This OP initializes a variable with random values sampled from a
uniform distribution in the range [min, max). The input_dim_idx used to get the input dimension value which will be used to resize the output dimension.
input (Variable): A Tensor. Supported data types: float32, float64.
shape (tuple|list): ${shape_comment}
shape (tuple|list): A python list or python tuple. The shape of the output Tensor, the data type is int.
input_dim_idx (Int): ${input_dim_idx_comment}
input_dim_idx (int, optional): An index used to get the input dimension value which will be used to resize the output dimension. Default 0.
output_dim_idx (Int): ${output_dim_idx_comment}
output_dim_idx (int, optional): An index used to indicate the specific dimension that will be replaced by corresponding input dimension value. Default 0.
min (Float): ${min_comment}
min (float, optional): The lower bound on the range of random values to generate, the min is included in the range. Default -1.0.
max (Float): ${max_comment}
max (float, optional): The upper bound on the range of random values to generate, the max is excluded in the range. Default 1.0.
seed (Int): ${seed_comment}
seed (int, optional): Random seed used for generating samples. 0 means use a seed generated by the system.Note that if seed is not 0, this operator will always generate the same random numbers every time.
dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type of output Tensor. Supported data types: float32, float64. Default float32.
Returns:
Returns:
out (Variable): ${out_comment}
Variable: A Tensor of the specified shape filled with uniform_random values. The shape of the Tensor is determined by the shape parameter and the specified dimension of the input Tensor.