提交 d5aa2dd8 编写于 作者: S silingtong123 提交者: Tao Luo

fix doc, updates API documents of uniform_random and uniform_random_batch_size_like (#20316)

上级 b5219920
...@@ -253,7 +253,7 @@ paddle.fluid.layers.elementwise_min (ArgSpec(args=['x', 'y', 'axis', 'act', 'nam ...@@ -253,7 +253,7 @@ paddle.fluid.layers.elementwise_min (ArgSpec(args=['x', 'y', 'axis', 'act', 'nam
paddle.fluid.layers.elementwise_pow (ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None)), ('document', '6fc5d7492830d60c7fa61b3bc8f0d7e7')) paddle.fluid.layers.elementwise_pow (ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None)), ('document', '6fc5d7492830d60c7fa61b3bc8f0d7e7'))
paddle.fluid.layers.elementwise_mod (ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None)), ('document', '4101ee1f9280f00dce54054ccc434890')) paddle.fluid.layers.elementwise_mod (ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None)), ('document', '4101ee1f9280f00dce54054ccc434890'))
paddle.fluid.layers.elementwise_floordiv (ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None)), ('document', '67e6101c31314d4082621e8e443cfb68')) paddle.fluid.layers.elementwise_floordiv (ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None)), ('document', '67e6101c31314d4082621e8e443cfb68'))
paddle.fluid.layers.uniform_random_batch_size_like (ArgSpec(args=['input', 'shape', 'dtype', 'input_dim_idx', 'output_dim_idx', 'min', 'max', 'seed'], varargs=None, keywords=None, defaults=('float32', 0, 0, -1.0, 1.0, 0)), ('document', 'cfa120e583cd4a5bfa120c8a26f98a28')) paddle.fluid.layers.uniform_random_batch_size_like (ArgSpec(args=['input', 'shape', 'dtype', 'input_dim_idx', 'output_dim_idx', 'min', 'max', 'seed'], varargs=None, keywords=None, defaults=('float32', 0, 0, -1.0, 1.0, 0)), ('document', '571c963b9b49f1a323d2ea2343f10dd2'))
paddle.fluid.layers.gaussian_random (ArgSpec(args=['shape', 'mean', 'std', 'seed', 'dtype'], varargs=None, keywords=None, defaults=(0.0, 1.0, 0, 'float32')), ('document', 'dd4ddb66c78a2564e5d1e0e345d8286f')) paddle.fluid.layers.gaussian_random (ArgSpec(args=['shape', 'mean', 'std', 'seed', 'dtype'], varargs=None, keywords=None, defaults=(0.0, 1.0, 0, 'float32')), ('document', 'dd4ddb66c78a2564e5d1e0e345d8286f'))
paddle.fluid.layers.sampling_id (ArgSpec(args=['x', 'min', 'max', 'seed', 'dtype'], varargs=None, keywords=None, defaults=(0.0, 1.0, 0, 'float32')), ('document', '9ac9bdc45be94494d8543b8cec5c26e0')) paddle.fluid.layers.sampling_id (ArgSpec(args=['x', 'min', 'max', 'seed', 'dtype'], varargs=None, keywords=None, defaults=(0.0, 1.0, 0, 'float32')), ('document', '9ac9bdc45be94494d8543b8cec5c26e0'))
paddle.fluid.layers.gaussian_random_batch_size_like (ArgSpec(args=['input', 'shape', 'input_dim_idx', 'output_dim_idx', 'mean', 'std', 'seed', 'dtype'], varargs=None, keywords=None, defaults=(0, 0, 0.0, 1.0, 0, 'float32')), ('document', '2aed0f546f220364fb1da724a3176f74')) paddle.fluid.layers.gaussian_random_batch_size_like (ArgSpec(args=['input', 'shape', 'input_dim_idx', 'output_dim_idx', 'mean', 'std', 'seed', 'dtype'], varargs=None, keywords=None, defaults=(0, 0, 0.0, 1.0, 0, 'float32')), ('document', '2aed0f546f220364fb1da724a3176f74'))
...@@ -307,7 +307,7 @@ paddle.fluid.layers.filter_by_instag (ArgSpec(args=['ins', 'ins_tag', 'filter_ta ...@@ -307,7 +307,7 @@ paddle.fluid.layers.filter_by_instag (ArgSpec(args=['ins', 'ins_tag', 'filter_ta
paddle.fluid.layers.shard_index (ArgSpec(args=['input', 'index_num', 'nshards', 'shard_id', 'ignore_value'], varargs=None, keywords=None, defaults=(-1,)), ('document', '3c6b30e9cd57b38d4a5fa1ade887f779')) paddle.fluid.layers.shard_index (ArgSpec(args=['input', 'index_num', 'nshards', 'shard_id', 'ignore_value'], varargs=None, keywords=None, defaults=(-1,)), ('document', '3c6b30e9cd57b38d4a5fa1ade887f779'))
paddle.fluid.layers.hard_swish (ArgSpec(args=['x', 'threshold', 'scale', 'offset', 'name'], varargs=None, keywords=None, defaults=(6.0, 6.0, 3.0, None)), ('document', 'bd763b9ca99239d624c3cb4626e3627a')) paddle.fluid.layers.hard_swish (ArgSpec(args=['x', 'threshold', 'scale', 'offset', 'name'], varargs=None, keywords=None, defaults=(6.0, 6.0, 3.0, None)), ('document', 'bd763b9ca99239d624c3cb4626e3627a'))
paddle.fluid.layers.mse_loss (ArgSpec(args=['input', 'label'], varargs=None, keywords=None, defaults=None), ('document', '88b967ef5132567396062d5d654b3064')) paddle.fluid.layers.mse_loss (ArgSpec(args=['input', 'label'], varargs=None, keywords=None, defaults=None), ('document', '88b967ef5132567396062d5d654b3064'))
paddle.fluid.layers.uniform_random (ArgSpec(args=['shape', 'dtype', 'min', 'max', 'seed'], varargs=None, keywords=None, defaults=('float32', -1.0, 1.0, 0)), ('document', '126ede8ce0e751244b1b54cd359c89d7')) paddle.fluid.layers.uniform_random (ArgSpec(args=['shape', 'dtype', 'min', 'max', 'seed'], varargs=None, keywords=None, defaults=('float32', -1.0, 1.0, 0)), ('document', '34e7c1ff0263baf9551000b6bb3bc47e'))
paddle.fluid.layers.data (ArgSpec(args=['name', 'shape', 'append_batch_size', 'dtype', 'lod_level', 'type', 'stop_gradient'], varargs=None, keywords=None, defaults=(True, 'float32', 0, VarType.LOD_TENSOR, True)), ('document', '9d7806e31bdf727c1a23b8782a09b545')) paddle.fluid.layers.data (ArgSpec(args=['name', 'shape', 'append_batch_size', 'dtype', 'lod_level', 'type', 'stop_gradient'], varargs=None, keywords=None, defaults=(True, 'float32', 0, VarType.LOD_TENSOR, True)), ('document', '9d7806e31bdf727c1a23b8782a09b545'))
paddle.fluid.layers.read_file (ArgSpec(args=['reader'], varargs=None, keywords=None, defaults=None), ('document', 'd5b41c7b2df1b064fbd42dcf435268cd')) paddle.fluid.layers.read_file (ArgSpec(args=['reader'], varargs=None, keywords=None, defaults=None), ('document', 'd5b41c7b2df1b064fbd42dcf435268cd'))
paddle.fluid.layers.double_buffer (ArgSpec(args=['reader', 'place', 'name'], varargs=None, keywords=None, defaults=(None, None)), ('document', '556fa82daf62cbb0fb393f4125daba77')) paddle.fluid.layers.double_buffer (ArgSpec(args=['reader', 'place', 'name'], varargs=None, keywords=None, defaults=(None, None)), ('document', '556fa82daf62cbb0fb393f4125daba77'))
......
...@@ -12602,28 +12602,64 @@ def uniform_random_batch_size_like(input, ...@@ -12602,28 +12602,64 @@ def uniform_random_batch_size_like(input,
max=1.0, max=1.0,
seed=0): seed=0):
""" """
${comment} This OP initializes a variable with random values sampled from a
uniform distribution in the range [min, max). The input_dim_idx used to get the input dimension value which will be used to resize the output dimension.
.. code-block:: text
*Case 1:
Given:
input =[[0.946741 , 0.1357001 , 0.38086128]] # input.shape=[1,3]
shape=[2,4]
result.shape[output_dim_idx] = input.shape[input_dim_idx],
output_dim_idx = 0,
input_dim_idx = 0,
result.shape[0] = input.shape[0],
then:
result=[[ 0.3443427 , -0.23056602, 0.3477049 , 0.06139076]] # result.shape=[1,4]
*Case 2:
Given:
input =[[0.946741 , 0.1357001 , 0.38086128]] # input.shape=[1,3]
shape=[2,4]
input_dim_idx=1
output_dim_idx=1
result.shape[output_dim_idx] = input.shape[input_dim_idx],
output_dim_idx = 1,
input_dim_idx = 1,
result.shape[1] = input.shape[1],
then:
result=[[-0.23133647, -0.84195036, 0.21441269],
[-0.08774924, 0.25605237, -0.09403259]] # result.shape=[2,3]
Args: Args:
input (Variable): ${input_comment} input (Variable): A Tensor. Supported data types: float32, float64.
shape (tuple|list): ${shape_comment} shape (tuple|list): A python list or python tuple. The shape of the output Tensor, the data type is int.
input_dim_idx (Int): ${input_dim_idx_comment} input_dim_idx (int, optional): An index used to get the input dimension value which will be used to resize the output dimension. Default 0.
output_dim_idx (Int): ${output_dim_idx_comment} output_dim_idx (int, optional): An index used to indicate the specific dimension that will be replaced by corresponding input dimension value. Default 0.
min (Float): ${min_comment} min (float, optional): The lower bound on the range of random values to generate, the min is included in the range. Default -1.0.
max (Float): ${max_comment} max (float, optional): The upper bound on the range of random values to generate, the max is excluded in the range. Default 1.0.
seed (Int): ${seed_comment} seed (int, optional): Random seed used for generating samples. 0 means use a seed generated by the system.Note that if seed is not 0, this operator will always generate the same random numbers every time.
dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type of output Tensor. Supported data types: float32, float64. Default float32.
Returns: Returns:
out (Variable): ${out_comment} Variable: A Tensor of the specified shape filled with uniform_random values. The shape of the Tensor is determined by the shape parameter and the specified dimension of the input Tensor.
Examples: Examples:
.. code-block:: python .. code-block:: python
import paddle.fluid as fluid import paddle.fluid as fluid
import paddle.fluid.layers as layers
# example 1:
input = fluid.data(name="input", shape=[1, 3], dtype='float32')
out_1 = fluid.layers.uniform_random_batch_size_like(input, [2, 4]) # out_1.shape=[1, 4]
input = layers.data(name="input", shape=[13, 11], dtype='float32') # example 2:
out = layers.uniform_random_batch_size_like(input, [-1, 11]) out_2 = fluid.layers.uniform_random_batch_size_like(input, [2, 4], input_dim_idx=1, output_dim_idx=1) # out_2.shape=[2, 3]
""" """
helper = LayerHelper('uniform_random_batch_size_like', **locals()) helper = LayerHelper('uniform_random_batch_size_like', **locals())
...@@ -16982,8 +17018,8 @@ def mse_loss(input, label): ...@@ -16982,8 +17018,8 @@ def mse_loss(input, label):
@templatedoc() @templatedoc()
def uniform_random(shape, dtype='float32', min=-1.0, max=1.0, seed=0): def uniform_random(shape, dtype='float32', min=-1.0, max=1.0, seed=0):
""" """
This operator initializes a variable with random values sampled from a This OP initializes a variable with random values sampled from a
uniform distribution. The random result is in set [min, max). uniform distribution in the range [min, max).
Examples: Examples:
:: ::
...@@ -16995,24 +17031,23 @@ def uniform_random(shape, dtype='float32', min=-1.0, max=1.0, seed=0): ...@@ -16995,24 +17031,23 @@ def uniform_random(shape, dtype='float32', min=-1.0, max=1.0, seed=0):
result=[[0.8505902, 0.8397286]] result=[[0.8505902, 0.8397286]]
Args: Args:
shape (list|tuple|Variable): The shape of the output tensor, the data type of the integer is int, shape (list|tuple|Variable): The shape of the output Tensor, if the shape is a list or tuple,
and if the shape type is list or tuple, its elements can be an integer its elements can be an integer
or a tensor with the shape [1], the data type of the tensor is int64. or a Tensor with the shape [1], and the type of the Tensor is int64.
If the shape type is Variable,it ia a 1D tensor, the data type of the tensor is int64. If the shape is a Variable, it is a 1-D Tensor, and the type of the Tensor is int64.
dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type of the output tensor, such as float32, float64. dtype(np.dtype|core.VarDesc.VarType|str, optional): The type of the output Tensor. Supported data types: float32, float64.
Default: float32. Default: float32.
min (float, optional): Minimum value of uniform random, It's a closed interval. Default -1.0. min (float, optional): The lower bound on the range of random values to generate, the min is included in the range. Default -1.0.
max (float, optional): Maximun value of uniform random, It's an open interval. Default 1.0. max (float, optional): The upper bound on the range of random values to generate, the max is excluded in the range. Default 1.0.
seed (int, optional): Random seed used for generating samples. 0 means use a seed (int, optional): Random seed used for generating samples. 0 means use a
seed generated by the system. Note that if seed is not 0, this seed generated by the system. Note that if seed is not 0, this
operator will always generate the same random numbers every time. operator will always generate the same random numbers every time.
Default 0. Default 0.
Returns: a Tensor with randomly initialized results whose data type is determined by the dtype parameter Returns:
and whose dimension is determined by the shape parameter. Variable: A Tensor of the specified shape filled with uniform_random values.
Return type: Variable
Throw exception: Raises:
TypeError: The shape type should be list or tupple or variable. TypeError: The shape type should be list or tupple or variable.
Examples: Examples:
...@@ -17031,7 +17066,7 @@ def uniform_random(shape, dtype='float32', min=-1.0, max=1.0, seed=0): ...@@ -17031,7 +17066,7 @@ def uniform_random(shape, dtype='float32', min=-1.0, max=1.0, seed=0):
# example 3: # example 3:
# attr shape is a Variable, the data type must be int64 # attr shape is a Variable, the data type must be int64
var_shape = fluid.layers.data(name='var_shape',shape=[2],append_batch_size=False) var_shape = fluid.data(name='var_shape', shape=[2], dtype="int64")
result_3 = fluid.layers.uniform_random(var_shape) result_3 = fluid.layers.uniform_random(var_shape)
""" """
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册