Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
d35417e7
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d35417e7
编写于
9月 22, 2017
作者:
Q
qingqing01
提交者:
GitHub
9月 22, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #4216 from qingqing01/attr_bool
Add bool type for attribute and use it in dropout_op.
上级
6117af64
efb56db7
变更
13
显示空白变更内容
内联
并排
Showing
13 changed file
with
65 addition
and
50 deletion
+65
-50
paddle/framework/attribute.cc
paddle/framework/attribute.cc
+18
-0
paddle/framework/attribute.h
paddle/framework/attribute.h
+3
-2
paddle/framework/framework.proto
paddle/framework/framework.proto
+6
-2
paddle/operators/cross_entropy_op.cc
paddle/operators/cross_entropy_op.cc
+10
-15
paddle/operators/cross_entropy_op.cu
paddle/operators/cross_entropy_op.cu
+2
-2
paddle/operators/cross_entropy_op.h
paddle/operators/cross_entropy_op.h
+2
-2
paddle/operators/dropout_op.cc
paddle/operators/dropout_op.cc
+5
-12
paddle/operators/dropout_op.cu
paddle/operators/dropout_op.cu
+1
-1
paddle/operators/dropout_op.h
paddle/operators/dropout_op.h
+3
-3
python/paddle/v2/framework/op.py
python/paddle/v2/framework/op.py
+4
-0
python/paddle/v2/framework/tests/test_cos_sim_op.py
python/paddle/v2/framework/tests/test_cos_sim_op.py
+3
-3
python/paddle/v2/framework/tests/test_cross_entropy_op.py
python/paddle/v2/framework/tests/test_cross_entropy_op.py
+3
-3
python/paddle/v2/framework/tests/test_dropout_op.py
python/paddle/v2/framework/tests/test_dropout_op.py
+5
-5
未找到文件。
paddle/framework/attribute.cc
浏览文件 @
d35417e7
...
...
@@ -28,6 +28,10 @@ ProgramDesc& GetProgramDesc() {
return
*
g_program_desc
;
}
template
<
>
AttrType
AttrTypeID
<
bool
>
()
{
return
BOOLEAN
;
}
template
<
>
AttrType
AttrTypeID
<
int
>
()
{
return
INT
;
...
...
@@ -41,6 +45,10 @@ AttrType AttrTypeID<std::string>() {
return
STRING
;
}
template
<
>
AttrType
AttrTypeID
<
std
::
vector
<
bool
>>
()
{
return
BOOLEANS
;
}
template
<
>
AttrType
AttrTypeID
<
std
::
vector
<
int
>>
()
{
return
INTS
;
}
...
...
@@ -63,6 +71,9 @@ AttrType AttrTypeID<BlockDesc>() {
Attribute
GetAttrValue
(
const
OpDesc
::
Attr
&
attr_desc
)
{
switch
(
attr_desc
.
type
())
{
case
framework
::
AttrType
::
BOOLEAN
:
{
return
attr_desc
.
b
();
}
case
framework
::
AttrType
::
INT
:
{
return
attr_desc
.
i
();
}
...
...
@@ -72,6 +83,13 @@ Attribute GetAttrValue(const OpDesc::Attr& attr_desc) {
case
framework
::
AttrType
::
STRING
:
{
return
attr_desc
.
s
();
}
case
framework
::
AttrType
::
BOOLEANS
:
{
std
::
vector
<
bool
>
val
(
attr_desc
.
bools_size
());
for
(
int
i
=
0
;
i
<
attr_desc
.
bools_size
();
++
i
)
{
val
[
i
]
=
attr_desc
.
bools
(
i
);
}
return
val
;
}
case
framework
::
AttrType
::
INTS
:
{
std
::
vector
<
int
>
val
(
attr_desc
.
ints_size
());
for
(
int
i
=
0
;
i
<
attr_desc
.
ints_size
();
++
i
)
{
...
...
paddle/framework/attribute.h
浏览文件 @
d35417e7
...
...
@@ -27,8 +27,9 @@ limitations under the License. */
namespace
paddle
{
namespace
framework
{
typedef
boost
::
variant
<
boost
::
blank
,
int
,
float
,
std
::
string
,
std
::
vector
<
int
>
,
std
::
vector
<
float
>
,
std
::
vector
<
std
::
string
>
,
typedef
boost
::
variant
<
boost
::
blank
,
bool
,
int
,
float
,
std
::
string
,
std
::
vector
<
bool
>
,
std
::
vector
<
int
>
,
std
::
vector
<
float
>
,
std
::
vector
<
std
::
string
>
,
std
::
vector
<
std
::
pair
<
int
,
int
>>
,
BlockDesc
*>
Attribute
;
...
...
paddle/framework/framework.proto
浏览文件 @
d35417e7
...
...
@@ -23,7 +23,9 @@ enum AttrType {
FLOATS
=
4
;
STRINGS
=
5
;
INT_PAIRS
=
6
;
BLOCK
=
7
;
BOOLEAN
=
7
;
BOOLEANS
=
8
;
BLOCK
=
9
;
}
message
IntPair
{
...
...
@@ -45,7 +47,9 @@ message OpDesc {
repeated
float
floats
=
7
;
repeated
string
strings
=
8
;
repeated
IntPair
int_pairs
=
9
;
optional
int32
block_idx
=
10
;
optional
bool
b
=
10
;
repeated
bool
bools
=
11
;
optional
int32
block_idx
=
12
;
};
message
Var
{
...
...
paddle/operators/cross_entropy_op.cc
浏览文件 @
d35417e7
...
...
@@ -33,19 +33,16 @@ class CrossEntropyOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_EQ
(
x
->
dims
().
size
(),
2
,
"Input(X)'s rank must be 2."
);
PADDLE_ENFORCE_EQ
(
label
->
dims
().
size
(),
2
,
"Input(Label)'s rank must be 2."
);
// TODO(xinghai-sun): remove this check after swtiching to bool
PADDLE_ENFORCE
(
ctx
.
Attr
<
int
>
(
"soft_label"
)
==
0
||
ctx
.
Attr
<
int
>
(
"soft_label"
)
==
1
);
PADDLE_ENFORCE_EQ
(
x
->
dims
()[
0
],
label
->
dims
()[
0
],
"The 1st dimension of Input(X) and Input(Label) must "
"be equal."
);
if
(
ctx
.
Attr
<
int
>
(
"soft_label"
)
==
1
)
{
if
(
ctx
.
Attr
<
bool
>
(
"soft_label"
)
)
{
PADDLE_ENFORCE_EQ
(
x
->
dims
()[
1
],
label
->
dims
()[
1
],
"If Attr(soft_label) ==
1
, The 2nd dimension of "
"If Attr(soft_label) ==
true
, The 2nd dimension of "
"Input(X) and Input(Label) must be equal."
);
}
else
{
PADDLE_ENFORCE_EQ
(
label
->
dims
()[
1
],
1
,
"If Attr(soft_label) ==
0
, The 2nd dimension of "
"If Attr(soft_label) ==
false
, The 2nd dimension of "
"Input(Label) must be 1."
);
}
...
...
@@ -73,9 +70,6 @@ class CrossEntropyGradientOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_EQ
(
dy
->
dims
().
size
(),
2
,
"Input(Y@Grad)'s rank must be 2."
);
PADDLE_ENFORCE_EQ
(
label
->
dims
().
size
(),
2
,
"Input(Label)'s rank must be 2."
);
// TODO(xinghai-sun): remove this check after swtiching to bool
PADDLE_ENFORCE
(
ctx
.
Attr
<
int
>
(
"soft_label"
)
==
0
||
ctx
.
Attr
<
int
>
(
"soft_label"
)
==
1
);
PADDLE_ENFORCE_EQ
(
x
->
dims
()[
0
],
label
->
dims
()[
0
],
"The 1st dimension of Input(X) and Input(Label) must "
"be equal."
);
...
...
@@ -84,13 +78,13 @@ class CrossEntropyGradientOp : public framework::OperatorWithKernel {
"be equal."
);
PADDLE_ENFORCE_EQ
(
dy
->
dims
()[
1
],
1
,
"The 2nd dimension of Input(Y@Grad) must be 1."
);
if
(
ctx
.
Attr
<
int
>
(
"soft_label"
)
==
1
)
{
if
(
ctx
.
Attr
<
bool
>
(
"soft_label"
)
)
{
PADDLE_ENFORCE_EQ
(
x
->
dims
()[
1
],
label
->
dims
()[
1
],
"If Attr(soft_label) ==
1
, The 2nd dimension of "
"If Attr(soft_label) ==
true
, The 2nd dimension of "
"Input(X) and Input(Label) must be equal."
);
}
else
{
PADDLE_ENFORCE_EQ
(
label
->
dims
()[
1
],
1
,
"If Attr(soft_label) ==
0
, The 2nd dimension of "
"If Attr(soft_label) ==
false
, The 2nd dimension of "
"Input(Label) must be 1."
);
}
...
...
@@ -107,7 +101,8 @@ class CrossEntropyOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"X"
,
"The first input of CrossEntropyOp"
);
AddInput
(
"Label"
,
"The second input of CrossEntropyOp"
);
AddOutput
(
"Y"
,
"The output of CrossEntropyOp"
);
AddAttr
<
int
>
(
"soft_label"
,
"Is soft label. Default zero."
).
SetDefault
(
0
);
AddAttr
<
bool
>
(
"soft_label"
,
"Is soft label. Default zero."
)
.
SetDefault
(
false
);
AddComment
(
R"DOC(
CrossEntropy Operator.
...
...
@@ -115,12 +110,12 @@ CrossEntropy Operator.
It supports both standard cross-entropy and soft-label cross-entropy loss
computation.
1) One-hot cross-entropy:
soft_label =
0
, Label[i, 0] indicates the class index for sample i:
soft_label =
False
, Label[i, 0] indicates the class index for sample i:
Y[i] = -log(X[i, Label[i]])
2) Soft-label cross-entropy:
soft_label =
1
, Label[i, j] indicates the soft label of class j
soft_label =
True
, Label[i, j] indicates the soft label of class j
for sample i:
Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}
...
...
paddle/operators/cross_entropy_op.cu
浏览文件 @
d35417e7
...
...
@@ -102,7 +102,7 @@ class CrossEntropyOpCUDAKernel : public framework::OpKernel {
int
grid
=
(
n
+
block
-
1
)
/
block
;
// TODO(qingqing) launch kernel on specified stream
// base on ExecutionContext.
if
(
ctx
.
Attr
<
int
>
(
"soft_label"
)
==
1
)
{
if
(
ctx
.
Attr
<
bool
>
(
"soft_label"
)
)
{
auto
*
label_data
=
ctx
.
Input
<
Tensor
>
(
"Label"
)
->
data
<
T
>
();
SoftCrossEntropyKernel
<
T
><<<
grid
,
block
>>>
(
y_data
,
x_data
,
label_data
,
n
,
d
);
...
...
@@ -137,7 +137,7 @@ class CrossEntropyGradientOpCUDAKernel : public framework::OpKernel {
grid
=
(
n
+
block
-
1
)
/
block
;
// TODO(qingqing): launch kernel on specified stream
// base on ExecutionContext.
if
(
ctx
.
Attr
<
int
>
(
"soft_label"
)
==
1
)
{
if
(
ctx
.
Attr
<
bool
>
(
"soft_label"
)
)
{
auto
*
label_data
=
label
->
data
<
T
>
();
SoftCrossEntropyGradientKernel
<
T
><<<
grid
,
block
>>>
(
dx_data
,
dy_data
,
x_data
,
label_data
,
n
,
d
);
...
...
paddle/operators/cross_entropy_op.h
浏览文件 @
d35417e7
...
...
@@ -51,7 +51,7 @@ class CrossEntropyOpKernel : public framework::OpKernel {
int
batch_size
=
x
->
dims
()[
0
];
int
class_num
=
x
->
dims
()[
1
];
if
(
ctx
.
Attr
<
int
>
(
"soft_label"
)
==
1
)
{
if
(
ctx
.
Attr
<
bool
>
(
"soft_label"
)
)
{
auto
*
label_data
=
ctx
.
Input
<
Tensor
>
(
"Label"
)
->
data
<
T
>
();
int
index
=
0
;
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
...
...
@@ -92,7 +92,7 @@ class CrossEntropyGradientOpKernel : public framework::OpKernel {
int
class_num
=
x
->
dims
()[
1
];
// TODO(qingqing): make zero setting an common function.
if
(
ctx
.
Attr
<
int
>
(
"soft_label"
)
==
1
)
{
if
(
ctx
.
Attr
<
bool
>
(
"soft_label"
)
)
{
auto
*
label_data
=
ctx
.
Input
<
Tensor
>
(
"Label"
)
->
data
<
T
>
();
int
index
=
0
;
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
...
...
paddle/operators/dropout_op.cc
浏览文件 @
d35417e7
...
...
@@ -28,13 +28,10 @@ class DropoutOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"X"
),
"Input(X) must not be null."
);
PADDLE_ENFORCE_GE
(
ctx
.
Attr
<
float
>
(
"dropout_prob"
),
0
);
PADDLE_ENFORCE_LE
(
ctx
.
Attr
<
float
>
(
"dropout_prob"
),
1
);
// TODO(xinghai-sun): remove this check after swtiching to bool
PADDLE_ENFORCE
(
ctx
.
Attr
<
int
>
(
"is_training"
)
==
0
||
ctx
.
Attr
<
int
>
(
"is_training"
)
==
1
);
auto
dims
=
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
();
ctx
.
Output
<
Tensor
>
(
"Out"
)
->
Resize
(
dims
);
if
(
ctx
.
Attr
<
int
>
(
"is_training"
)
==
1
)
{
if
(
ctx
.
Attr
<
bool
>
(
"is_training"
)
)
{
ctx
.
Output
<
Tensor
>
(
"Mask"
)
->
Resize
(
dims
);
}
ctx
.
ShareLoD
(
"X"
,
/*->*/
"Out"
);
...
...
@@ -49,8 +46,7 @@ class DropoutOpMaker : public framework::OpProtoAndCheckerMaker {
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddAttr
<
AttrType
>
(
"dropout_prob"
,
"Probability of setting units to zero."
)
.
SetDefault
(
.5
f
);
// TODO(xinghai-sun): use bool for is_training after bool is supported.
AddAttr
<
int
>
(
"is_training"
,
"Whether in training phase."
).
SetDefault
(
1
);
AddAttr
<
bool
>
(
"is_training"
,
"Whether in training phase."
).
SetDefault
(
true
);
AddAttr
<
int
>
(
"seed"
,
"Dropout random seed."
).
SetDefault
(
0
);
AddInput
(
"X"
,
"The input of dropout op."
);
AddOutput
(
"Out"
,
"The output of dropout op."
);
...
...
@@ -59,7 +55,7 @@ class DropoutOpMaker : public framework::OpProtoAndCheckerMaker {
AddComment
(
R"DOC(
Dropout Operator.
"Dropout"
refers to randomly dropping out units in a nerual network. It is a
'Dropout'
refers to randomly dropping out units in a nerual network. It is a
regularization technique for reducing overfitting by preventing neuron
co-adaption during training. The dropout operator randomly set (according to
the given dropout probability) the outputs of some units to zero, while others
...
...
@@ -75,7 +71,7 @@ class DropoutOpGrad : public framework::OperatorWithKernel {
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
_EQ
(
ctx
.
Attr
<
int
>
(
"is_training"
),
1
,
PADDLE_ENFORCE
(
ctx
.
Attr
<
bool
>
(
"is_training"
)
,
"GradOp is only callable when is_training is true"
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"X"
),
"Input(X) must not be null."
);
...
...
@@ -85,9 +81,6 @@ class DropoutOpGrad : public framework::OperatorWithKernel {
PADDLE_ENFORCE_GE
(
ctx
.
Attr
<
AttrType
>
(
"dropout_prob"
),
0
);
PADDLE_ENFORCE_LE
(
ctx
.
Attr
<
AttrType
>
(
"dropout_prob"
),
1
);
// TODO(xinghai-sun): remove this check after swtiching to bool
PADDLE_ENFORCE
(
ctx
.
Attr
<
int
>
(
"is_training"
)
==
0
||
ctx
.
Attr
<
int
>
(
"is_training"
)
==
1
);
auto
x_dims
=
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
();
auto
out_dims
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
))
->
dims
();
PADDLE_ENFORCE_EQ
(
x_dims
,
out_dims
,
...
...
paddle/operators/dropout_op.cu
浏览文件 @
d35417e7
...
...
@@ -59,7 +59,7 @@ class GPUDropoutKernel : public framework::OpKernel {
auto
Y
=
EigenMatrix
<
T
>::
Reshape
(
*
y
,
1
);
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
if
(
context
.
Attr
<
int
>
(
"is_training"
)
==
1
)
{
if
(
context
.
Attr
<
bool
>
(
"is_training"
)
)
{
auto
*
mask
=
context
.
Output
<
Tensor
>
(
"Mask"
);
auto
*
mask_data
=
mask
->
mutable_data
<
T
>
(
context
.
GetPlace
());
int
size
=
framework
::
product
(
mask
->
dims
());
...
...
paddle/operators/dropout_op.h
浏览文件 @
d35417e7
...
...
@@ -35,7 +35,7 @@ class CPUDropoutKernel : public framework::OpKernel {
auto
*
y_data
=
y
->
mutable_data
<
T
>
(
context
.
GetPlace
());
AttrType
dropout_prob
=
context
.
Attr
<
AttrType
>
(
"dropout_prob"
);
if
(
context
.
Attr
<
int
>
(
"is_training"
)
==
1
)
{
if
(
context
.
Attr
<
bool
>
(
"is_training"
)
)
{
auto
*
mask
=
context
.
Output
<
Tensor
>
(
"Mask"
);
auto
*
mask_data
=
mask
->
mutable_data
<
T
>
(
context
.
GetPlace
());
int
seed
=
context
.
Attr
<
int
>
(
"seed"
);
...
...
@@ -65,7 +65,7 @@ template <typename Place, typename T>
class
DropoutGradKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
PADDLE_ENFORCE
_EQ
(
context
.
Attr
<
int
>
(
"is_training"
),
1
,
PADDLE_ENFORCE
(
context
.
Attr
<
bool
>
(
"is_training"
)
,
"GradOp is only callable when is_training is true"
);
auto
*
grad_x
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
...
...
python/paddle/v2/framework/op.py
浏览文件 @
d35417e7
...
...
@@ -89,12 +89,16 @@ class OpDescCreationMethod(object):
new_attr
.
f
=
user_defined_attr
elif
attr
.
type
==
framework_pb2
.
STRING
:
new_attr
.
s
=
user_defined_attr
elif
attr
.
type
==
framework_pb2
.
BOOLEAN
:
new_attr
.
b
=
user_defined_attr
elif
attr
.
type
==
framework_pb2
.
INTS
:
new_attr
.
ints
.
extend
(
user_defined_attr
)
elif
attr
.
type
==
framework_pb2
.
FLOATS
:
new_attr
.
floats
.
extend
(
user_defined_attr
)
elif
attr
.
type
==
framework_pb2
.
STRINGS
:
new_attr
.
strings
.
extend
(
user_defined_attr
)
elif
attr
.
type
==
framework_pb2
.
BOOLEANS
:
new_attr
.
bools
.
extend
(
user_defined_attr
)
elif
attr
.
type
==
framework_pb2
.
INT_PAIRS
:
for
p
in
user_defined_attr
:
pair
=
new_attr
.
int_pairs
.
add
()
...
...
python/paddle/v2/framework/tests/test_cos_sim_op.py
浏览文件 @
d35417e7
...
...
@@ -24,15 +24,15 @@ class TestCosSimOp(OpTest):
self
.
check_output
()
def
test_check_grad_normal
(
self
):
self
.
check_grad
([
'X'
,
'Y'
],
'Out'
,
max_relative_error
=
0.0
5
)
self
.
check_grad
([
'X'
,
'Y'
],
'Out'
,
max_relative_error
=
0.0
6
)
def
test_check_grad_ingore_x
(
self
):
self
.
check_grad
(
[
'Y'
],
'Out'
,
max_relative_error
=
0.0
5
,
no_grad_set
=
set
(
"X"
))
[
'Y'
],
'Out'
,
max_relative_error
=
0.0
6
,
no_grad_set
=
set
(
"X"
))
def
test_check_grad_ingore_y
(
self
):
self
.
check_grad
(
[
'X'
],
'Out'
,
max_relative_error
=
0.0
5
,
no_grad_set
=
set
(
'Y'
))
[
'X'
],
'Out'
,
max_relative_error
=
0.0
6
,
no_grad_set
=
set
(
'Y'
))
class
TestCosSimOp2
(
TestCosSimOp
):
...
...
python/paddle/v2/framework/tests/test_cross_entropy_op.py
浏览文件 @
d35417e7
...
...
@@ -19,7 +19,7 @@ class TestCrossEntropyOp1(OpTest):
dtype
=
"float32"
)
self
.
inputs
=
{
"X"
:
X
,
"Label"
:
label
}
self
.
outputs
=
{
"Y"
:
cross_entropy
}
self
.
attrs
=
{
'soft_label'
:
0
}
self
.
attrs
=
{
'soft_label'
:
False
}
def
test_check_output
(
self
):
self
.
check_output
()
...
...
@@ -45,7 +45,7 @@ class TestCrossEntropyOp2(OpTest):
axis
=
1
,
keepdims
=
True
).
astype
(
"float32"
)
self
.
inputs
=
{
'X'
:
X
,
'Label'
:
label
}
self
.
outputs
=
{
'Y'
:
cross_entropy
}
self
.
attrs
=
{
'soft_label'
:
1
}
self
.
attrs
=
{
'soft_label'
:
True
}
def
test_check_output
(
self
):
self
.
check_output
()
...
...
@@ -76,7 +76,7 @@ class TestCrossEntropyOp3(OpTest):
axis
=
1
,
keepdims
=
True
).
astype
(
"float32"
)
self
.
inputs
=
{
'X'
:
X
,
'Label'
:
label
}
self
.
outputs
=
{
'Y'
:
cross_entropy
}
self
.
attrs
=
{
'soft_label'
:
1
}
self
.
attrs
=
{
'soft_label'
:
True
}
def
test_check_output
(
self
):
self
.
check_output
()
...
...
python/paddle/v2/framework/tests/test_dropout_op.py
浏览文件 @
d35417e7
...
...
@@ -7,7 +7,7 @@ class TestDropoutOp(OpTest):
def
setUp
(
self
):
self
.
op_type
=
"dropout"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
32
,
64
)).
astype
(
"float32"
)}
self
.
attrs
=
{
'dropout_prob'
:
0.0
,
'is_training'
:
1
}
self
.
attrs
=
{
'dropout_prob'
:
0.0
,
'is_training'
:
True
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
],
'Mask'
:
np
.
ones
((
32
,
64
))}
def
test_check_output
(
self
):
...
...
@@ -21,7 +21,7 @@ class TestDropoutOp2(TestDropoutOp):
def
setUp
(
self
):
self
.
op_type
=
"dropout"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
32
,
64
)).
astype
(
"float32"
)}
self
.
attrs
=
{
'dropout_prob'
:
1.0
,
'is_training'
:
1
}
self
.
attrs
=
{
'dropout_prob'
:
1.0
,
'is_training'
:
True
}
self
.
outputs
=
{
'Out'
:
np
.
zeros
((
32
,
64
)),
'Mask'
:
np
.
zeros
((
32
,
64
))}
...
...
@@ -29,7 +29,7 @@ class TestDropoutOp3(TestDropoutOp):
def
setUp
(
self
):
self
.
op_type
=
"dropout"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
32
,
64
,
2
)).
astype
(
"float32"
)}
self
.
attrs
=
{
'dropout_prob'
:
0.0
,
'is_training'
:
1
}
self
.
attrs
=
{
'dropout_prob'
:
0.0
,
'is_training'
:
True
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
],
'Mask'
:
np
.
ones
((
32
,
64
,
2
))}
...
...
@@ -37,7 +37,7 @@ class TestDropoutOp4(OpTest):
def
setUp
(
self
):
self
.
op_type
=
"dropout"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
32
,
64
)).
astype
(
"float32"
)}
self
.
attrs
=
{
'dropout_prob'
:
0.35
,
'is_training'
:
0
}
self
.
attrs
=
{
'dropout_prob'
:
0.35
,
'is_training'
:
False
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
*
self
.
attrs
[
'dropout_prob'
]}
def
test_check_output
(
self
):
...
...
@@ -48,7 +48,7 @@ class TestDropoutOp5(OpTest):
def
setUp
(
self
):
self
.
op_type
=
"dropout"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
32
,
64
,
3
)).
astype
(
"float32"
)}
self
.
attrs
=
{
'dropout_prob'
:
0.75
,
'is_training'
:
0
}
self
.
attrs
=
{
'dropout_prob'
:
0.75
,
'is_training'
:
False
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
*
self
.
attrs
[
'dropout_prob'
]}
def
test_check_output
(
self
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录