
0.0
));
int
out_h
=
ctx
.
Attr
<
int
>
(
"out_h"
);
int
out_h
=
ctx
.
Attr
<
int
>
(
"out_h"
);
int
out_w
=
ctx
.
Attr
<
int
>
(
"out_w"
);
int
out_w
=
ctx
.
Attr
<
int
>
(
"out_w"
);
auto
out_size
_t
=
ctx
.
Input
<
Tensor
>
(
"OutSize"
);
auto
out_size
=
ctx
.
Input
<
Tensor
>
(
"OutSize"
);
if
(
out_size
_t
!=
nullptr
)
{
if
(
out_size
!=
nullptr
)
{
Tensor
sizes
;
Tensor
sizes
;
framework
::
TensorCopy
(
*
out_size
_t
,
platform
::
CPUPlace
(),
&
sizes
);
framework
::
TensorCopy
(
*
out_size
,
platform
::
CPUPlace
(),
&
sizes
);
auto
size_data
=
sizes
.
data
<
int
>
();
auto
size_data
=
sizes
.
data
<
int
>
();
out_h
=
size_data
[
0
];
out_h
=
size_data
[
0
];
out_w
=
size_data
[
1
];
out_w
=
size_data
[
1
];
}
}
int
batch_size
=
d_input_t
->
dims
()[
0
];
int
n
=
input_grad
->
dims
()[
0
];
int
c
hannels
=
d_input_t
->
dims
()[
1
];
int
c
=
input_grad
->
dims
()[
1
];
int
in_h
=
d_input_t
->
dims
()[
2
];
int
in_h
=
input_grad
->
dims
()[
2
];
int
in_w
=
d_input_t
->
dims
()[
3
];
int
in_w
=
input_grad
->
dims
()[
3
];
int
in_hw
=
in_h
*
in_w
;
int
in_hw
=
in_h
*
in_w
;
int
out_hw
=
out_h
*
out_w
;
int
out_hw
=
out_h
*
out_w
;
int
in_chw
=
c
hannels
*
in_hw
;
int
in_chw
=
c
*
in_hw
;
int
out_chw
=
c
hannels
*
out_hw
;
int
out_chw
=
c
*
out_hw
;
T
ratio_h
=
(
out_h
>
1
)
?
static_cast
<
T
>
(
in_h
-
1
)
/
(
out_h
-
1
)
:
0.
f
;
T
ratio_h
=
(
out_h
>
1
)
?
static_cast
<
T
>
(
in_h
-
1
)
/
(
out_h
-
1
)
:
0.
f
;
T
ratio_w
=
(
out_w
>
1
)
?
static_cast
<
T
>
(
in_w
-
1
)
/
(
out_w
-
1
)
:
0.
f
;
T
ratio_w
=
(
out_w
>
1
)
?
static_cast
<
T
>
(
in_w
-
1
)
/
(
out_w
-
1
)
:
0.
f
;
if
(
in_h
==
out_h
&&
in_w
==
out_w
)
{
if
(
in_h
==
out_h
&&
in_w
==
out_w
)
{
memcpy
(
d_input
,
d_output
,
d_input_t
->
numel
()
*
sizeof
(
T
));
memcpy
(
input_grad
,
output_grad
,
input_grad
->
numel
()
*
sizeof
(
T
));
}
else
{
return
;
int
threadNum
=
batch_size
*
out_chw
;
int
blocks
=
(
threadNum
+
1024
-
1
)
/
1024
;
KeBilinearInterpBw
<
T
><<<
blocks
,
1024
,
0
,
ctx
.
cuda_device_context
().
stream
()
>>>
(
d_input
,
in_h
,
in_w
,
batch_size
,
in_chw
,
d_output
,
out_h
,
out_w
,
batch_size
,
out_chw
,
channels
,
ratio_h
,
ratio_w
);
}
}
int
threadNum
=
n
*
out_chw
;
int
blocks
=
(
threadNum
+
1024
-
1
)
/
1024
;
KeNearestNeighborInterpBw
<
T
><<<
blocks
,
1024
,
0
,
ctx
.
cuda_device_context
().
stream
()
>>>
(
input_grad_data
,
in_h
,
in_w
,
n
,
in_chw
,
output_grad_data
,
out_h
,
out_w
,
n
,
out_chw
,
c
,
ratio_h
,
ratio_w
);
}
}
};
};
...
@@ -206,5 +183,5 @@ class NearestNeighborInterpGradOpCUDAKernel : public framework::OpKernel<T> {
...
@@ -206,5 +183,5 @@ class NearestNeighborInterpGradOpCUDAKernel : public framework::OpKernel<T> {
namespace
ops
=
paddle
::
operators
;
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
nearest_neighbor_interp
,
REGISTER_OP_CUDA_KERNEL
(
nearest_neighbor_interp
,
ops
::
NearestNeighborInterpOpCUDAKernel
<
float
>
);
ops
::
NearestNeighborInterpOpCUDAKernel
<
float
>
);
REGISTER_OP_CUDA_KERNEL
(
nearest_neighborinterp_grad
,
REGISTER_OP_CUDA_KERNEL
(
nearest_neighbor
_
interp_grad
,
ops
::
NearestNeighborInterpGradOpCUDAKernel
<
float
>
);
ops
::
NearestNeighborInterpGradOpCUDAKernel
<
float
>
);
python/paddle/fluid/layers/nn.py
浏览文件 @
df4a3544
...
@@ -101,6 +101,7 @@ __all__ = [
...
@@ -101,6 +101,7 @@ __all__ = [
'image_resize'
,
'image_resize'
,
'image_resize_short'
,
'image_resize_short'
,
'resize_bilinear'
,
'resize_bilinear'
,
'resize_nearest'
,
'gather'
,
'gather'
,
'scatter'
,
'scatter'
,
'sequence_scatter'
,
'sequence_scatter'
,
...
@@ -5584,6 +5585,7 @@ def image_resize(input,
...
@@ -5584,6 +5585,7 @@ def image_resize(input,
Supporting resample methods:
Supporting resample methods:
'BILINEAR' : Bilinear interpolation
'BILINEAR' : Bilinear interpolation
'NEAREST' : Nearest neighbor interpolation
Args:
Args:
input (Variable): The input tensor of image resize layer,
input (Variable): The input tensor of image resize layer,
...
@@ -5610,13 +5612,17 @@ def image_resize(input,
...
@@ -5610,13 +5612,17 @@ def image_resize(input,
out = fluid.layers.image_resize(input, out_shape=[12, 12])
out = fluid.layers.image_resize(input, out_shape=[12, 12])
"""
"""
resample_methods
=
{
'BILINEAR'
:
'bilinear_interp'
}
resample_methods
=
{
'BILINEAR'
:
'bilinear_interp'
,
'NEAREST'
:
'nearest_neighbor_interp'
}
if
resample
not
in
resample_methods
:
if
resample
not
in
resample_methods
:
raise
ValueError
(
raise
ValueError
(
"The 'resample' of image_resize can only be 'BILINEAR' currently."
)
"The 'resample' of image_resize can only be 'BILINEAR' and 'NEAREST' currently."
)
if
out_shape
is
None
and
scale
is
None
:
if
out_shape
is
None
and
scale
is
None
:
raise
ValueError
(
"One of out_shape and scale must not be None"
)
raise
ValueError
(
"One of out_shape and scale must not be None"
)
helper
=
LayerHelper
(
'bilinear_interp'
,
**
locals
())
helper
=
LayerHelper
(
resample_methods
[
resample
]
,
**
locals
())
dtype
=
helper
.
input_dtype
()
dtype
=
helper
.
input_dtype
()
def
_is_list_or_turple_
(
data
):
def
_is_list_or_turple_
(
data
):
...
@@ -5672,6 +5678,29 @@ def resize_bilinear(input, out_shape=None, scale=None, name=None):
...
@@ -5672,6 +5678,29 @@ def resize_bilinear(input, out_shape=None, scale=None, name=None):
return
image_resize
(
input
,
out_shape
,
scale
,
name
,
'BILINEAR'
)
return
image_resize
(
input
,
out_shape
,
scale
,
name
,
'BILINEAR'
)
@
templatedoc
(
op_type
=
"bilinear_interp"
)
def
resize_nearest
(
input
,
out_shape
=
None
,
scale
=
None
,
name
=
None
):
"""
${comment}
Args:
input(${x_type}): ${x_comment}.
out_shape(${out_size_type}): ${out_size_comment}.
scale(float|None): The multiplier for the input height or width. At
least one of out_shape or scale must be set. And out_shape has
a higher priority than scale. Default: None.
name(str|None): The output variable name.
Returns:
${out_comment}.
"""
return
image_resize
(
input
,
out_shape
,
scale
,
name
,
'NEAREST'
)
def
image_resize_short
(
input
,
out_short_len
,
resample
=
'BILINEAR'
):
def
image_resize_short
(
input
,
out_short_len
,
resample
=
'BILINEAR'
):
"""
"""
Resize a batch of images. The short edge of input images will be
Resize a batch of images. The short edge of input images will be
...
...
python/paddle/fluid/tests/unittests/test_layers.py
浏览文件 @
df4a3544
...
@@ -485,6 +485,16 @@ class TestBook(unittest.TestCase):
...
@@ -485,6 +485,16 @@ class TestBook(unittest.TestCase):
self
.
assertIsNotNone
(
output
)
self
.
assertIsNotNone
(
output
)
print
(
str
(
program
))
print
(
str
(
program
))
def
test_resize_bilinear
(
self
):
program
=
Program
()
with
program_guard
(
program
):
x
=
layers
.
data
(
name
=
'x'
,
shape
=
[
3
,
9
,
6
],
dtype
=
"float32"
)
output
=
layers
.
resize_nearest
(
x
,
out_shape
=
[
12
,
12
])
self
.
assertIsNotNone
(
output
)
output
=
layers
.
resize_nearest
(
x
,
scale
=
3
)
self
.
assertIsNotNone
(
output
)
print
(
str
(
program
))
def
test_polygon_box_transform
(
self
):
def
test_polygon_box_transform
(
self
):
program
=
Program
()
program
=
Program
()
with
program_guard
(
program
):
with
program_guard
(
program
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录