Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
dde19a0f
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
dde19a0f
编写于
1月 24, 2019
作者:
W
WangZhen
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add quantization freeze pass.
上级
f4dec5cd
变更
12
隐藏空白更改
内联
并排
Showing
12 changed file
with
450 addition
and
19 deletion
+450
-19
paddle/fluid/pybind/ir.cc
paddle/fluid/pybind/ir.cc
+11
-0
python/CMakeLists.txt
python/CMakeLists.txt
+1
-0
python/paddle/fluid/contrib/slim/quantization/quantization_pass.py
...ddle/fluid/contrib/slim/quantization/quantization_pass.py
+180
-7
python/paddle/fluid/contrib/slim/tests/CMakeLists.txt
python/paddle/fluid/contrib/slim/tests/CMakeLists.txt
+6
-0
python/paddle/fluid/contrib/slim/tests/__init__.py
python/paddle/fluid/contrib/slim/tests/__init__.py
+0
-0
python/paddle/fluid/contrib/slim/tests/configs/config.yaml
python/paddle/fluid/contrib/slim/tests/configs/config.yaml
+1
-1
python/paddle/fluid/contrib/slim/tests/configs/pruners.yaml
python/paddle/fluid/contrib/slim/tests/configs/pruners.yaml
+0
-0
python/paddle/fluid/contrib/slim/tests/configs/pruners_0.yaml
...on/paddle/fluid/contrib/slim/tests/configs/pruners_0.yaml
+0
-0
python/paddle/fluid/contrib/slim/tests/test_factory.py
python/paddle/fluid/contrib/slim/tests/test_factory.py
+1
-1
python/paddle/fluid/contrib/slim/tests/test_graph.py
python/paddle/fluid/contrib/slim/tests/test_graph.py
+80
-0
python/paddle/fluid/contrib/slim/tests/test_quantization_pass.py
...paddle/fluid/contrib/slim/tests/test_quantization_pass.py
+120
-0
python/paddle/fluid/framework.py
python/paddle/fluid/framework.py
+50
-10
未找到文件。
paddle/fluid/pybind/ir.cc
浏览文件 @
dde19a0f
...
@@ -17,6 +17,7 @@
...
@@ -17,6 +17,7 @@
#include <unordered_map>
#include <unordered_map>
#include <unordered_set>
#include <unordered_set>
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
#include "paddle/fluid/framework/ir/node.h"
#include "paddle/fluid/framework/ir/node.h"
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/op_desc.h"
...
@@ -27,6 +28,10 @@ namespace py = pybind11;
...
@@ -27,6 +28,10 @@ namespace py = pybind11;
using
paddle
::
framework
::
ir
::
Graph
;
using
paddle
::
framework
::
ir
::
Graph
;
using
paddle
::
framework
::
ir
::
Node
;
using
paddle
::
framework
::
ir
::
Node
;
using
paddle
::
framework
::
ir
::
GraphSafeRemoveNodes
;
using
paddle
::
framework
::
ir
::
GraphSafeRemoveNodes
;
using
paddle
::
framework
::
ir
::
HasCircle
;
using
paddle
::
framework
::
ir
::
GraphNum
;
using
paddle
::
framework
::
ir
::
TopologySortOperations
;
using
paddle
::
framework
::
ir
::
BuildOperationAdjList
;
using
paddle
::
framework
::
OpDesc
;
using
paddle
::
framework
::
OpDesc
;
using
paddle
::
framework
::
ProgramDesc
;
using
paddle
::
framework
::
ProgramDesc
;
using
paddle
::
framework
::
VarDesc
;
using
paddle
::
framework
::
VarDesc
;
...
@@ -36,6 +41,12 @@ namespace paddle {
...
@@ -36,6 +41,12 @@ namespace paddle {
namespace
pybind
{
namespace
pybind
{
void
BindGraph
(
py
::
module
*
m
)
{
void
BindGraph
(
py
::
module
*
m
)
{
m
->
def
(
"graph_safe_remove_nodes"
,
GraphSafeRemoveNodes
);
m
->
def
(
"graph_safe_remove_nodes"
,
GraphSafeRemoveNodes
);
m
->
def
(
"has_circle"
,
HasCircle
);
m
->
def
(
"graph_num"
,
GraphNum
);
m
->
def
(
"topology_sort"
,
TopologySortOperations
,
return_value_policy
::
reference
);
m
->
def
(
"build_adjacency_list"
,
BuildOperationAdjList
,
return_value_policy
::
reference
);
py
::
class_
<
Graph
,
std
::
shared_ptr
<
Graph
>>
(
py
::
class_
<
Graph
,
std
::
shared_ptr
<
Graph
>>
(
*
m
,
"Graph"
,
*
m
,
"Graph"
,
"The graph is a Directed Acyclic Single Static Assignment Graph, see "
"The graph is a Directed Acyclic Single Static Assignment Graph, see "
...
...
python/CMakeLists.txt
浏览文件 @
dde19a0f
...
@@ -64,6 +64,7 @@ if (WITH_TESTING)
...
@@ -64,6 +64,7 @@ if (WITH_TESTING)
add_subdirectory
(
paddle/dataset/tests
)
add_subdirectory
(
paddle/dataset/tests
)
add_subdirectory
(
paddle/fluid/tests
)
add_subdirectory
(
paddle/fluid/tests
)
add_subdirectory
(
paddle/fluid/contrib/tests
)
add_subdirectory
(
paddle/fluid/contrib/tests
)
add_subdirectory
(
paddle/fluid/contrib/slim/tests
)
endif
()
endif
()
install
(
DIRECTORY
${
PADDLE_PYTHON_PACKAGE_DIR
}
install
(
DIRECTORY
${
PADDLE_PYTHON_PACKAGE_DIR
}
DESTINATION opt/paddle/share/wheels
DESTINATION opt/paddle/share/wheels
...
...
python/paddle/fluid/contrib/slim/quantization/quantization_pass.py
浏览文件 @
dde19a0f
...
@@ -13,6 +13,7 @@
...
@@ -13,6 +13,7 @@
# limitations under the License.
# limitations under the License.
import
collections
import
collections
import
numpy
as
np
from
....
import
core
from
....
import
core
from
....framework
import
IrGraph
from
....framework
import
IrGraph
from
....framework
import
Program
from
....framework
import
Program
...
@@ -88,10 +89,6 @@ class QuantizationTransformPass(object):
...
@@ -88,10 +89,6 @@ class QuantizationTransformPass(object):
self
.
_quantizable_grad_ops
=
[
self
.
_quantizable_grad_ops
=
[
'%s_grad'
%
(
op
)
for
op
in
self
.
_quantizable_ops
'%s_grad'
%
(
op
)
for
op
in
self
.
_quantizable_ops
]
]
self
.
_fake_quant_op_types
=
[
'fake_quantize_abs_max'
,
'fake_quantize_range_abs_max'
]
self
.
_fake_dequant_op_types
=
[
'fake_dequantize_max_abs'
]
self
.
_is_test
=
None
self
.
_is_test
=
None
self
.
_global_step
=
None
self
.
_global_step
=
None
...
@@ -102,17 +99,17 @@ class QuantizationTransformPass(object):
...
@@ -102,17 +99,17 @@ class QuantizationTransformPass(object):
self
.
_is_test
=
graph
.
is_test
()
self
.
_is_test
=
graph
.
is_test
()
# marked the variable which has been dequantized.
# marked the variable which has been dequantized.
dequantized_vars
=
collections
.
OrderedDict
()
dequantized_vars
=
collections
.
OrderedDict
()
p
arams
=
[
p
.
name
()
for
p
in
graph
.
all_paramete
rs
()]
p
ersistable_vars
=
[
p
.
name
()
for
p
in
graph
.
all_persistable_va
rs
()]
def
_transform_forward
(
graph
,
op
):
def
_transform_forward
(
graph
,
op
):
for
var_node
in
op
.
inputs
:
for
var_node
in
op
.
inputs
:
if
var_node
.
name
()
in
dequantized_vars
:
if
var_node
.
name
()
in
dequantized_vars
:
dequant_var_node
=
dequantized_vars
[
var_node
.
name
()]
dequant_var_node
=
dequantized_vars
[
var_node
.
name
()]
else
:
else
:
quant_bits
=
self
.
_weight_bits
if
var_node
.
name
()
in
p
aram
s
\
quant_bits
=
self
.
_weight_bits
if
var_node
.
name
()
in
p
ersistable_var
s
\
else
self
.
_activation_bits
else
self
.
_activation_bits
quant_type
=
self
.
_weight_quantize_type
if
var_node
.
name
()
\
quant_type
=
self
.
_weight_quantize_type
if
var_node
.
name
()
\
in
p
aram
s
else
self
.
_activation_quantize_type
in
p
ersistable_var
s
else
self
.
_activation_quantize_type
quant_var_node
,
scale_var_node
=
self
.
_insert_quant_op
(
quant_var_node
,
scale_var_node
=
self
.
_insert_quant_op
(
graph
,
var_node
,
quant_bits
,
quant_type
)
graph
,
var_node
,
quant_bits
,
quant_type
)
dequant_var_node
=
self
.
_insert_dequant_op
(
dequant_var_node
=
self
.
_insert_dequant_op
(
...
@@ -316,3 +313,179 @@ class QuantizationTransformPass(object):
...
@@ -316,3 +313,179 @@ class QuantizationTransformPass(object):
Return the scale name of quantized variable for the input `var_name`.
Return the scale name of quantized variable for the input `var_name`.
"""
"""
return
"%s.scale"
%
(
var_name
)
return
"%s.scale"
%
(
var_name
)
class
QuantizationFreezePass
(
object
):
def
__init__
(
self
,
scope
,
place
,
weight_bits
=
8
,
activation_bits
=
8
,
weight_quantize_type
=
'abs_max'
):
assert
scope
is
not
None
,
\
'The scope cannot be set None.'
assert
place
is
not
None
,
\
'The place cannot be set None.'
self
.
_scope
=
scope
self
.
_place
=
place
self
.
_weight_bits
=
weight_bits
self
.
_activation_bits
=
activation_bits
self
.
_weight_quantize_type
=
weight_quantize_type
self
.
_quantizable_ops
=
[
'conv2d'
,
'depthwise_conv2d'
,
'mul'
]
self
.
_fake_quant_op_names
=
[
'fake_quantize_abs_max'
,
'fake_quantize_range_abs_max'
]
self
.
_fake_dequant_op_names
=
[
'fake_dequantize_max_abs'
]
self
.
_op_input_rename_map
=
collections
.
OrderedDict
()
self
.
_op_output_rename_map
=
collections
.
OrderedDict
()
self
.
_var_scale_map
=
collections
.
OrderedDict
()
def
apply
(
self
,
graph
):
persistable_vars
=
[
p
.
name
()
for
p
in
graph
.
all_persistable_vars
()]
ops
=
graph
.
all_ops
()
for
op_node
in
ops
:
op_name
=
op_node
.
name
()
if
op_name
in
self
.
_fake_quant_op_names
:
input_arg_name
=
op_node
.
op
().
input
(
'X'
)[
0
]
if
input_arg_name
in
persistable_vars
:
if
self
.
_weight_quantize_type
==
'abs_max'
:
param
=
self
.
_load_var
(
input_arg_name
)
scale_v
=
np
.
max
(
np
.
abs
(
param
))
else
:
scale_v
=
self
.
_load_var
(
op_node
.
op
().
output
(
'OutScale'
)
[
0
])[
0
]
self
.
_var_scale_map
[
input_arg_name
]
=
scale_v
else
:
scale_v
=
graph
.
var_node
(
op_node
.
op
().
output
(
'OutScale'
)[
0
])
self
.
_var_scale_map
[
input_arg_name
]
=
scale_v
if
input_arg_name
in
persistable_vars
:
self
.
_remove_fake_quant_and_dequant_op
(
graph
,
op_node
)
# quantize weight and restore
param_v
=
self
.
_load_var
(
input_arg_name
)
quantized_param_v
=
self
.
_quant
(
param_v
,
scale_v
,
self
.
weight_bits
)
self
.
_restore_var
(
input_arg_name
,
quantized_param_v
)
for
op_node
in
ops
:
op_name
=
op_node
.
name
()
if
op_name
in
self
.
_fake_dequant_op_names
:
self
.
_remove_fake_quant_and_dequant_op
(
graph
,
op_node
)
for
op_node
in
ops
:
op_name
=
op_node
.
name
()
if
op_name
in
self
.
_quantizable_ops
:
self
.
_insert_post_dequant_op
(
graph
,
op_node
)
for
op_node
in
ops
:
# insert dequant_op after fc/conv, need to rename inputs of the followed ops
for
var_node
in
op_node
.
inputs
:
name
=
var_node
.
name
()
if
name
in
self
.
_op_output_rename_map
:
old_in
=
graph
.
var_node
(
name
)
new_in
=
graph
.
var_node
(
self
.
_op_output_rename_map
[
name
])
graph
.
update_input_link
(
old_in
,
new_in
,
op_node
)
# remove the unused var node in the graph
self
.
_remove_unused_var_nodes
(
graph
)
def
_remove_fake_quant_and_dequant_op
(
self
,
graph
,
op_node
):
k
=
op_node
.
op
().
output
(
'Out'
)[
0
]
v
=
op_node
.
op
().
input
(
'X'
)[
0
]
if
v
not
in
self
.
_op_input_rename_map
:
self
.
_op_input_rename_map
[
k
]
=
v
else
:
self
.
_op_input_rename_map
[
k
]
=
self
.
_op_input_rename_map
[
v
]
graph
.
save_remove_nodes
(
op_node
)
def
_insert_post_dequant_op
(
self
,
graph
,
op_node
):
max_range
=
None
scale_var_node
=
None
persistable_vars
=
[
p
.
name
()
for
p
in
graph
.
all_persistable_vars
()]
for
var_node
in
op_node
.
op
().
inputs
:
name
=
var_node
.
name
()
if
name
in
self
.
_op_input_rename_map
:
old_in
=
graph
.
var_node
(
name
)
new_in
=
graph
.
var_node
(
self
.
_op_input_rename_map
[
name
])
graph
.
update_input_link
(
old_in
,
new_in
,
op_node
)
original_var_name
=
self
.
_original_var_name
(
name
)
if
original_var_name
in
persistable_vars
:
param_range
=
(
1
<<
(
self
.
_weight_bits
-
1
))
-
1
act_range
=
(
1
<<
(
self
.
_activation_bits
-
1
))
-
1
scale_v
=
self
.
_var_scale_map
[
original_var_name
]
assert
self
.
_is_float
(
scale_v
),
'The scale of parameter %s is not a float.'
%
(
original_var_name
)
max_range
=
param_range
*
act_range
/
scale_v
else
:
assert
isinstance
(
scale_v
,
core
.
Node
)
scale_var_node
=
self
.
_var_scale_map
[
original_var_name
]
if
len
(
op_node
.
op
().
outputs
)
!=
1
:
raise
ValueError
(
"Only support one output, but op %s has"
" more than one output."
%
(
op_node
.
name
()))
output_var_node
=
op_node
.
op
().
outputs
[
0
]
dequant_var_node
=
graph
.
create_var_node
(
name
=
self
.
_dequantized_var_name
(
output_var_node
.
name
()),
var_type
=
output_var_node
.
var
().
type
(),
shape
=
output_var_node
.
var
().
shape
(),
var_dtype
=
output_var_node
.
var
().
dtype
())
dequant_op_node
=
graph
.
create_op_node
(
op_type
=
'fake_dequantize_max_abs'
,
attrs
=
{
'max_range'
:
float
(
max_range
)},
inputs
=
{
'X'
:
output_var_node
,
'Scale'
:
scale_var_node
},
outputs
=
{
'Out'
:
dequant_var_node
})
graph
.
link_to
(
output_var_node
,
dequant_op_node
)
graph
.
link_to
(
scale_var_node
,
dequant_op_node
)
graph
.
link_to
(
dequant_op_node
,
dequant_var_node
)
self
.
_op_output_rename_map
[
output_var_node
.
name
(
)]
=
dequant_var_node
.
name
()
return
dequant_var_node
def
_load_var
(
self
,
name
):
return
np
.
array
(
self
.
_scope
.
find_var
(
name
).
get_tensor
())
def
_restore_var
(
self
,
name
,
arr
):
t
=
self
.
_scope
.
find_var
(
name
).
get_tensor
()
t
.
set
(
arr
,
self
.
_place
)
def
_remove_unused_var_nodes
(
self
,
graph
):
all_used_vars
=
set
()
ops
=
graph
.
all_ops
()
for
op_node
in
ops
:
for
input_node
in
op_node
.
inputs
:
all_used_vars
.
add
(
input_node
)
for
output_node
in
op_node
.
outputs
:
all_used_vars
.
add
(
output_node
)
all_unused_vars
=
graph
.
all_vars
()
-
all_used_vars
graph
.
safe_remove_nodes
(
all_unused_vars
)
def
_original_var_name
(
self
,
var_name
):
"""
Return the original variable name.
"""
if
var_name
.
endswith
(
'.quantized.dequantized'
):
return
var_name
[:
-
len
(
'.quantized.dequantized'
)]
if
var_name
.
endswith
(
'.quantized'
):
return
var_name
[:
-
len
(
'.quantized'
)]
if
var_name
.
endswith
(
'.dequantized'
):
return
var_name
[:
-
len
(
'.dequantized'
)]
if
var_name
.
endswith
(
'.scale'
):
return
var_name
[:
-
len
(
'.scale'
)]
else
:
return
var_name
def
_dequantized_var_name
(
self
,
var_name
):
"""
Return dequantized variable name for the input `var_name`.
"""
return
"%s.dequantized"
%
(
var_name
)
def
_is_float
(
v
):
return
isinstance
(
v
,
float
)
or
isinstance
(
v
,
np
.
float32
)
\
or
isinstance
(
v
,
np
.
float64
)
def
_quant
(
x
,
scale
,
num_bits
):
return
np
.
round
(
x
/
scale
*
((
1
<<
(
num_bits
-
1
))
-
1
))
python/paddle/fluid/contrib/slim/tests/CMakeLists.txt
0 → 100644
浏览文件 @
dde19a0f
file
(
GLOB TEST_OPS RELATIVE
"
${
CMAKE_CURRENT_SOURCE_DIR
}
"
"test_*.py"
)
string
(
REPLACE
".py"
""
TEST_OPS
"
${
TEST_OPS
}
"
)
foreach
(
src
${
TEST_OPS
}
)
py_test
(
${
src
}
SRCS
${
src
}
.py
)
endforeach
()
python/paddle/fluid/contrib/slim/
unitest
/__init__.py
→
python/paddle/fluid/contrib/slim/
tests
/__init__.py
浏览文件 @
dde19a0f
文件已移动
python/paddle/fluid/contrib/slim/
unitest
/configs/config.yaml
→
python/paddle/fluid/contrib/slim/
tests
/configs/config.yaml
浏览文件 @
dde19a0f
version
:
1.0
version
:
1.0
include
:
[
"
./
unitest/configs/pruners.yaml"
,
"
./unitest
/configs/pruners_0.yaml"
]
include
:
[
"
./
configs/pruners.yaml"
,
"
.
/configs/pruners_0.yaml"
]
pruners
:
pruners
:
pruner_1
:
pruner_1
:
class
:
'
RatioPruner'
class
:
'
RatioPruner'
...
...
python/paddle/fluid/contrib/slim/
unitest
/configs/pruners.yaml
→
python/paddle/fluid/contrib/slim/
tests
/configs/pruners.yaml
浏览文件 @
dde19a0f
文件已移动
python/paddle/fluid/contrib/slim/
unitest
/configs/pruners_0.yaml
→
python/paddle/fluid/contrib/slim/
tests
/configs/pruners_0.yaml
浏览文件 @
dde19a0f
文件已移动
python/paddle/fluid/contrib/slim/
unitest
/test_factory.py
→
python/paddle/fluid/contrib/slim/
tests
/test_factory.py
浏览文件 @
dde19a0f
...
@@ -18,7 +18,7 @@ import unittest
...
@@ -18,7 +18,7 @@ import unittest
class
TestFactory
(
unittest
.
TestCase
):
class
TestFactory
(
unittest
.
TestCase
):
def
test_parse
(
self
):
def
test_parse
(
self
):
factory
=
ConfigFactory
(
'./
unitest/
configs/config.yaml'
)
factory
=
ConfigFactory
(
'./configs/config.yaml'
)
pruner
=
factory
.
instance
(
'pruner_1'
)
pruner
=
factory
.
instance
(
'pruner_1'
)
self
.
assertEquals
(
pruner
.
ratios
[
'conv1_1.w'
],
0.3
)
self
.
assertEquals
(
pruner
.
ratios
[
'conv1_1.w'
],
0.3
)
...
...
python/paddle/fluid/contrib/slim/tests/test_graph.py
0 → 100644
浏览文件 @
dde19a0f
# copyright (c) 2018 paddlepaddle authors. all rights reserved.
#
# licensed under the apache license, version 2.0 (the "license");
# you may not use this file except in compliance with the license.
# you may obtain a copy of the license at
#
# http://www.apache.org/licenses/license-2.0
#
# unless required by applicable law or agreed to in writing, software
# distributed under the license is distributed on an "as is" basis,
# without warranties or conditions of any kind, either express or implied.
# see the license for the specific language governing permissions and
# limitations under the license.
from
__future__
import
print_function
import
unittest
import
paddle.fluid
as
fluid
import
six
from
paddle.fluid.framework
import
IrGraph
from
paddle.fluid
import
core
def
residual_block
(
num
):
def
conv_bn_layer
(
input
,
ch_out
,
filter_size
,
stride
,
padding
,
act
=
'relu'
,
bias_attr
=
False
):
tmp
=
fluid
.
layers
.
conv2d
(
input
=
input
,
filter_size
=
filter_size
,
num_filters
=
ch_out
,
stride
=
stride
,
padding
=
padding
,
act
=
None
,
bias_attr
=
bias_attr
)
return
fluid
.
layers
.
batch_norm
(
input
=
tmp
,
act
=
act
)
data
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
[
1
,
32
,
32
],
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
hidden
=
data
for
_
in
six
.
moves
.
xrange
(
num
):
conv
=
conv_bn_layer
(
hidden
,
16
,
3
,
1
,
1
,
act
=
None
,
bias_attr
=
True
)
short
=
conv_bn_layer
(
hidden
,
16
,
1
,
1
,
0
,
act
=
None
)
hidden
=
fluid
.
layers
.
elementwise_add
(
x
=
conv
,
y
=
short
,
act
=
'relu'
)
fc
=
fluid
.
layers
.
fc
(
input
=
hidden
,
size
=
10
)
loss
=
fluid
.
layers
.
cross_entropy
(
input
=
fc
,
label
=
label
)
loss
=
fluid
.
layers
.
mean
(
loss
)
return
loss
class
TestGraph
(
unittest
.
TestCase
):
def
test_graph_functions
(
self
):
main
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
with
fluid
.
program_guard
(
main
,
startup
):
loss
=
residual_block
(
2
)
opt
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.001
)
opt
.
minimize
(
loss
)
graph
=
IrGraph
(
core
.
Graph
(
main
.
desc
),
for_test
=
False
)
marked_nodes
=
set
()
for
op
in
graph
.
all_ops
():
if
op
.
name
().
find
(
'conv2d'
)
>
-
1
:
marked_nodes
.
add
(
op
)
graph
.
draw
(
'.'
,
'residual'
,
marked_nodes
)
self
.
assertFalse
(
graph
.
has_circle
())
self
.
assertEqual
(
graph
.
graph_num
(),
1
)
nodes
=
graph
.
topology_sort
()
self
.
assertEqual
(
len
(
nodes
),
len
(
graph
.
all_ops
()))
nodes_map
=
graph
.
build_adjacency_list
()
self
.
assertEqual
(
len
(
nodes_map
),
len
(
graph
.
all_ops
()))
nodes_num
=
len
(
graph
.
all_nodes
())
graph
.
safe_remove_nodes
(
marked_nodes
)
self
.
assertEqual
(
len
(
graph
.
all_nodes
()),
nodes_num
-
len
(
marked_nodes
))
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/contrib/slim/
unitest
/test_quantization_pass.py
→
python/paddle/fluid/contrib/slim/
tests
/test_quantization_pass.py
浏览文件 @
dde19a0f
...
@@ -65,6 +65,28 @@ def residual_block(num):
...
@@ -65,6 +65,28 @@ def residual_block(num):
return
loss
return
loss
def
conv_net
(
img
,
label
):
conv_pool_1
=
fluid
.
nets
.
simple_img_conv_pool
(
input
=
img
,
filter_size
=
5
,
num_filters
=
20
,
pool_size
=
2
,
pool_stride
=
2
,
act
=
"relu"
)
conv_pool_1
=
fluid
.
layers
.
batch_norm
(
conv_pool_1
)
conv_pool_2
=
fluid
.
nets
.
simple_img_conv_pool
(
input
=
conv_pool_1
,
filter_size
=
5
,
num_filters
=
50
,
pool_size
=
2
,
pool_stride
=
2
,
act
=
"relu"
)
prediction
=
fluid
.
layers
.
fc
(
input
=
conv_pool_2
,
size
=
10
,
act
=
'softmax'
)
loss
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
avg_loss
=
fluid
.
layers
.
mean
(
loss
)
return
avg_loss
class
TestQuantizationTransformPass
(
unittest
.
TestCase
):
class
TestQuantizationTransformPass
(
unittest
.
TestCase
):
def
setUp
(
self
):
def
setUp
(
self
):
self
.
quantizable_op_and_inputs
=
{
self
.
quantizable_op_and_inputs
=
{
...
@@ -171,5 +193,103 @@ class TestQuantizationTransformPass(unittest.TestCase):
...
@@ -171,5 +193,103 @@ class TestQuantizationTransformPass(unittest.TestCase):
self
.
residual_block_quant
(
'range_abs_max'
)
self
.
residual_block_quant
(
'range_abs_max'
)
class
TestQuantizeTranspiler
(
unittest
.
TestCase
):
def
freeze_graph
(
self
,
use_cuda
,
seed
):
def
build_program
(
main
,
startup
,
is_test
):
main
.
random_seed
=
seed
startup
.
random_seed
=
seed
with
fluid
.
unique_name
.
guard
():
with
fluid
.
program_guard
(
main
,
startup
):
img
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
[
1
,
28
,
28
],
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
loss
=
conv_net
(
img
,
label
)
if
not
is_test
:
opt
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.001
)
opt
.
minimize
(
loss
)
return
[
img
,
label
],
loss
random
.
seed
(
0
)
np
.
random
.
seed
(
0
)
main
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
test_program
=
fluid
.
Program
()
feeds
,
loss
=
build_program
(
main
,
startup
,
False
)
build_program
(
test_program
,
startup
,
True
)
test_program
=
test_program
.
clone
(
for_test
=
True
)
main_graph
=
IrGraph
(
core
.
Graph
(
main
.
desc
),
for_test
=
False
)
test_graph
=
IrGraph
(
core
.
Graph
(
test_graph
.
desc
),
for_test
=
True
)
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
transform_pass
=
QuantizationTransformPass
(
scope
=
fluid
.
global_scope
(),
program_exe
=
exe
)
iters
=
5
batch_size
=
8
class_num
=
10
exe
.
run
(
startup
)
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
mnist
.
train
(),
buf_size
=
500
),
batch_size
=
batch_size
)
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
test
(),
batch_size
=
batch_size
)
feeder
=
fluid
.
DataFeeder
(
feed_list
=
feeds
,
place
=
place
)
with
fluid
.
program_guard
(
main
):
for
_
in
range
(
iters
):
data
=
next
(
train_reader
())
loss_v
=
exe
.
run
(
program
=
main
,
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
loss
])
with
fluid
.
program_guard
(
test_program
):
test_data
=
next
(
test_reader
())
w_var
=
fluid
.
framework
.
_get_var
(
'conv2d_1.w_0.quantized'
,
test_program
)
# Testing during training
test_loss1
,
w_quant
=
exe
.
run
(
program
=
test_program
,
feed
=
feeder
.
feed
(
test_data
),
fetch_list
=
[
loss
,
w_var
])
# Freeze program for inference, but the weight of fc/conv is still float type.
quant_transpiler
.
freeze_program
(
test_program
,
place
)
test_loss2
,
=
exe
.
run
(
program
=
test_program
,
feed
=
feeder
.
feed
(
test_data
),
fetch_list
=
[
loss
])
self
.
assertAlmostEqual
(
test_loss1
,
test_loss2
,
delta
=
5e-3
)
w_freeze
=
np
.
array
(
fluid
.
global_scope
().
find_var
(
'conv2d_1.w_0'
)
.
get_tensor
())
# fail: -432.0 != -433.0, this is due to the calculation precision
#self.assertAlmostEqual(np.sum(w_freeze), np.sum(w_quant))
# Convert parameter to 8-bit.
quant_transpiler
.
convert_to_int8
(
test_program
,
place
)
# Save the 8-bit parameter and model file.
fluid
.
io
.
save_inference_model
(
'model_8bit'
,
[
'image'
,
'label'
],
[
loss
],
exe
,
test_program
)
# Test whether the 8-bit parameter and model file can be loaded successfully.
[
infer
,
feed
,
fetch
]
=
fluid
.
io
.
load_inference_model
(
'model_8bit'
,
exe
)
# Check the loaded 8-bit weight.
w_8bit
=
np
.
array
(
fluid
.
global_scope
().
find_var
(
'conv2d_1.w_0.int8'
)
.
get_tensor
())
self
.
assertEqual
(
w_8bit
.
dtype
,
np
.
int8
)
self
.
assertEqual
(
np
.
sum
(
w_8bit
),
np
.
sum
(
w_freeze
))
def
not_test_freeze_program_cuda
(
self
):
if
fluid
.
core
.
is_compiled_with_cuda
():
with
fluid
.
unique_name
.
guard
():
self
.
freeze_program
(
True
,
seed
=
1
)
def
not_test_freeze_program_cpu
(
self
):
with
fluid
.
unique_name
.
guard
():
self
.
freeze_program
(
False
,
seed
=
2
)
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
unittest
.
main
()
unittest
.
main
()
python/paddle/fluid/framework.py
浏览文件 @
dde19a0f
...
@@ -1533,20 +1533,47 @@ class IrGraph(object):
...
@@ -1533,20 +1533,47 @@ class IrGraph(object):
def
is_test
(
self
):
def
is_test
(
self
):
return
self
.
_for_test
return
self
.
_for_test
def
all_parameters
(
self
):
def
all_nodes
(
self
):
param_nodes
=
set
()
return
{
node
for
node
in
self
.
graph
.
nodes
()}
for
node
in
self
.
graph
.
nodes
():
if
node
.
is_var
()
and
node
.
var
()
is
not
None
and
node
.
var
(
).
persistable
():
param_nodes
.
add
(
node
)
return
param_nodes
def
all_vars
(
self
):
def
all_vars
(
self
):
return
{
node
for
node
in
self
.
graph
.
nodes
()
if
node
.
is_var
()}
return
{
node
for
node
in
self
.
graph
.
nodes
()
if
node
.
is_var
()}
def
all_persistable_vars
(
self
):
persistable_nodes
=
set
()
for
node
in
self
.
graph
.
nodes
():
if
node
.
is_var
()
and
node
.
var
()
is
not
None
and
node
.
var
(
).
persistable
():
persistable_nodes
.
add
(
node
)
return
persistable_nodes
def
all_ops
(
self
):
def
all_ops
(
self
):
return
{
node
for
node
in
self
.
graph
.
nodes
()
if
node
.
is_op
()}
return
{
node
for
node
in
self
.
graph
.
nodes
()
if
node
.
is_op
()}
def
var_node
(
self
,
name
):
"""
Get a variable node by name from this graph.
Args:
name(str): the name of the variable node.
Raises:
ValueError: The If input's type is not str, or this graph
doesn't have a variable with the giving name.
Returns:
Node: the variable node with the giving name.
"""
if
not
isinstance
(
name
,
six
.
string_types
):
raise
TypeError
(
"var require string as parameter, but get %s instead."
%
(
type
(
name
)))
target_var_node
=
None
var_nodes
=
self
.
all_vars
()
for
var_node
in
var_nodes
:
if
var_node
.
name
()
==
name
:
target_var_node
=
var_node
if
target_var_node
is
None
:
raise
ValueError
(
"var_node %s not in this graph"
%
name
)
return
target_var_node
def
create_param_node
(
self
,
name
,
var_type
,
shape
,
var_dtype
):
def
create_param_node
(
self
,
name
,
var_type
,
shape
,
var_dtype
):
var_desc
=
core
.
VarDesc
(
name
)
var_desc
=
core
.
VarDesc
(
name
)
var_desc
.
set_type
(
var_type
)
var_desc
.
set_type
(
var_type
)
...
@@ -1586,8 +1613,9 @@ class IrGraph(object):
...
@@ -1586,8 +1613,9 @@ class IrGraph(object):
return
self
.
graph
.
create_op_node
(
op_desc
)
return
self
.
graph
.
create_op_node
(
op_desc
)
def
update_input_link
(
self
,
old_input_node
,
new_input_node
,
op_node
):
def
update_input_link
(
self
,
old_input_node
,
new_input_node
,
op_node
):
assert
old_input_node
in
self
.
graph
.
nodes
()
and
new_input_node
in
self
.
graph
.
nodes
()
and
\
assert
old_input_node
in
self
.
graph
.
nodes
()
and
new_input_node
in
\
op_node
in
self
.
graph
.
nodes
(),
'Th three arguments must be in the graph nodes.'
self
.
graph
.
nodes
()
and
op_node
in
self
.
graph
.
nodes
(),
\
'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
old_input_node
.
outputs_remove
(
op_node
)
old_input_node
.
outputs_remove
(
op_node
)
op_node
.
inputs_remove
(
old_input_node
)
op_node
.
inputs_remove
(
old_input_node
)
new_input_node
.
outputs_append
(
op_node
)
new_input_node
.
outputs_append
(
op_node
)
...
@@ -1596,7 +1624,7 @@ class IrGraph(object):
...
@@ -1596,7 +1624,7 @@ class IrGraph(object):
def
link_to
(
self
,
node_in
,
node_out
):
def
link_to
(
self
,
node_in
,
node_out
):
assert
node_in
in
self
.
graph
.
nodes
()
and
node_out
in
self
.
graph
.
nodes
(),
\
assert
node_in
in
self
.
graph
.
nodes
()
and
node_out
in
self
.
graph
.
nodes
(),
\
'Th
two arguments
must be in the graph nodes.'
'Th
e two arguments(node_in&node_out)
must be in the graph nodes.'
node_in
.
outputs_append
(
node_out
)
node_in
.
outputs_append
(
node_out
)
node_out
.
inputs_append
(
node_in
)
node_out
.
inputs_append
(
node_in
)
...
@@ -1605,6 +1633,18 @@ class IrGraph(object):
...
@@ -1605,6 +1633,18 @@ class IrGraph(object):
remove_nodes
=
set
(
remove_nodes
)
remove_nodes
=
set
(
remove_nodes
)
core
.
graph_safe_remove_nodes
(
self
.
graph
,
remove_nodes
)
core
.
graph_safe_remove_nodes
(
self
.
graph
,
remove_nodes
)
def
has_circle
(
self
):
return
core
.
has_circle
(
self
.
graph
)
def
graph_num
(
self
):
return
core
.
graph_num
(
self
.
graph
)
def
topology_sort
(
self
):
return
core
.
topology_sort
(
self
.
graph
)
def
build_adjacency_list
(
self
):
return
core
.
build_adjacency_list
(
self
.
graph
)
def
draw
(
self
,
save_path
,
name
,
marked_nodes
=
None
):
def
draw
(
self
,
save_path
,
name
,
marked_nodes
=
None
):
def
_convert_to_pdf
(
dot_file_path
):
def
_convert_to_pdf
(
dot_file_path
):
pdf_save_path
=
os
.
path
.
splitext
(
dot_file_path
)[
0
]
+
'.pdf'
pdf_save_path
=
os
.
path
.
splitext
(
dot_file_path
)[
0
]
+
'.pdf'
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录