未验证 提交 de1b390b 编写于 作者: A Aurelius84 提交者: GitHub

Add unittest for dict in dygraph_to_static test=develop (#22854)

上级 5191e544
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import six
import numpy as np
import unittest
import paddle.fluid as fluid
from paddle.fluid.dygraph.jit import dygraph_to_static_graph
PLACE = fluid.CUDAPlace(0) if fluid.is_compiled_with_cuda() else fluid.CPUPlace(
)
class SubNetWithDict(fluid.dygraph.Layer):
def __init__(self, hidden_size=16, output_size=16):
super(SubNetWithDict, self).__init__()
init_weight = lambda x: fluid.ParamAttr(initializer=fluid.initializer.Constant(x))
self.q_fc = fluid.dygraph.Linear(
input_dim=hidden_size,
output_dim=output_size,
bias_attr=False,
param_attr=init_weight(0.6))
self.k_fc = fluid.dygraph.Linear(
input_dim=hidden_size,
output_dim=output_size,
bias_attr=False,
param_attr=init_weight(0.5))
self.v_fc = fluid.dygraph.Linear(
input_dim=hidden_size,
output_dim=output_size,
bias_attr=False,
param_attr=init_weight(0.2))
@dygraph_to_static_graph
def forward(self, input, cache=None):
input = fluid.dygraph.to_variable(input)
q = self.q_fc(input)
k = self.k_fc(input)
v = self.v_fc(input)
if cache is not None:
cache_k, cache_v = cache["k"], cache["v"]
k = 0.1 * cache_k + k
v = 0.2 * cache_v + v
cache["k"], cache["v"] = k, v
weight = fluid.layers.matmul(x=q, y=k, transpose_y=True)
weight = fluid.layers.softmax(weight)
out = fluid.layers.matmul(weight, v)
return out
class MainNetWithDict(fluid.dygraph.Layer):
def __init__(self, batch_size=64, hidden_size=16, output_size=16):
super(MainNetWithDict, self).__init__()
self.batch_size = batch_size
self.hidden_size = hidden_size
self.output_size = output_size
self.sub_net = SubNetWithDict(hidden_size, output_size)
@dygraph_to_static_graph
def forward(self, input, max_len=4):
input = fluid.dygraph.to_variable(input)
cache = {
"k": fluid.layers.fill_constant(
shape=[self.batch_size, self.output_size],
dtype='float32',
value=0),
"v": fluid.layers.fill_constant(
shape=[self.batch_size, self.output_size],
dtype='float32',
value=0),
}
max_len = input.shape[0] if input.shape[0] != max_len else max_len
out = input
for i in range(max_len):
out = self.sub_net(out, cache)
cache = self.update_cache(cache)
return out
def update_cache(self, cache):
for k, val in six.iteritems(cache):
cache[k] = fluid.layers.softmax(val)
return cache
class TestNetWithDict(unittest.TestCase):
"""
TestCase for the transformation from control flow `if/else`
dependent on tensor in Dygraph into Static `fluid.layers.cond`.
"""
def setUp(self):
self.x = np.random.random([10, 16]).astype('float32')
self.batch_size = self.x.shape[0]
def _run_static(self):
main_program = fluid.Program()
with fluid.program_guard(main_program):
net = MainNetWithDict(batch_size=self.batch_size)
# Transform into static graph
out = net(self.x)
exe = fluid.Executor(PLACE)
exe.run(fluid.default_startup_program())
ret = exe.run(main_program, fetch_list=out)
return ret[0]
def _run_dygraph(self):
with fluid.dygraph.guard(PLACE):
net = MainNetWithDict(batch_size=self.batch_size)
ret = net(self.x)
return ret.numpy()
def test_ast_to_func(self):
self.assertTrue((self._run_dygraph() == self._run_static()).all())
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册