Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
ddb97486
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ddb97486
编写于
6月 21, 2019
作者:
开心的小妮
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[LITE] Fix bug of global max pooling
上级
dfbc4b50
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
99 addition
and
92 deletion
+99
-92
paddle/fluid/lite/arm/math/pooling.cc
paddle/fluid/lite/arm/math/pooling.cc
+6
-33
paddle/fluid/lite/kernels/arm/pool_compute_test.cc
paddle/fluid/lite/kernels/arm/pool_compute_test.cc
+92
-58
paddle/fluid/lite/tools/build.sh
paddle/fluid/lite/tools/build.sh
+1
-1
未找到文件。
paddle/fluid/lite/arm/math/pooling.cc
浏览文件 @
ddb97486
...
...
@@ -218,23 +218,8 @@ void pooling_global(const void* din, void* dout, int num, int chout, int hout,
int
size_channel_in
=
win
*
hin
;
float
*
data_out
=
static_cast
<
float
*>
(
dout
);
const
float
*
data_in
=
static_cast
<
const
float
*>
(
din
);
int
cnt
=
size_channel_in
/
8
;
#if 0
LOG(INFO) << "size_channel_in:" << size_channel_in;
LOG(INFO) << "cnt:" << cnt;
LOG(INFO) << "num:" << num;
LOG(INFO) << "chout:" << chout;
LOG(INFO) << "hout:" << hout;
LOG(INFO) << "wout:" << wout;
LOG(INFO) << "chin:" << chin;
LOG(INFO) << "hin:" << hin;
LOG(INFO) << "win:" << win;
LOG(INFO) << "pooling_type " << pooling_type;
#endif
for
(
int
n
=
0
;
n
<
num
;
++
n
)
{
float
*
data_out_batch
=
data_out
+
n
*
chout
;
const
float
*
data_in_batch
=
data_in
+
n
*
chin
*
size_channel_in
;
...
...
@@ -254,24 +239,12 @@ void pooling_global(const void* din, void* dout, int num, int chout, int hout,
data_in_channel
+=
8
;
}
#else
int
num
=
cnt
;
if
(
num
>
0
)
{
asm
volatile
(
"max_loop: @main loop
\n
"
"vld1.f32 {d0-d1}, [%[data_in_channel]]! @load q1, "
"data_in_channel
\n
"
"vmax.f32 %q[vmax], %q[vmax], q0 @max vmax, "
"vmax, data_in_channel
\n
"
"vld1.f32 {d2-d3}, [%[data_in_channel]]! @ load 2nd 4 "
"data"
"vmax.f32 %q[vmax], %q[vmax], q1 @ compare 2nd "
"4 datas
\n
"
"subs %[num], #1 @subs num, 1
\n
"
"bne max_loop @bne num
\n
"
:
[
data_in_channel
]
"+r"
(
data_in_channel
),
[
num
]
"+r"
(
num
),
[
vmax
]
"+w"
(
vmax
)
:
:
"cc"
,
"memory"
,
"q0"
,
"q1"
);
for
(;
i
<
cnt
;
i
++
)
{
float32x4_t
vdin1
=
vld1q_f32
(
data_in_channel
);
vmax
=
vmaxq_f32
(
vdin1
,
vmax
);
float32x4_t
vdin2
=
vld1q_f32
(
data_in_channel
+
4
);
vmax
=
vmaxq_f32
(
vmax
,
vdin2
);
data_in_channel
+=
8
;
}
#endif // __aarch64__
float32x2_t
vmax_tmp
=
...
...
paddle/fluid/lite/kernels/arm/pool_compute_test.cc
浏览文件 @
ddb97486
...
...
@@ -25,6 +25,43 @@ namespace lite {
namespace
kernels
{
namespace
arm
{
int
PoolOutputSize
(
int
input_size
,
int
filter_size
,
int
padding
,
int
stride
,
bool
ceil_mode
)
{
int
output_size
;
if
(
!
ceil_mode
)
{
output_size
=
(
input_size
-
filter_size
+
2
*
padding
)
/
stride
+
1
;
}
else
{
output_size
=
(
input_size
-
filter_size
+
2
*
padding
+
stride
-
1
)
/
stride
+
1
;
}
return
output_size
;
}
std
::
vector
<
int64_t
>
compute_output_shape
(
operators
::
PoolParam
*
param_
)
{
const
auto
x_dims
=
param_
->
x
->
dims
();
std
::
vector
<
int
>&
ksize
=
param_
->
ksize
;
if
(
param_
->
global_pooling
)
{
ksize
.
resize
(
static_cast
<
size_t
>
(
x_dims
.
size
())
-
2
);
for
(
size_t
i
=
0
;
i
<
ksize
.
size
();
++
i
)
{
param_
->
paddings
[
i
]
=
0
;
ksize
[
i
]
=
static_cast
<
int
>
(
x_dims
[
i
+
2
]);
}
}
std
::
vector
<
int64_t
>
output_shape
({
x_dims
[
0
],
x_dims
[
1
]});
if
(
param_
->
adaptive
)
{
output_shape
.
insert
(
output_shape
.
end
(),
param_
->
ksize
.
begin
(),
param_
->
ksize
.
end
());
}
else
{
for
(
size_t
i
=
0
;
i
<
param_
->
ksize
.
size
();
++
i
)
{
output_shape
.
push_back
(
PoolOutputSize
(
x_dims
[
i
+
2
],
param_
->
ksize
[
i
],
param_
->
paddings
[
i
],
param_
->
strides
[
i
],
param_
->
ceil_mode
));
}
}
return
output_shape
;
}
void
pool_compute_ref
(
const
operators
::
PoolParam
&
param
)
{
auto
&
in_dims
=
param
.
x
->
dims
();
auto
&
out_dims
=
param
.
output
->
dims
();
...
...
@@ -66,33 +103,28 @@ void pool_compute_ref(const operators::PoolParam& param) {
if
(
global_pooling
==
true
)
{
ksize
[
0
]
=
in_h
;
ksize
[
1
]
=
in_w
;
}
#if 0
for (int i = 0; i < ksize.size(); ++i) {
LOG(INFO) << "ksize[" << i << "]:" << ksize[i];
}
for (int i = 0; i < strides.size(); ++i) {
LOG(INFO) << "strides[" << i << "]:" << strides[i];
}
for (int i = 0; i < paddings.size(); ++i) {
LOG(INFO) << "paddings[" << i << "]:" << paddings[i];
for
(
int
n
=
0
;
n
<
in_n
;
++
n
)
{
for
(
int
c
=
0
;
c
<
in_c
;
++
c
)
{
const
float
*
src
=
src_ptr
+
n
*
in_c
*
in_h
*
in_w
+
c
*
in_h
*
in_w
;
float
res
=
src
[
0
];
if
(
pooling_type
==
"max"
)
{
for
(
int
i
=
1
;
i
<
in_h
*
in_w
;
++
i
)
{
float
cur_val
=
src
[
i
];
res
=
cur_val
>
res
?
cur_val
:
res
;
}
}
else
if
(
pooling_type
==
"avg"
)
{
for
(
int
i
=
1
;
i
<
in_h
*
in_w
;
++
i
)
{
float
cur_val
=
src
[
i
];
res
+=
cur_val
;
}
res
/=
(
in_h
*
in_w
);
}
dst_ptr
[
n
*
in_c
*
out_h
*
out_w
+
c
]
=
res
;
}
}
return
;
}
LOG(INFO) << "in nchw:" << in_n << ", " << in_c << ", " << in_h << ", "
<< in_w;
LOG(INFO) << "size_in_n:" << size_in_n;
LOG(INFO) << "size_out_c:" << size_out_c;
LOG(INFO) << "out_h:" << out_h;
LOG(INFO) << "out_w:" << out_w;
LOG(INFO) << "size_out_n:" << size_out_n;
LOG(INFO) << "size_out_c:" << size_out_c;
LOG(INFO) << "window_h:" << window_h;
LOG(INFO) << "window_w:" << window_w;
LOG(INFO) << "stride_h:" << stride_h;
LOG(INFO) << "stride_w:" << stride_w;
LOG(INFO) << "pad_h:" << pad_h;
LOG(INFO) << "pad_w:" << pad_w;
#endif
for
(
int
ind_n
=
0
;
ind_n
<
in_n
;
++
ind_n
)
{
for
(
int
ind_c
=
0
;
ind_c
<
in_c
;
++
ind_c
)
{
...
...
@@ -179,21 +211,21 @@ TEST(pool_arm, compute) {
for
(
auto
pooling_type
:
{
"avg"
,
"max"
})
{
for
(
auto
global_pooling
:
{
true
})
{
for
(
auto
stride
:
{
2
})
{
for
(
auto
pad
:
{
0
})
{
// for (auto ksize: {3}) { // TODO(yuanshuai): ksize enable 2, 3
for
(
auto
stride
:
{
1
,
2
})
{
for
(
auto
pad
:
{
0
,
1
})
{
for
(
auto
n
:
{
1
,
3
,
4
,
11
})
{
for
(
auto
c
:
{
1
,
3
,
11
/* ,1024 */
})
{
// speedup for ci
for
(
auto
h
:
{
3
,
1
,
11
,
4
,
1
})
{
for
(
auto
w
:
{
1
,
3
,
4
,
12
,
1
})
{
VLOG
(
3
)
<<
"n:"
<<
n
<<
" c:"
<<
c
<<
" h:"
<<
h
<<
" w:"
<<
w
<<
" stride:"
<<
stride
<<
" pad:"
<<
pad
<<
" pooling_type:"
<<
pooling_type
<<
" global_pooling:"
<<
global_pooling
;
for
(
auto
h
:
{
2
,
3
,
4
,
11
})
{
for
(
auto
w
:
{
2
,
3
,
4
,
11
})
{
LOG
(
INFO
)
<<
"n:"
<<
n
<<
" c:"
<<
c
<<
" h:"
<<
h
<<
" w:"
<<
w
// << " ksize:" << ksize
<<
" stride:"
<<
stride
<<
" pad:"
<<
pad
<<
" pooling_type:"
<<
pooling_type
<<
" global_pooling:"
<<
global_pooling
;
// init x, output
x
.
Resize
(
DDim
(
std
::
vector
<
int64_t
>
({
n
,
c
,
h
,
w
})));
output
.
Resize
(
DDim
(
std
::
vector
<
int64_t
>
({
n
,
c
,
1
,
1
})));
output_ref
.
Resize
(
DDim
(
std
::
vector
<
int64_t
>
({
n
,
c
,
1
,
1
})));
auto
*
x_data
=
x
.
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
x
.
dims
().
production
();
++
i
)
{
x_data
[
i
]
=
i
;
...
...
@@ -203,6 +235,8 @@ TEST(pool_arm, compute) {
param
.
x
=
&
x
;
param
.
output
=
&
output
;
param
.
pooling_type
=
pooling_type
;
// param.ksize = {ksize, ksize}; //TODO(yuanshuai): ksize
// enable
param
.
ksize
=
{
h
,
w
};
param
.
global_pooling
=
global_pooling
;
param
.
strides
=
{
stride
,
stride
};
...
...
@@ -212,41 +246,40 @@ TEST(pool_arm, compute) {
param
.
ceil_mode
=
false
;
param
.
use_quantizer
=
false
;
const
std
::
vector
<
int64_t
>&
output_shape
=
compute_output_shape
(
&
param
);
output
.
Resize
(
DDim
(
output_shape
));
output_ref
.
Resize
(
DDim
(
output_shape
));
// compute
pool
.
SetParam
(
param
);
pool
.
Run
();
#if 0
LOG(INFO) << "n:" << n << " c:" << c << " h:" << h << " w:" << w
<< " end";
std::cout << "n:" << n << " c:" << c << " h:" << h << " w:" << w
<< " end" << std::endl;
for (int i = 0; i < param.ksize.size(); ++i) {
std::cout << " ksize[" << i << "]:" << param.ksize[i];
}
std::cout << "\n";
for (int i = 0; i < param.strides.size(); ++i) {
std::cout << " strides[" << i << "]:" << param.strides[i];
}
std::cout << "\n";
for (int i = 0; i < param.paddings.size(); ++i) {
std::cout << " paddings[" << i << "]:" << param.paddings[i];
}
std::cout << "\n";
#endif
// compute ref
// output_ref.Resize(output.dims());
param
.
output
=
&
output_ref
;
pool_compute_ref
(
param
);
VLOG
(
3
)
<<
"pool_compute_ref(param) end"
;
// compare
auto
*
output_data
=
output
.
mutable_data
<
float
>
();
auto
*
output_ref_data
=
output_ref
.
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
output
.
dims
().
production
();
i
++
)
{
EXPECT_NEAR
(
output_data
[
i
],
output_ref_data
[
i
],
1
);
// 1e-5);
EXPECT_NEAR
(
output_data
[
i
],
output_ref_data
[
i
],
1e-5
);
float
tmp
=
output_data
[
i
]
-
output_ref_data
[
i
];
tmp
=
tmp
<
0
?
-
tmp
:
tmp
;
if
(
tmp
>
1e-5
)
{
std
::
cout
<<
"output_data[0]:"
<<
output_data
[
0
]
<<
std
::
endl
;
std
::
cout
<<
"output_ref_data[0]:"
<<
output_ref_data
[
0
]
<<
std
::
endl
;
std
::
cout
<<
"x.dims().production():"
<<
x
.
dims
().
production
()
<<
std
::
endl
;
for
(
int
ii
=
0
;
ii
<
x
.
dims
().
production
();
++
ii
)
{
std
::
cout
<<
x_data
[
ii
]
<<
" "
;
}
std
::
cout
;
exit
(
0
);
}
}
VLOG
(
3
)
<<
"compare pass"
;
...
...
@@ -256,6 +289,7 @@ TEST(pool_arm, compute) {
}
}
// pad
}
// stride
//} // ksize TODO(yuanshuai): ksize enable
}
// global_pooling
}
// pooling_type
}
...
...
paddle/fluid/lite/tools/build.sh
浏览文件 @
ddb97486
...
...
@@ -214,7 +214,7 @@ function test_arm {
echo
"android do not need armv7hf"
return
0
fi
# TODO(yuanshuai): enable armv7 on android
if
[[
${
abi
}
==
"armv7"
]]
;
then
echo
"skip android v7 test yet"
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录