Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
d4b44015
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
d4b44015
编写于
6月 23, 2022
作者:
L
Leo Chen
提交者:
GitHub
6月 23, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fix elementwise_div UT by providing user defined gradients (#43536)
上级
766f4dcb
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
197 addition
and
202 deletion
+197
-202
python/paddle/fluid/tests/unittests/test_elementwise_div_op.py
...n/paddle/fluid/tests/unittests/test_elementwise_div_op.py
+197
-202
未找到文件。
python/paddle/fluid/tests/unittests/test_elementwise_div_op.py
浏览文件 @
d4b44015
# Copyright (c) 20
18
PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 20
22
PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
...
...
@@ -15,10 +15,10 @@
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
from
op_test
import
OpTest
,
skip_check_grad_ci
,
convert_float_to_uint16
import
paddle
from
paddle
import
fluid
from
paddle.fluid
import
core
class
ElementwiseDivOp
(
OpTest
):
...
...
@@ -26,257 +26,266 @@ class ElementwiseDivOp(OpTest):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_div"
self
.
python_api
=
paddle
.
divide
self
.
dtype
=
np
.
float64
self
.
init_args
()
self
.
init_dtype
()
""" Warning
CPU gradient check error!
'X': np.random.random((32,84)).astype("float32"),
'Y': np.random.random((32,84)).astype("float32")
"""
self
.
init_shape
()
x
=
self
.
gen_data
(
self
.
x_shape
).
astype
(
self
.
val_dtype
)
y
=
self
.
gen_data
(
self
.
y_shape
).
astype
(
self
.
val_dtype
)
out
=
self
.
compute_output
(
x
,
y
).
astype
(
self
.
val_dtype
)
grad_out
=
np
.
ones
(
out
.
shape
).
astype
(
self
.
val_dtype
)
grad_x
=
self
.
compute_gradient_x
(
grad_out
,
y
).
astype
(
self
.
val_dtype
)
grad_y
=
self
.
compute_gradient_y
(
grad_out
,
out
,
y
).
astype
(
self
.
val_dtype
)
# Convert np.float32 data to np.uint16 for bfloat16 Paddle OP
if
self
.
dtype
==
np
.
uint16
:
x
=
convert_float_to_uint16
(
x
)
y
=
convert_float_to_uint16
(
y
)
out
=
convert_float_to_uint16
(
out
)
grad_out
=
convert_float_to_uint16
(
grad_out
)
grad_x
=
convert_float_to_uint16
(
grad_x
)
grad_y
=
convert_float_to_uint16
(
grad_y
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
outputs
=
{
'Out'
:
out
}
self
.
grad_out
=
grad_out
self
.
grad_x
=
grad_x
self
.
grad_y
=
grad_y
def
init_args
(
self
):
self
.
check_dygraph
=
True
self
.
place
=
None
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
13
,
17
]).
astype
(
self
.
dtype
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
13
,
17
]).
astype
(
self
.
dtype
)
}
self
.
outputs
=
{
'Out'
:
np
.
divide
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float64
self
.
val_dtype
=
np
.
float64
def
check_eager
(
self
):
return
(
not
hasattr
(
self
,
"attrs"
)
or
(
self
.
attrs
[
"axis"
]
!=
-
1
))
def
init_shape
(
self
):
self
.
x_shape
=
[
13
,
17
]
self
.
y_shape
=
[
13
,
17
]
def
test_check_output
(
self
):
self
.
check_output
(
check_eager
=
Fals
e
)
def
gen_data
(
self
,
shape
):
return
np
.
random
.
uniform
(
0.1
,
1
,
shap
e
)
def
test_check_grad_normal
(
self
):
self
.
check_grad
([
'X'
,
'Y'
],
'Out'
,
max_relative_error
=
0.05
)
def
compute_output
(
self
,
x
,
y
):
return
x
/
y
def
test_check_grad_ingore_x
(
self
):
self
.
check_grad
([
'Y'
],
'Out'
,
max_relative_error
=
0.05
,
no_grad_set
=
set
(
"X"
))
def
compute_gradient_x
(
self
,
grad_out
,
y
):
return
grad_out
/
y
def
test_check_grad_ingore_y
(
self
):
self
.
check_grad
([
'X'
],
'Out'
,
max_relative_error
=
0.05
,
no_grad_set
=
set
(
'Y'
))
def
compute_gradient_y
(
self
,
grad_out
,
out
,
y
):
return
-
1
*
grad_out
*
out
/
y
def
init_dtype
(
self
):
pass
def
test_check_output
(
self
):
if
self
.
place
is
None
:
self
.
check_output
()
else
:
self
.
check_output_with_place
(
self
.
place
)
def
test_check_gradient
(
self
):
check_list
=
[]
check_list
.
append
({
'grad'
:
[
'X'
,
'Y'
],
'no_grad'
:
None
,
'val_grad'
:
[
self
.
grad_x
,
self
.
grad_y
]
})
check_list
.
append
({
'grad'
:
[
'Y'
],
'no_grad'
:
set
(
'X'
),
'val_grad'
:
[
self
.
grad_y
]
})
check_list
.
append
({
'grad'
:
[
'X'
],
'no_grad'
:
set
(
'Y'
),
'val_grad'
:
[
self
.
grad_x
]
})
for
check_option
in
check_list
:
check_args
=
[
check_option
[
'grad'
],
'Out'
]
check_kwargs
=
{
'no_grad_set'
:
check_option
[
'no_grad'
],
'user_defined_grads'
:
check_option
[
'val_grad'
],
'user_defined_grad_outputs'
:
[
self
.
grad_out
],
'check_dygraph'
:
self
.
check_dygraph
}
if
self
.
place
is
None
:
self
.
check_grad
(
*
check_args
,
**
check_kwargs
)
else
:
check_args
.
insert
(
0
,
self
.
place
)
self
.
check_grad_with_place
(
*
check_args
,
**
check_kwargs
)
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
()
or
not
core
.
is_bfloat16_supported
(
core
.
CUDAPlace
(
0
)),
"core is not compiled with CUDA
and
not support the bfloat16"
)
class
TestElementwiseDivOpBF16
(
OpTest
):
"core is not compiled with CUDA
or
not support the bfloat16"
)
class
TestElementwiseDivOpBF16
(
ElementwiseDivOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_div"
self
.
python_api
=
paddle
.
divide
def
init_args
(
self
):
# In due to output data type inconsistence of bfloat16 paddle op, we disable the dygraph check.
self
.
check_dygraph
=
False
self
.
place
=
core
.
CUDAPlace
(
0
)
def
init_dtype
(
self
):
self
.
dtype
=
np
.
uint16
self
.
val_dtype
=
np
.
float32
x
=
np
.
random
.
uniform
(
0.1
,
1
,
[
12
,
13
]).
astype
(
np
.
float32
)
y
=
np
.
random
.
uniform
(
0.1
,
1
,
[
12
,
13
]).
astype
(
np
.
float32
)
def
init_shape
(
self
):
self
.
x_shape
=
[
12
,
13
]
self
.
y_shape
=
[
12
,
13
]
out
=
np
.
divide
(
x
,
y
)
self
.
inputs
=
{
'X'
:
convert_float_to_uint16
(
x
),
'Y'
:
convert_float_to_uint16
(
y
)
}
self
.
outputs
=
{
'Out'
:
convert_float_to_uint16
(
out
)}
@
skip_check_grad_ci
(
reason
=
"[skip shape check] Use y_shape(1) to test broadcast."
)
class
TestElementwiseDivOpScalar
(
ElementwiseDivOp
):
def
test_check_output
(
self
):
place
=
core
.
CUDAPlace
(
0
)
self
.
check_output_with_place
(
place
)
def
init_shape
(
self
):
self
.
x_shape
=
[
20
,
3
,
4
]
self
.
y_shape
=
[
1
]
def
test_check_grad_normal
(
self
):
place
=
core
.
CUDAPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'X'
,
'Y'
],
'Out'
)
def
compute_gradient_y
(
self
,
grad_out
,
out
,
y
):
return
np
.
array
([
np
.
sum
(
-
1
*
grad_out
*
out
/
y
)])
def
test_check_grad_ingore_x
(
self
):
place
=
core
.
CUDAPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'Y'
],
'Out'
,
no_grad_set
=
set
(
"X"
))
def
test_check_grad_ingore_y
(
self
):
place
=
core
.
CUDAPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'X'
],
'Out'
,
no_grad_set
=
set
(
'Y'
))
class
TestElementwiseDivOpVector
(
ElementwiseDivOp
):
def
init_shape
(
self
):
self
.
x_shape
=
[
100
]
self
.
y_shape
=
[
100
]
@
skip_check_grad_ci
(
reason
=
"[skip shape check] Use y_shape(1) to test broadcast."
)
class
TestElementwiseDivOp_scalar
(
ElementwiseDivOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_div"
self
.
python_api
=
paddle
.
divide
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
20
,
3
,
4
]).
astype
(
np
.
float64
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
1
]).
astype
(
np
.
float64
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
/
self
.
inputs
[
'Y'
]}
class
TestElementwiseDivOpBroadcast0
(
ElementwiseDivOp
):
def
init_shape
(
self
):
self
.
x_shape
=
[
100
,
3
,
4
]
self
.
y_shape
=
[
100
]
self
.
attrs
=
{
'axis'
:
0
}
class
TestElementwiseDivOp_Vector
(
ElementwiseDivOp
):
def
compute_output
(
self
,
x
,
y
):
return
x
/
y
.
reshape
(
100
,
1
,
1
)
def
setUp
(
self
):
self
.
op_type
=
"elementwise_div"
self
.
python_api
=
paddle
.
divide
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
100
]).
astype
(
"float64"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
100
]).
astype
(
"float64"
)
}
self
.
outputs
=
{
'Out'
:
np
.
divide
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
def
compute_gradient_x
(
self
,
grad_out
,
y
):
return
grad_out
/
y
.
reshape
(
100
,
1
,
1
)
def
compute_gradient_y
(
self
,
grad_out
,
out
,
y
):
return
np
.
sum
(
-
1
*
grad_out
*
out
/
y
.
reshape
(
100
,
1
,
1
),
axis
=
(
1
,
2
))
class
TestElementwiseDivOp_broadcast_0
(
ElementwiseDivOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_div"
self
.
python_api
=
paddle
.
divide
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
100
,
3
,
4
]).
astype
(
"float64"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
100
]).
astype
(
"float64"
)
}
class
TestElementwiseDivOpBroadcast1
(
ElementwiseDivOp
):
self
.
attrs
=
{
'axis'
:
0
}
self
.
outputs
=
{
'Out'
:
np
.
divide
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
].
reshape
(
100
,
1
,
1
))
}
def
init_shape
(
self
):
self
.
x_shape
=
[
2
,
100
,
4
]
self
.
y_shape
=
[
100
]
self
.
attrs
=
{
'axis'
:
1
}
def
compute_output
(
self
,
x
,
y
):
return
x
/
y
.
reshape
(
1
,
100
,
1
)
class
TestElementwiseDivOp_broadcast_1
(
ElementwiseDivOp
):
def
compute_gradient_x
(
self
,
grad_out
,
y
):
return
grad_out
/
y
.
reshape
(
1
,
100
,
1
)
def
setUp
(
self
):
self
.
op_type
=
"elementwise_div"
self
.
python_api
=
paddle
.
divide
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
100
,
4
]).
astype
(
"float64"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
100
]).
astype
(
"float64"
)
}
def
compute_gradient_y
(
self
,
grad_out
,
out
,
y
):
return
np
.
sum
(
-
1
*
grad_out
*
out
/
y
.
reshape
(
1
,
100
,
1
),
axis
=
(
0
,
2
))
self
.
attrs
=
{
'axis'
:
1
}
self
.
outputs
=
{
'Out'
:
np
.
divide
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
].
reshape
(
1
,
100
,
1
))
}
class
TestElementwiseDivOpBroadcast2
(
ElementwiseDivOp
):
class
TestElementwiseDivOp_broadcast_2
(
ElementwiseDivOp
):
def
init_shape
(
self
):
self
.
x_shape
=
[
2
,
3
,
100
]
self
.
y_shape
=
[
100
]
def
setUp
(
self
):
self
.
op_type
=
"elementwise_div"
self
.
python_api
=
paddle
.
divide
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
3
,
100
]).
astype
(
"float64"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
100
]).
astype
(
"float64"
)
}
def
compute_output
(
self
,
x
,
y
):
return
x
/
y
.
reshape
(
1
,
1
,
100
)
self
.
outputs
=
{
'Out'
:
np
.
divide
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
].
reshape
(
1
,
1
,
100
))
}
def
compute_gradient_x
(
self
,
grad_out
,
y
):
return
grad_out
/
y
.
reshape
(
1
,
1
,
100
)
def
compute_gradient_y
(
self
,
grad_out
,
out
,
y
):
return
np
.
sum
(
-
1
*
grad_out
*
out
/
y
.
reshape
(
1
,
1
,
100
),
axis
=
(
0
,
1
))
class
TestElementwiseDivOp_broadcast_3
(
ElementwiseDivOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_div"
self
.
python_api
=
paddle
.
divide
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
10
,
12
,
5
]).
astype
(
"float64"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
10
,
12
]).
astype
(
"float64"
)
}
class
TestElementwiseDivOpBroadcast3
(
ElementwiseDivOp
):
def
init_shape
(
self
):
self
.
x_shape
=
[
2
,
10
,
12
,
5
]
self
.
y_shape
=
[
10
,
12
]
self
.
attrs
=
{
'axis'
:
1
}
self
.
outputs
=
{
'Out'
:
np
.
divide
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
].
reshape
(
1
,
10
,
12
,
1
))
}
def
compute_output
(
self
,
x
,
y
):
return
x
/
y
.
reshape
(
1
,
10
,
12
,
1
)
class
TestElementwiseDivOp_broadcast_4
(
ElementwiseDivOp
):
def
compute_gradient_x
(
self
,
grad_out
,
y
):
return
grad_out
/
y
.
reshape
(
1
,
10
,
12
,
1
)
def
setUp
(
self
):
self
.
op_type
=
"elementwise_div"
self
.
python_api
=
paddle
.
divide
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
3
,
50
]).
astype
(
"float64"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
1
,
50
]).
astype
(
"float64"
)
}
self
.
outputs
=
{
'Out'
:
np
.
divide
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
def
compute_gradient_y
(
self
,
grad_out
,
out
,
y
):
return
np
.
sum
(
-
1
*
grad_out
*
out
/
y
.
reshape
(
1
,
10
,
12
,
1
),
axis
=
(
0
,
3
))
class
TestElementwiseDivOp
_broadcast_5
(
ElementwiseDivOp
):
class
TestElementwiseDivOp
Broadcast4
(
ElementwiseDivOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_div"
self
.
python_api
=
paddle
.
divide
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
3
,
4
,
20
]).
astype
(
"float64"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
3
,
1
,
20
]).
astype
(
"float64"
)
}
self
.
outputs
=
{
'Out'
:
np
.
divide
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
def
init_shape
(
self
):
self
.
x_shape
=
[
2
,
3
,
50
]
self
.
y_shape
=
[
2
,
1
,
50
]
def
compute_gradient_y
(
self
,
grad_out
,
out
,
y
):
return
np
.
sum
(
-
1
*
grad_out
*
out
/
y
,
axis
=
(
1
)).
reshape
(
2
,
1
,
50
)
class
TestElementwiseDivOp_commonuse_1
(
ElementwiseDivOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_div"
self
.
python_api
=
paddle
.
divide
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
3
,
100
]).
astype
(
"float64"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
1
,
1
,
100
]).
astype
(
"float64"
),
}
self
.
outputs
=
{
'Out'
:
np
.
divide
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
class
TestElementwiseDivOpBroadcast5
(
ElementwiseDivOp
):
def
init_shape
(
self
):
self
.
x_shape
=
[
2
,
3
,
4
,
20
]
self
.
y_shape
=
[
2
,
3
,
1
,
20
]
class
TestElementwiseDivOp_commonuse_2
(
ElementwiseDivOp
):
def
compute_gradient_y
(
self
,
grad_out
,
out
,
y
):
return
np
.
sum
(
-
1
*
grad_out
*
out
/
y
,
axis
=
(
2
)).
reshape
(
2
,
3
,
1
,
20
)
def
setUp
(
self
):
self
.
op_type
=
"elementwise_div"
self
.
python_api
=
paddle
.
divide
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
30
,
3
,
1
,
5
]).
astype
(
"float64"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
30
,
1
,
4
,
1
]).
astype
(
"float64"
),
}
self
.
outputs
=
{
'Out'
:
np
.
divide
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
class
TestElementwiseDivOpCommonuse1
(
ElementwiseDivOp
):
class
TestElementwiseDivOp_xsize_lessthan_ysize
(
ElementwiseDivOp
):
def
init_shape
(
self
):
self
.
x_shape
=
[
2
,
3
,
100
]
self
.
y_shape
=
[
1
,
1
,
100
]
def
setUp
(
self
):
self
.
op_type
=
"elementwise_div"
self
.
python_api
=
paddle
.
divide
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
10
,
12
]).
astype
(
"float64"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
3
,
10
,
12
]).
astype
(
"float64"
),
}
def
compute_gradient_y
(
self
,
grad_out
,
out
,
y
):
return
np
.
sum
(
-
1
*
grad_out
*
out
/
y
,
axis
=
(
0
,
1
)).
reshape
(
1
,
1
,
100
)
class
TestElementwiseDivOpCommonuse2
(
ElementwiseDivOp
):
def
init_shape
(
self
):
self
.
x_shape
=
[
30
,
3
,
1
,
5
]
self
.
y_shape
=
[
30
,
1
,
4
,
1
]
def
compute_gradient_x
(
self
,
grad_out
,
y
):
return
np
.
sum
(
grad_out
/
y
,
axis
=
(
2
)).
reshape
(
30
,
3
,
1
,
5
)
def
compute_gradient_y
(
self
,
grad_out
,
out
,
y
):
return
np
.
sum
(
-
1
*
grad_out
*
out
/
y
,
axis
=
(
1
,
3
)).
reshape
(
30
,
1
,
4
,
1
)
class
TestElementwiseDivOpXsizeLessThanYsize
(
ElementwiseDivOp
):
def
init_shape
(
self
):
self
.
x_shape
=
[
10
,
12
]
self
.
y_shape
=
[
2
,
3
,
10
,
12
]
self
.
attrs
=
{
'axis'
:
2
}
self
.
outputs
=
{
'Out'
:
np
.
divide
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
def
compute_gradient_x
(
self
,
grad_out
,
y
):
return
np
.
sum
(
grad_out
/
y
,
axis
=
(
0
,
1
))
class
TestElementwiseDivOp
_INT
(
OpTest
):
class
TestElementwiseDivOp
Int
(
ElementwiseDivOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_div"
self
.
python_api
=
paddle
.
divide
def
init_dtype
(
self
):
self
.
dtype
=
np
.
int32
self
.
init_dtype
()
self
.
inputs
=
{
'X'
:
np
.
random
.
randint
(
1
,
5
,
size
=
[
13
,
17
]).
astype
(
self
.
dtype
),
'Y'
:
np
.
random
.
randint
(
1
,
5
,
size
=
[
13
,
17
]).
astype
(
self
.
dtype
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
//
self
.
inputs
[
'Y'
]}
self
.
val_dtype
=
np
.
int32
def
test_check_output
(
self
):
self
.
check_output
(
)
def
gen_data
(
self
,
shape
):
return
np
.
random
.
randint
(
1
,
5
,
size
=
shape
)
def
init_dtype
(
self
):
pass
def
compute_output
(
self
,
x
,
y
):
return
x
//
y
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
(),
...
...
@@ -285,21 +294,7 @@ class TestElementwiseDivOpFp16(ElementwiseDivOp):
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float16
def
test_check_grad_normal
(
self
):
self
.
check_grad
([
'X'
,
'Y'
],
'Out'
,
max_relative_error
=
1
)
def
test_check_grad_ingore_x
(
self
):
self
.
check_grad
([
'Y'
],
'Out'
,
max_relative_error
=
1
,
no_grad_set
=
set
(
"X"
))
def
test_check_grad_ingore_y
(
self
):
self
.
check_grad
([
'X'
],
'Out'
,
max_relative_error
=
1
,
no_grad_set
=
set
(
'Y'
))
self
.
val_dtype
=
np
.
float16
class
TestElementwiseDivBroadcast
(
unittest
.
TestCase
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录