Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
d47a511a
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
d47a511a
编写于
2月 09, 2022
作者:
F
fwenguang
提交者:
GitHub
2月 09, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[mlu] add mlu kernel for elementwise_add (#39313)
上级
945a3ce9
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
681 addition
and
0 deletion
+681
-0
paddle/fluid/operators/elementwise/elementwise_add_op_mlu.cc
paddle/fluid/operators/elementwise/elementwise_add_op_mlu.cc
+154
-0
python/paddle/fluid/tests/unittests/mlu/test_elementwise_add_op_mlu.py
.../fluid/tests/unittests/mlu/test_elementwise_add_op_mlu.py
+527
-0
未找到文件。
paddle/fluid/operators/elementwise/elementwise_add_op_mlu.cc
0 → 100644
浏览文件 @
d47a511a
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/elementwise/elementwise_add_op.h"
#include "paddle/fluid/operators/mlu/mlu_baseop.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
>
class
ElementwiseAddMLUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
x
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"X"
);
auto
*
y
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"Y"
);
auto
*
out
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Out"
);
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
const
auto
&
x_dims
=
x
->
dims
();
const
auto
&
y_dims
=
y
->
dims
();
axis
=
(
axis
<
0
?
(
std
::
abs
(
x_dims
.
size
()
-
y_dims
.
size
())
+
axis
+
1
)
:
axis
);
int
max_dim
=
std
::
max
(
x_dims
.
size
(),
y_dims
.
size
());
std
::
vector
<
int
>
x_dims_array
(
max_dim
);
std
::
vector
<
int
>
y_dims_array
(
max_dim
);
std
::
vector
<
int
>
out_dims_array
(
max_dim
);
GetBroadcastDimsArrays
(
x_dims
,
y_dims
,
x_dims_array
.
data
(),
y_dims_array
.
data
(),
out_dims_array
.
data
(),
max_dim
,
axis
);
MLUCnnlTensorDesc
x_desc
(
max_dim
,
x_dims_array
.
data
(),
ToCnnlDataType
(
x
->
type
()));
MLUCnnlTensorDesc
y_desc
(
max_dim
,
y_dims_array
.
data
(),
ToCnnlDataType
(
y
->
type
()));
MLUCnnlTensorDesc
out_desc
(
*
out
);
MLUCnnlOpTensorDesc
op_tensor_desc
(
CNNL_OP_TENSOR_ADD
,
ToCnnlDataType
<
T
>
(),
CNNL_NOT_PROPAGATE_NAN
);
MLUCnnl
::
OpTensor
(
ctx
,
op_tensor_desc
.
get
(),
x_desc
.
get
(),
GetBasePtr
(
x
),
y_desc
.
get
(),
GetBasePtr
(
y
),
out_desc
.
get
(),
GetBasePtr
(
out
),
ToCnnlDataType
<
T
>
());
}
};
template
<
typename
T
>
class
ElementwiseAddGradMLUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
&
dev_ctx
=
ctx
.
template
device_context
<
paddle
::
platform
::
MLUDeviceContext
>();
auto
*
x
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
y
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Y"
);
auto
*
dout
=
ctx
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
dx
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
dy
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
axis
=
(
axis
==
-
1
?
std
::
abs
(
x
->
dims
().
size
()
-
y
->
dims
().
size
())
:
axis
);
MLUCnnlTensorDesc
dout_desc
(
*
dout
);
if
(
dx
)
{
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
if
(
dx
->
dims
()
!=
dout
->
dims
())
{
std
::
vector
<
int
>
dst_dims_vec
;
std
::
vector
<
int
>
reduce_axes
;
auto
src_dims
=
dx
->
dims
();
auto
dout_dims
=
dout
->
dims
();
int
src_axis
=
(
src_dims
.
size
()
<
dout_dims
.
size
()
?
axis
:
0
);
for
(
int
ax
=
0
;
ax
<
dout_dims
.
size
();
++
ax
)
{
if
((
ax
<
src_axis
||
ax
>=
src_axis
+
src_dims
.
size
())
||
(
dout_dims
[
ax
]
>
1
&&
src_dims
[
ax
-
src_axis
]
==
1
))
{
reduce_axes
.
push_back
(
ax
);
}
else
{
dst_dims_vec
.
push_back
(
dout_dims
[
ax
]);
}
}
if
(
dst_dims_vec
.
size
()
==
0
)
{
// x is scalar
dst_dims_vec
.
push_back
(
1
);
}
MLUCnnlReduceDesc
reduction_desc
(
reduce_axes
,
CNNL_REDUCE_ADD
,
ToCnnlDataType
<
T
>
(),
CNNL_NOT_PROPAGATE_NAN
,
CNNL_REDUCE_NO_INDICES
,
CNNL_32BIT_INDICES
);
MLUCnnlTensorDesc
dx_desc
(
dst_dims_vec
.
size
(),
dst_dims_vec
.
data
(),
ToCnnlDataType
<
T
>
());
MLUCnnl
::
Reduce
(
ctx
,
true
/*need_workspace*/
,
reduction_desc
.
get
(),
nullptr
,
dout_desc
.
get
(),
GetBasePtr
(
dout
),
0
,
nullptr
,
nullptr
,
dx_desc
.
get
(),
GetBasePtr
(
dx
));
}
else
{
framework
::
TensorCopy
(
*
dout
,
ctx
.
GetPlace
(),
dev_ctx
,
dx
);
}
}
if
(
dy
)
{
dy
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
if
(
dy
->
dims
()
!=
dout
->
dims
())
{
std
::
vector
<
int
>
dst_dims_vec
;
std
::
vector
<
int
>
reduce_axes
;
auto
src_dims
=
dy
->
dims
();
auto
dout_dims
=
dout
->
dims
();
int
src_axis
=
(
src_dims
.
size
()
<
dout_dims
.
size
()
?
axis
:
0
);
for
(
int
ax
=
0
;
ax
<
dout_dims
.
size
();
++
ax
)
{
if
((
ax
<
src_axis
||
ax
>=
src_axis
+
src_dims
.
size
())
||
(
dout_dims
[
ax
]
>
1
&&
src_dims
[
ax
-
src_axis
]
==
1
))
{
reduce_axes
.
push_back
(
ax
);
}
else
{
dst_dims_vec
.
push_back
(
dout_dims
[
ax
]);
}
}
if
(
dst_dims_vec
.
size
()
==
0
)
{
// y is scalar
dst_dims_vec
.
push_back
(
1
);
}
MLUCnnlReduceDesc
reduction_desc
(
reduce_axes
,
CNNL_REDUCE_ADD
,
ToCnnlDataType
<
T
>
(),
CNNL_NOT_PROPAGATE_NAN
,
CNNL_REDUCE_NO_INDICES
,
CNNL_32BIT_INDICES
);
MLUCnnlTensorDesc
dy_desc
(
dst_dims_vec
.
size
(),
dst_dims_vec
.
data
(),
ToCnnlDataType
<
T
>
());
MLUCnnl
::
Reduce
(
ctx
,
true
/*need_workspace*/
,
reduction_desc
.
get
(),
nullptr
,
dout_desc
.
get
(),
GetBasePtr
(
dout
),
0
,
nullptr
,
nullptr
,
dy_desc
.
get
(),
GetBasePtr
(
dy
));
}
else
{
framework
::
TensorCopy
(
*
dout
,
ctx
.
GetPlace
(),
dev_ctx
,
dy
);
}
}
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_MLU_KERNEL
(
elementwise_add
,
ops
::
ElementwiseAddMLUKernel
<
float
>
,
ops
::
ElementwiseAddMLUKernel
<
plat
::
float16
>
);
REGISTER_OP_MLU_KERNEL
(
elementwise_add_grad
,
ops
::
ElementwiseAddGradMLUKernel
<
float
>
,
ops
::
ElementwiseAddGradMLUKernel
<
plat
::
float16
>
);
python/paddle/fluid/tests/unittests/mlu/test_elementwise_add_op_mlu.py
0 → 100644
浏览文件 @
d47a511a
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
paddle
import
paddle.fluid.core
as
core
import
sys
sys
.
path
.
append
(
'..'
)
from
op_test
import
OpTest
,
skip_check_grad_ci
import
paddle.fluid
as
fluid
from
paddle.fluid
import
compiler
,
Program
,
program_guard
class
TestElementwiseAddOp
(
OpTest
):
def
set_mlu
(
self
):
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
self
.
__class__
.
use_mlu
=
True
def
setUp
(
self
):
self
.
op_type
=
"elementwise_add"
self
.
set_mlu
()
self
.
init_dtype
()
self
.
init_input_output
()
self
.
init_axis
()
self
.
inputs
=
{
'X'
:
OpTest
.
np_dtype_to_fluid_dtype
(
self
.
x
),
'Y'
:
OpTest
.
np_dtype_to_fluid_dtype
(
self
.
y
)
}
self
.
attrs
=
{
'axis'
:
self
.
axis
}
self
.
outputs
=
{
'Out'
:
self
.
out
}
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad_normal
(
self
):
if
self
.
dtype
==
np
.
float16
:
return
self
.
check_grad_with_place
(
self
.
place
,
[
'X'
,
'Y'
],
'Out'
,
max_relative_error
=
0.01
)
def
test_check_grad_ingore_x
(
self
):
if
self
.
dtype
==
np
.
float16
:
return
self
.
check_grad_with_place
(
self
.
place
,
[
'Y'
],
'Out'
,
no_grad_set
=
set
(
"X"
),
max_relative_error
=
0.01
)
def
test_check_grad_ingore_y
(
self
):
if
self
.
dtype
==
np
.
float16
:
return
self
.
check_grad_with_place
(
self
.
place
,
[
'X'
],
'Out'
,
no_grad_set
=
set
(
'Y'
),
max_relative_error
=
0.01
)
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
uniform
(
0.1
,
1
,
[
13
,
17
]).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
uniform
(
0.1
,
1
,
[
13
,
17
]).
astype
(
self
.
dtype
)
self
.
out
=
np
.
add
(
self
.
x
,
self
.
y
)
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float32
def
init_axis
(
self
):
self
.
axis
=
-
1
class
TestFP16ElementwiseAddOp
(
TestElementwiseAddOp
):
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float16
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
,
atol
=
1e-3
)
@
skip_check_grad_ci
(
reason
=
"[skip shape check] Use y_shape(1) to test broadcast."
)
class
TestElementwiseAddOp_scalar
(
TestElementwiseAddOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
rand
(
2
,
3
,
4
).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
rand
(
1
).
astype
(
self
.
dtype
)
self
.
out
=
self
.
x
+
self
.
y
@
skip_check_grad_ci
(
reason
=
"[skip shape check] Use y_shape(1) to test broadcast."
)
class
TestFP16ElementwiseAddOp_scalar
(
TestFP16ElementwiseAddOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
rand
(
2
,
3
,
4
).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
rand
(
1
).
astype
(
self
.
dtype
)
self
.
out
=
self
.
x
+
self
.
y
@
skip_check_grad_ci
(
reason
=
"[skip shape check] Use y_shape(1,1) to test broadcast."
)
class
TestElementwiseAddOp_scalar2
(
TestElementwiseAddOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
rand
(
2
,
3
,
4
).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
rand
(
1
,
1
).
astype
(
self
.
dtype
)
self
.
out
=
self
.
x
+
self
.
y
@
skip_check_grad_ci
(
reason
=
"[skip shape check] Use y_shape(1,1) to test broadcast."
)
class
TestFP16ElementwiseAddOp_scalar2
(
TestFP16ElementwiseAddOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
rand
(
2
,
3
,
4
).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
rand
(
1
,
1
).
astype
(
self
.
dtype
)
self
.
out
=
self
.
x
+
self
.
y
class
TestElementwiseAddOp_Vector
(
TestElementwiseAddOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
random
((
100
,
)).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
random
((
100
,
)).
astype
(
self
.
dtype
)
self
.
out
=
np
.
add
(
self
.
x
,
self
.
y
)
class
TestFP16ElementwiseAddOp_Vector
(
TestFP16ElementwiseAddOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
random
((
100
,
)).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
random
((
100
,
)).
astype
(
self
.
dtype
)
self
.
out
=
np
.
add
(
self
.
x
,
self
.
y
)
class
TestElementwiseAddOp_broadcast_0
(
TestElementwiseAddOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
rand
(
100
,
2
,
3
).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
rand
(
100
).
astype
(
self
.
dtype
)
self
.
out
=
self
.
x
+
self
.
y
.
reshape
(
100
,
1
,
1
)
def
init_axis
(
self
):
self
.
axis
=
0
class
TestFP16ElementwiseAddOp_broadcast_0
(
TestFP16ElementwiseAddOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
rand
(
100
,
2
,
3
).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
rand
(
100
).
astype
(
self
.
dtype
)
self
.
out
=
self
.
x
+
self
.
y
.
reshape
(
100
,
1
,
1
)
def
init_axis
(
self
):
self
.
axis
=
0
class
TestElementwiseAddOp_broadcast_1
(
TestElementwiseAddOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
rand
(
2
,
100
,
3
).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
rand
(
100
).
astype
(
self
.
dtype
)
self
.
out
=
self
.
x
+
self
.
y
.
reshape
(
1
,
100
,
1
)
def
init_axis
(
self
):
self
.
axis
=
1
class
TestFP16ElementwiseAddOp_broadcast_1
(
TestFP16ElementwiseAddOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
rand
(
2
,
100
,
3
).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
rand
(
100
).
astype
(
self
.
dtype
)
self
.
out
=
self
.
x
+
self
.
y
.
reshape
(
1
,
100
,
1
)
def
init_axis
(
self
):
self
.
axis
=
1
class
TestElementwiseAddOp_broadcast_2
(
TestElementwiseAddOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
rand
(
2
,
3
,
100
).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
rand
(
100
).
astype
(
self
.
dtype
)
self
.
out
=
self
.
x
+
self
.
y
.
reshape
(
1
,
1
,
100
)
class
TestFP16ElementwiseAddOp_broadcast_2
(
TestFP16ElementwiseAddOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
rand
(
2
,
3
,
100
).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
rand
(
100
).
astype
(
self
.
dtype
)
self
.
out
=
self
.
x
+
self
.
y
.
reshape
(
1
,
1
,
100
)
class
TestElementwiseAddOp_broadcast_3
(
TestElementwiseAddOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
rand
(
2
,
10
,
12
,
1
).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
rand
(
10
,
12
).
astype
(
self
.
dtype
)
self
.
out
=
self
.
x
+
self
.
y
.
reshape
(
1
,
10
,
12
,
1
)
def
init_axis
(
self
):
self
.
axis
=
1
class
TestFP16ElementwiseAddOp_broadcast_3
(
TestFP16ElementwiseAddOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
rand
(
2
,
10
,
12
,
3
).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
rand
(
10
,
12
).
astype
(
self
.
dtype
)
self
.
out
=
self
.
x
+
self
.
y
.
reshape
(
1
,
10
,
12
,
1
)
def
init_axis
(
self
):
self
.
axis
=
1
class
TestElementwiseAddOp_broadcast_4
(
TestElementwiseAddOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
rand
(
100
,
2
,
1
,
2
).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
rand
(
100
,
1
).
astype
(
self
.
dtype
)
self
.
out
=
self
.
x
+
self
.
y
.
reshape
(
100
,
1
,
1
,
1
)
def
init_axis
(
self
):
self
.
axis
=
0
class
TestFP16ElementwiseAddOp_broadcast_4
(
TestFP16ElementwiseAddOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
rand
(
100
,
2
,
1
,
2
).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
rand
(
100
,
1
).
astype
(
self
.
dtype
)
self
.
out
=
self
.
x
+
self
.
y
.
reshape
(
100
,
1
,
1
,
1
)
def
init_axis
(
self
):
self
.
axis
=
0
class
TestElementwiseAddOp_broadcast_5
(
TestElementwiseAddOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
rand
(
10
,
3
,
12
).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
rand
(
10
,
1
,
12
).
astype
(
self
.
dtype
)
self
.
out
=
self
.
x
+
self
.
y
class
TestFP16ElementwiseAddOp_broadcast_5
(
TestFP16ElementwiseAddOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
rand
(
10
,
3
,
12
).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
rand
(
10
,
1
,
12
).
astype
(
self
.
dtype
)
self
.
out
=
self
.
x
+
self
.
y
class
TestElementwiseAddOp_broadcast_6
(
TestElementwiseAddOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
rand
(
2
,
12
,
3
,
5
).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
rand
(
2
,
12
,
1
,
5
).
astype
(
self
.
dtype
)
self
.
out
=
self
.
x
+
self
.
y
class
TestElementwiseAddOp_broadcast_7
(
TestElementwiseAddOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
rand
(
1
,
1
,
20
,
5
).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
rand
(
20
,
5
,
1
,
1
).
astype
(
self
.
dtype
)
self
.
out
=
self
.
x
+
self
.
y
class
TestFP16ElementwiseAddOp_broadcast_6
(
TestFP16ElementwiseAddOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
rand
(
2
,
12
,
3
,
5
).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
rand
(
2
,
12
,
1
,
5
).
astype
(
self
.
dtype
)
self
.
out
=
self
.
x
+
self
.
y
class
TestElementwiseAddOp_rowwise_add_0
(
TestElementwiseAddOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
rand
(
2
,
10
,
12
).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
rand
(
10
,
12
).
astype
(
self
.
dtype
)
self
.
out
=
self
.
x
+
self
.
y
.
reshape
(
1
,
10
,
12
)
def
init_axis
(
self
):
self
.
axis
=
1
class
TestFP16ElementwiseAddOp_rowwise_add_0
(
TestFP16ElementwiseAddOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
rand
(
2
,
10
,
12
).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
rand
(
10
,
12
).
astype
(
self
.
dtype
)
self
.
out
=
self
.
x
+
self
.
y
.
reshape
(
1
,
10
,
12
)
def
init_axis
(
self
):
self
.
axis
=
1
@
skip_check_grad_ci
(
reason
=
"[skip shape check] Use y_shape(1) to test broadcast."
)
class
TestElementwiseAddOp_rowwise_add_1
(
TestElementwiseAddOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
rand
(
100
,
1
).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
rand
(
1
).
astype
(
self
.
dtype
)
self
.
out
=
self
.
x
+
self
.
y
.
reshape
(
1
,
1
)
def
init_axis
(
self
):
self
.
axis
=
1
@
skip_check_grad_ci
(
reason
=
"[skip shape check] Use y_shape(1) to test broadcast."
)
class
TestFP16ElementwiseAddOp_rowwise_add_1
(
TestFP16ElementwiseAddOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
rand
(
100
,
1
).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
rand
(
1
).
astype
(
self
.
dtype
)
self
.
out
=
self
.
x
+
self
.
y
.
reshape
(
1
,
1
)
def
init_axis
(
self
):
self
.
axis
=
1
class
TestElementwiseAddOp_channelwise_add
(
TestElementwiseAddOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
rand
(
100
,
2
,
3
).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
rand
(
100
,
1
,
1
).
astype
(
self
.
dtype
)
self
.
out
=
self
.
x
+
self
.
y
def
init_axis
(
self
):
self
.
axis
=
-
1
class
TestFP16ElementwiseAddOp_channelwise_add
(
TestFP16ElementwiseAddOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
rand
(
100
,
2
,
3
).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
rand
(
100
,
1
,
1
).
astype
(
self
.
dtype
)
self
.
out
=
self
.
x
+
self
.
y
def
init_axis
(
self
):
self
.
axis
=
-
1
class
TestElementwiseAddOp_commonuse_add1
(
TestElementwiseAddOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
rand
(
2
,
3
,
100
).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
rand
(
1
,
1
,
100
).
astype
(
self
.
dtype
)
self
.
out
=
self
.
x
+
self
.
y
def
init_axis
(
self
):
self
.
axis
=
-
1
class
TestElementwiseFP16AddOp_commonuse_add1
(
TestFP16ElementwiseAddOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
rand
(
2
,
3
,
100
).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
rand
(
1
,
1
,
100
).
astype
(
self
.
dtype
)
self
.
out
=
self
.
x
+
self
.
y
def
init_axis
(
self
):
self
.
axis
=
-
1
class
TestElementwiseAddOp_commonuse_add2
(
TestElementwiseAddOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
rand
(
10
,
3
,
1
,
4
).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
rand
(
10
,
1
,
12
,
1
).
astype
(
self
.
dtype
)
self
.
out
=
self
.
x
+
self
.
y
def
init_axis
(
self
):
self
.
axis
=
-
1
class
TestElementwiseAddOp_xsize_lessthan_ysize_add
(
TestElementwiseAddOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
rand
(
10
,
12
).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
rand
(
2
,
2
,
10
,
12
).
astype
(
self
.
dtype
)
self
.
out
=
self
.
x
+
self
.
y
def
init_axis
(
self
):
self
.
axis
=
2
class
TestElementwiseAddOp_same_shape_ysize_large
(
TestElementwiseAddOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
rand
(
10
,
1
,
12
).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
rand
(
10
,
2
,
12
).
astype
(
self
.
dtype
)
self
.
out
=
self
.
x
+
self
.
y
def
init_axis
(
self
):
self
.
axis
=
0
class
TestElementwiseAddOpError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
with
program_guard
(
Program
(),
Program
()):
# the input of elementwise_add must be Variable.
x1
=
fluid
.
create_lod_tensor
(
np
.
array
([
-
1
,
3
,
5
,
5
]),
[[
1
,
1
,
1
,
1
]],
fluid
.
MLUPlace
(
0
))
y1
=
fluid
.
create_lod_tensor
(
np
.
array
([
-
1
,
3
,
5
,
5
]),
[[
1
,
1
,
1
,
1
]],
fluid
.
MLUPlace
(
0
))
self
.
assertRaises
(
TypeError
,
fluid
.
layers
.
elementwise_add
,
x1
,
y1
)
# the input dtype of elementwise_add must be float16 or float32
x2
=
fluid
.
layers
.
data
(
name
=
'x2'
,
shape
=
[
3
,
4
,
5
,
6
],
dtype
=
"uint8"
)
y2
=
fluid
.
layers
.
data
(
name
=
'y2'
,
shape
=
[
3
,
4
,
5
,
6
],
dtype
=
"uint8"
)
self
.
assertRaises
(
TypeError
,
fluid
.
layers
.
elementwise_add
,
x2
,
y2
)
class
TestAddApi
(
unittest
.
TestCase
):
def
_executed_api
(
self
,
x
,
y
,
name
=
None
):
return
paddle
.
add
(
x
,
y
,
name
)
def
test_name
(
self
):
with
fluid
.
program_guard
(
fluid
.
Program
()):
x
=
fluid
.
data
(
name
=
"x"
,
shape
=
[
2
,
3
],
dtype
=
"float32"
)
y
=
fluid
.
data
(
name
=
'y'
,
shape
=
[
2
,
3
],
dtype
=
'float32'
)
y_1
=
self
.
_executed_api
(
x
,
y
,
name
=
'add_res'
)
self
.
assertEqual
((
'add_res'
in
y_1
.
name
),
True
)
def
test_declarative
(
self
):
with
fluid
.
program_guard
(
fluid
.
Program
()):
def
gen_data
():
return
{
"x"
:
np
.
array
([
2
,
3
,
4
]).
astype
(
'float32'
),
"y"
:
np
.
array
([
1
,
5
,
2
]).
astype
(
'float32'
)
}
x
=
fluid
.
data
(
name
=
"x"
,
shape
=
[
3
],
dtype
=
'float32'
)
y
=
fluid
.
data
(
name
=
"y"
,
shape
=
[
3
],
dtype
=
'float32'
)
z
=
self
.
_executed_api
(
x
,
y
)
place
=
fluid
.
MLUPlace
(
0
)
exe
=
fluid
.
Executor
(
place
)
z_value
=
exe
.
run
(
feed
=
gen_data
(),
fetch_list
=
[
z
.
name
])
z_expected
=
np
.
array
([
3.
,
8.
,
6.
])
self
.
assertEqual
((
z_value
==
z_expected
).
all
(),
True
)
def
test_dygraph
(
self
):
with
fluid
.
dygraph
.
guard
():
np_x
=
np
.
array
([
2
,
3
,
4
]).
astype
(
'float32'
)
np_y
=
np
.
array
([
1
,
5
,
2
]).
astype
(
'float32'
)
x
=
fluid
.
dygraph
.
to_variable
(
np_x
)
y
=
fluid
.
dygraph
.
to_variable
(
np_y
)
z
=
self
.
_executed_api
(
x
,
y
)
np_z
=
z
.
numpy
()
z_expected
=
np
.
array
([
3.
,
8.
,
6.
])
self
.
assertEqual
((
np_z
==
z_expected
).
all
(),
True
)
class
TestAddInplaceApi
(
TestAddApi
):
def
_executed_api
(
self
,
x
,
y
,
name
=
None
):
return
x
.
add_
(
y
,
name
)
class
TestAddInplaceBroadcastSuccess
(
unittest
.
TestCase
):
def
init_data
(
self
):
self
.
x_numpy
=
np
.
random
.
rand
(
2
,
3
,
4
).
astype
(
'float32'
)
self
.
y_numpy
=
np
.
random
.
rand
(
3
,
4
).
astype
(
'float32'
)
def
test_broadcast_success
(
self
):
paddle
.
disable_static
()
self
.
init_data
()
x
=
paddle
.
to_tensor
(
self
.
x_numpy
)
y
=
paddle
.
to_tensor
(
self
.
y_numpy
)
inplace_result
=
x
.
add_
(
y
)
numpy_result
=
self
.
x_numpy
+
self
.
y_numpy
self
.
assertEqual
((
inplace_result
.
numpy
()
==
numpy_result
).
all
(),
True
)
paddle
.
enable_static
()
class
TestAddInplaceBroadcastSuccess2
(
TestAddInplaceBroadcastSuccess
):
def
init_data
(
self
):
self
.
x_numpy
=
np
.
random
.
rand
(
1
,
2
,
3
,
1
).
astype
(
'float32'
)
self
.
y_numpy
=
np
.
random
.
rand
(
3
,
1
).
astype
(
'float32'
)
class
TestAddInplaceBroadcastSuccess3
(
TestAddInplaceBroadcastSuccess
):
def
init_data
(
self
):
self
.
x_numpy
=
np
.
random
.
rand
(
2
,
3
,
1
,
5
).
astype
(
'float32'
)
self
.
y_numpy
=
np
.
random
.
rand
(
1
,
3
,
1
,
5
).
astype
(
'float32'
)
class
TestAddInplaceBroadcastError
(
unittest
.
TestCase
):
def
init_data
(
self
):
self
.
x_numpy
=
np
.
random
.
rand
(
3
,
4
).
astype
(
'float32'
)
self
.
y_numpy
=
np
.
random
.
rand
(
2
,
3
,
4
).
astype
(
'float32'
)
def
test_broadcast_errors
(
self
):
paddle
.
disable_static
()
self
.
init_data
()
x
=
paddle
.
to_tensor
(
self
.
x_numpy
)
y
=
paddle
.
to_tensor
(
self
.
y_numpy
)
def
broadcast_shape_error
():
x
.
add_
(
y
)
self
.
assertRaises
(
ValueError
,
broadcast_shape_error
)
paddle
.
enable_static
()
class
TestAddInplaceBroadcastError2
(
TestAddInplaceBroadcastError
):
def
init_data
(
self
):
self
.
x_numpy
=
np
.
random
.
rand
(
2
,
1
,
4
).
astype
(
'float32'
)
self
.
y_numpy
=
np
.
random
.
rand
(
2
,
3
,
4
).
astype
(
'float32'
)
class
TestAddInplaceBroadcastError3
(
TestAddInplaceBroadcastError
):
def
init_data
(
self
):
self
.
x_numpy
=
np
.
random
.
rand
(
5
,
2
,
1
,
4
).
astype
(
'float32'
)
self
.
y_numpy
=
np
.
random
.
rand
(
2
,
3
,
4
).
astype
(
'float32'
)
class
TestBoolAddFloatElementwiseAddop
(
unittest
.
TestCase
):
def
test_static_add
(
self
):
paddle
.
enable_static
()
a
=
1.5
b
=
paddle
.
full
([
4
,
5
,
6
],
True
,
dtype
=
'bool'
)
c
=
a
+
b
self
.
assertTrue
(
c
.
dtype
==
core
.
VarDesc
.
VarType
.
FP32
)
paddle
.
enable_static
()
def
test_dygraph_add
(
self
):
paddle
.
disable_static
()
a
=
1.5
b
=
paddle
.
full
([
4
,
5
,
6
],
True
,
dtype
=
'bool'
)
c
=
a
+
b
self
.
assertTrue
(
c
.
dtype
==
core
.
VarDesc
.
VarType
.
FP32
)
if
__name__
==
'__main__'
:
paddle
.
enable_static
()
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录