Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
d37ed6cb
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
d37ed6cb
编写于
12月 15, 2017
作者:
Y
Yibing Liu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
polish code in reshape_op
上级
5ac8a0be
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
10 addition
and
8 deletion
+10
-8
paddle/operators/reshape_op.cc
paddle/operators/reshape_op.cc
+10
-8
未找到文件。
paddle/operators/reshape_op.cc
浏览文件 @
d37ed6cb
...
...
@@ -36,10 +36,13 @@ class ReshapeOp : public framework::OperatorWithKernel {
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
std
::
vector
<
size_t
>
neg_dims_idx
;
// set some dimension to -1 if it is unknown
const
int
unknown_size
=
-
1
;
for
(
size_t
i
=
0
;
i
<
shape
.
size
();
++
i
)
{
PADDLE_ENFORCE
(
shape
[
i
]
>
0
||
shape
[
i
]
==
-
1
,
"Each dimension of Attr(shape) must be positive or -1."
);
if
(
shape
[
i
]
==
-
1
)
{
PADDLE_ENFORCE
(
shape
[
i
]
>
0
||
shape
[
i
]
==
unknown_size
,
"Each dimension of Attr(shape) must be positive or %d."
,
unknown_size
);
if
(
shape
[
i
]
==
unknown_size
)
{
neg_dims_idx
.
push_back
(
i
);
PADDLE_ENFORCE
(
neg_dims_idx
.
size
()
<=
1
,
"Only one dimension of Attr(shape) can be unknown."
);
...
...
@@ -53,8 +56,7 @@ class ReshapeOp : public framework::OperatorWithKernel {
// dim infer
shape
[
neg_dims_idx
[
0
]]
=
in_size
/
(
-
capacity
);
// recalculate capacity
capacity
=
std
::
accumulate
(
shape
.
begin
(),
shape
.
end
(),
1
,
std
::
multiplies
<
int
>
());
capacity
=
shape
[
neg_dims_idx
[
0
]]
*
(
-
capacity
);
}
// capacity check
PADDLE_ENFORCE
(
capacity
==
in_size
,
...
...
@@ -98,9 +100,9 @@ the tensor X into a 2-D tensor:
[[1, 2, 3, 4]]
One dimension in the target shape can be set -1,
and the real dimension
will be infered from the original shape of Input(X) and other
dimensions in the target shape.
One dimension in the target shape can be set -1,
representing that its
size is unknown. In this case, the real dimension will be infered from
the original shape of Input(X) and other
dimensions in the target shape.
)DOC"
);
}
};
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录