提交 d35417e7 编写于 作者: Q qingqing01 提交者: GitHub

Merge pull request #4216 from qingqing01/attr_bool

Add bool type for attribute and use it in dropout_op.
......@@ -28,6 +28,10 @@ ProgramDesc& GetProgramDesc() {
return *g_program_desc;
}
template <>
AttrType AttrTypeID<bool>() {
return BOOLEAN;
}
template <>
AttrType AttrTypeID<int>() {
return INT;
......@@ -41,6 +45,10 @@ AttrType AttrTypeID<std::string>() {
return STRING;
}
template <>
AttrType AttrTypeID<std::vector<bool>>() {
return BOOLEANS;
}
template <>
AttrType AttrTypeID<std::vector<int>>() {
return INTS;
}
......@@ -63,6 +71,9 @@ AttrType AttrTypeID<BlockDesc>() {
Attribute GetAttrValue(const OpDesc::Attr& attr_desc) {
switch (attr_desc.type()) {
case framework::AttrType::BOOLEAN: {
return attr_desc.b();
}
case framework::AttrType::INT: {
return attr_desc.i();
}
......@@ -72,6 +83,13 @@ Attribute GetAttrValue(const OpDesc::Attr& attr_desc) {
case framework::AttrType::STRING: {
return attr_desc.s();
}
case framework::AttrType::BOOLEANS: {
std::vector<bool> val(attr_desc.bools_size());
for (int i = 0; i < attr_desc.bools_size(); ++i) {
val[i] = attr_desc.bools(i);
}
return val;
}
case framework::AttrType::INTS: {
std::vector<int> val(attr_desc.ints_size());
for (int i = 0; i < attr_desc.ints_size(); ++i) {
......
......@@ -27,8 +27,9 @@ limitations under the License. */
namespace paddle {
namespace framework {
typedef boost::variant<boost::blank, int, float, std::string, std::vector<int>,
std::vector<float>, std::vector<std::string>,
typedef boost::variant<boost::blank, bool, int, float, std::string,
std::vector<bool>, std::vector<int>, std::vector<float>,
std::vector<std::string>,
std::vector<std::pair<int, int>>, BlockDesc*>
Attribute;
......
......@@ -23,7 +23,9 @@ enum AttrType {
FLOATS = 4;
STRINGS = 5;
INT_PAIRS = 6;
BLOCK = 7;
BOOLEAN = 7;
BOOLEANS = 8;
BLOCK = 9;
}
message IntPair {
......@@ -45,7 +47,9 @@ message OpDesc {
repeated float floats = 7;
repeated string strings = 8;
repeated IntPair int_pairs = 9;
optional int32 block_idx = 10;
optional bool b = 10;
repeated bool bools = 11;
optional int32 block_idx = 12;
};
message Var {
......
......@@ -33,19 +33,16 @@ class CrossEntropyOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_EQ(x->dims().size(), 2, "Input(X)'s rank must be 2.");
PADDLE_ENFORCE_EQ(label->dims().size(), 2,
"Input(Label)'s rank must be 2.");
// TODO(xinghai-sun): remove this check after swtiching to bool
PADDLE_ENFORCE(ctx.Attr<int>("soft_label") == 0 ||
ctx.Attr<int>("soft_label") == 1);
PADDLE_ENFORCE_EQ(x->dims()[0], label->dims()[0],
"The 1st dimension of Input(X) and Input(Label) must "
"be equal.");
if (ctx.Attr<int>("soft_label") == 1) {
if (ctx.Attr<bool>("soft_label")) {
PADDLE_ENFORCE_EQ(x->dims()[1], label->dims()[1],
"If Attr(soft_label) == 1, The 2nd dimension of "
"If Attr(soft_label) == true, The 2nd dimension of "
"Input(X) and Input(Label) must be equal.");
} else {
PADDLE_ENFORCE_EQ(label->dims()[1], 1,
"If Attr(soft_label) == 0, The 2nd dimension of "
"If Attr(soft_label) == false, The 2nd dimension of "
"Input(Label) must be 1.");
}
......@@ -73,9 +70,6 @@ class CrossEntropyGradientOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_EQ(dy->dims().size(), 2, "Input(Y@Grad)'s rank must be 2.");
PADDLE_ENFORCE_EQ(label->dims().size(), 2,
"Input(Label)'s rank must be 2.");
// TODO(xinghai-sun): remove this check after swtiching to bool
PADDLE_ENFORCE(ctx.Attr<int>("soft_label") == 0 ||
ctx.Attr<int>("soft_label") == 1);
PADDLE_ENFORCE_EQ(x->dims()[0], label->dims()[0],
"The 1st dimension of Input(X) and Input(Label) must "
"be equal.");
......@@ -84,13 +78,13 @@ class CrossEntropyGradientOp : public framework::OperatorWithKernel {
"be equal.");
PADDLE_ENFORCE_EQ(dy->dims()[1], 1,
"The 2nd dimension of Input(Y@Grad) must be 1.");
if (ctx.Attr<int>("soft_label") == 1) {
if (ctx.Attr<bool>("soft_label")) {
PADDLE_ENFORCE_EQ(x->dims()[1], label->dims()[1],
"If Attr(soft_label) == 1, The 2nd dimension of "
"If Attr(soft_label) == true, The 2nd dimension of "
"Input(X) and Input(Label) must be equal.");
} else {
PADDLE_ENFORCE_EQ(label->dims()[1], 1,
"If Attr(soft_label) == 0, The 2nd dimension of "
"If Attr(soft_label) == false, The 2nd dimension of "
"Input(Label) must be 1.");
}
......@@ -107,7 +101,8 @@ class CrossEntropyOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput("X", "The first input of CrossEntropyOp");
AddInput("Label", "The second input of CrossEntropyOp");
AddOutput("Y", "The output of CrossEntropyOp");
AddAttr<int>("soft_label", "Is soft label. Default zero.").SetDefault(0);
AddAttr<bool>("soft_label", "Is soft label. Default zero.")
.SetDefault(false);
AddComment(R"DOC(
CrossEntropy Operator.
......@@ -115,12 +110,12 @@ CrossEntropy Operator.
It supports both standard cross-entropy and soft-label cross-entropy loss
computation.
1) One-hot cross-entropy:
soft_label = 0, Label[i, 0] indicates the class index for sample i:
soft_label = False, Label[i, 0] indicates the class index for sample i:
Y[i] = -log(X[i, Label[i]])
2) Soft-label cross-entropy:
soft_label = 1, Label[i, j] indicates the soft label of class j
soft_label = True, Label[i, j] indicates the soft label of class j
for sample i:
Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}
......
......@@ -102,7 +102,7 @@ class CrossEntropyOpCUDAKernel : public framework::OpKernel {
int grid = (n + block - 1) / block;
// TODO(qingqing) launch kernel on specified stream
// base on ExecutionContext.
if (ctx.Attr<int>("soft_label") == 1) {
if (ctx.Attr<bool>("soft_label")) {
auto* label_data = ctx.Input<Tensor>("Label")->data<T>();
SoftCrossEntropyKernel<T><<<grid, block>>>(y_data, x_data, label_data, n,
d);
......@@ -137,7 +137,7 @@ class CrossEntropyGradientOpCUDAKernel : public framework::OpKernel {
grid = (n + block - 1) / block;
// TODO(qingqing): launch kernel on specified stream
// base on ExecutionContext.
if (ctx.Attr<int>("soft_label") == 1) {
if (ctx.Attr<bool>("soft_label")) {
auto* label_data = label->data<T>();
SoftCrossEntropyGradientKernel<T><<<grid, block>>>(
dx_data, dy_data, x_data, label_data, n, d);
......
......@@ -51,7 +51,7 @@ class CrossEntropyOpKernel : public framework::OpKernel {
int batch_size = x->dims()[0];
int class_num = x->dims()[1];
if (ctx.Attr<int>("soft_label") == 1) {
if (ctx.Attr<bool>("soft_label")) {
auto* label_data = ctx.Input<Tensor>("Label")->data<T>();
int index = 0;
for (int i = 0; i < batch_size; ++i) {
......@@ -92,7 +92,7 @@ class CrossEntropyGradientOpKernel : public framework::OpKernel {
int class_num = x->dims()[1];
// TODO(qingqing): make zero setting an common function.
if (ctx.Attr<int>("soft_label") == 1) {
if (ctx.Attr<bool>("soft_label")) {
auto* label_data = ctx.Input<Tensor>("Label")->data<T>();
int index = 0;
for (int i = 0; i < batch_size; ++i) {
......
......@@ -28,13 +28,10 @@ class DropoutOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) must not be null.");
PADDLE_ENFORCE_GE(ctx.Attr<float>("dropout_prob"), 0);
PADDLE_ENFORCE_LE(ctx.Attr<float>("dropout_prob"), 1);
// TODO(xinghai-sun): remove this check after swtiching to bool
PADDLE_ENFORCE(ctx.Attr<int>("is_training") == 0 ||
ctx.Attr<int>("is_training") == 1);
auto dims = ctx.Input<Tensor>("X")->dims();
ctx.Output<Tensor>("Out")->Resize(dims);
if (ctx.Attr<int>("is_training") == 1) {
if (ctx.Attr<bool>("is_training")) {
ctx.Output<Tensor>("Mask")->Resize(dims);
}
ctx.ShareLoD("X", /*->*/ "Out");
......@@ -49,8 +46,7 @@ class DropoutOpMaker : public framework::OpProtoAndCheckerMaker {
: OpProtoAndCheckerMaker(proto, op_checker) {
AddAttr<AttrType>("dropout_prob", "Probability of setting units to zero.")
.SetDefault(.5f);
// TODO(xinghai-sun): use bool for is_training after bool is supported.
AddAttr<int>("is_training", "Whether in training phase.").SetDefault(1);
AddAttr<bool>("is_training", "Whether in training phase.").SetDefault(true);
AddAttr<int>("seed", "Dropout random seed.").SetDefault(0);
AddInput("X", "The input of dropout op.");
AddOutput("Out", "The output of dropout op.");
......@@ -59,7 +55,7 @@ class DropoutOpMaker : public framework::OpProtoAndCheckerMaker {
AddComment(R"DOC(
Dropout Operator.
"Dropout" refers to randomly dropping out units in a nerual network. It is a
'Dropout' refers to randomly dropping out units in a nerual network. It is a
regularization technique for reducing overfitting by preventing neuron
co-adaption during training. The dropout operator randomly set (according to
the given dropout probability) the outputs of some units to zero, while others
......@@ -75,8 +71,8 @@ class DropoutOpGrad : public framework::OperatorWithKernel {
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_EQ(ctx.Attr<int>("is_training"), 1,
"GradOp is only callable when is_training is true");
PADDLE_ENFORCE(ctx.Attr<bool>("is_training"),
"GradOp is only callable when is_training is true");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) must not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Mask"), "Mask must not be null.");
......@@ -85,9 +81,6 @@ class DropoutOpGrad : public framework::OperatorWithKernel {
PADDLE_ENFORCE_GE(ctx.Attr<AttrType>("dropout_prob"), 0);
PADDLE_ENFORCE_LE(ctx.Attr<AttrType>("dropout_prob"), 1);
// TODO(xinghai-sun): remove this check after swtiching to bool
PADDLE_ENFORCE(ctx.Attr<int>("is_training") == 0 ||
ctx.Attr<int>("is_training") == 1);
auto x_dims = ctx.Input<Tensor>("X")->dims();
auto out_dims = ctx.Input<Tensor>(framework::GradVarName("Out"))->dims();
PADDLE_ENFORCE_EQ(x_dims, out_dims,
......
......@@ -59,7 +59,7 @@ class GPUDropoutKernel : public framework::OpKernel {
auto Y = EigenMatrix<T>::Reshape(*y, 1);
auto place = context.GetEigenDevice<Place>();
if (context.Attr<int>("is_training") == 1) {
if (context.Attr<bool>("is_training")) {
auto* mask = context.Output<Tensor>("Mask");
auto* mask_data = mask->mutable_data<T>(context.GetPlace());
int size = framework::product(mask->dims());
......
......@@ -35,7 +35,7 @@ class CPUDropoutKernel : public framework::OpKernel {
auto* y_data = y->mutable_data<T>(context.GetPlace());
AttrType dropout_prob = context.Attr<AttrType>("dropout_prob");
if (context.Attr<int>("is_training") == 1) {
if (context.Attr<bool>("is_training")) {
auto* mask = context.Output<Tensor>("Mask");
auto* mask_data = mask->mutable_data<T>(context.GetPlace());
int seed = context.Attr<int>("seed");
......@@ -65,8 +65,8 @@ template <typename Place, typename T>
class DropoutGradKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
PADDLE_ENFORCE_EQ(context.Attr<int>("is_training"), 1,
"GradOp is only callable when is_training is true");
PADDLE_ENFORCE(context.Attr<bool>("is_training"),
"GradOp is only callable when is_training is true");
auto* grad_x = context.Output<Tensor>(framework::GradVarName("X"));
auto* grad_y = context.Input<Tensor>(framework::GradVarName("Out"));
......
......@@ -89,12 +89,16 @@ class OpDescCreationMethod(object):
new_attr.f = user_defined_attr
elif attr.type == framework_pb2.STRING:
new_attr.s = user_defined_attr
elif attr.type == framework_pb2.BOOLEAN:
new_attr.b = user_defined_attr
elif attr.type == framework_pb2.INTS:
new_attr.ints.extend(user_defined_attr)
elif attr.type == framework_pb2.FLOATS:
new_attr.floats.extend(user_defined_attr)
elif attr.type == framework_pb2.STRINGS:
new_attr.strings.extend(user_defined_attr)
elif attr.type == framework_pb2.BOOLEANS:
new_attr.bools.extend(user_defined_attr)
elif attr.type == framework_pb2.INT_PAIRS:
for p in user_defined_attr:
pair = new_attr.int_pairs.add()
......
......@@ -24,15 +24,15 @@ class TestCosSimOp(OpTest):
self.check_output()
def test_check_grad_normal(self):
self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.05)
self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.06)
def test_check_grad_ingore_x(self):
self.check_grad(
['Y'], 'Out', max_relative_error=0.05, no_grad_set=set("X"))
['Y'], 'Out', max_relative_error=0.06, no_grad_set=set("X"))
def test_check_grad_ingore_y(self):
self.check_grad(
['X'], 'Out', max_relative_error=0.05, no_grad_set=set('Y'))
['X'], 'Out', max_relative_error=0.06, no_grad_set=set('Y'))
class TestCosSimOp2(TestCosSimOp):
......
......@@ -19,7 +19,7 @@ class TestCrossEntropyOp1(OpTest):
dtype="float32")
self.inputs = {"X": X, "Label": label}
self.outputs = {"Y": cross_entropy}
self.attrs = {'soft_label': 0}
self.attrs = {'soft_label': False}
def test_check_output(self):
self.check_output()
......@@ -45,7 +45,7 @@ class TestCrossEntropyOp2(OpTest):
axis=1, keepdims=True).astype("float32")
self.inputs = {'X': X, 'Label': label}
self.outputs = {'Y': cross_entropy}
self.attrs = {'soft_label': 1}
self.attrs = {'soft_label': True}
def test_check_output(self):
self.check_output()
......@@ -76,7 +76,7 @@ class TestCrossEntropyOp3(OpTest):
axis=1, keepdims=True).astype("float32")
self.inputs = {'X': X, 'Label': label}
self.outputs = {'Y': cross_entropy}
self.attrs = {'soft_label': 1}
self.attrs = {'soft_label': True}
def test_check_output(self):
self.check_output()
......
......@@ -7,7 +7,7 @@ class TestDropoutOp(OpTest):
def setUp(self):
self.op_type = "dropout"
self.inputs = {'X': np.random.random((32, 64)).astype("float32")}
self.attrs = {'dropout_prob': 0.0, 'is_training': 1}
self.attrs = {'dropout_prob': 0.0, 'is_training': True}
self.outputs = {'Out': self.inputs['X'], 'Mask': np.ones((32, 64))}
def test_check_output(self):
......@@ -21,7 +21,7 @@ class TestDropoutOp2(TestDropoutOp):
def setUp(self):
self.op_type = "dropout"
self.inputs = {'X': np.random.random((32, 64)).astype("float32")}
self.attrs = {'dropout_prob': 1.0, 'is_training': 1}
self.attrs = {'dropout_prob': 1.0, 'is_training': True}
self.outputs = {'Out': np.zeros((32, 64)), 'Mask': np.zeros((32, 64))}
......@@ -29,7 +29,7 @@ class TestDropoutOp3(TestDropoutOp):
def setUp(self):
self.op_type = "dropout"
self.inputs = {'X': np.random.random((32, 64, 2)).astype("float32")}
self.attrs = {'dropout_prob': 0.0, 'is_training': 1}
self.attrs = {'dropout_prob': 0.0, 'is_training': True}
self.outputs = {'Out': self.inputs['X'], 'Mask': np.ones((32, 64, 2))}
......@@ -37,7 +37,7 @@ class TestDropoutOp4(OpTest):
def setUp(self):
self.op_type = "dropout"
self.inputs = {'X': np.random.random((32, 64)).astype("float32")}
self.attrs = {'dropout_prob': 0.35, 'is_training': 0}
self.attrs = {'dropout_prob': 0.35, 'is_training': False}
self.outputs = {'Out': self.inputs['X'] * self.attrs['dropout_prob']}
def test_check_output(self):
......@@ -48,7 +48,7 @@ class TestDropoutOp5(OpTest):
def setUp(self):
self.op_type = "dropout"
self.inputs = {'X': np.random.random((32, 64, 3)).astype("float32")}
self.attrs = {'dropout_prob': 0.75, 'is_training': 0}
self.attrs = {'dropout_prob': 0.75, 'is_training': False}
self.outputs = {'Out': self.inputs['X'] * self.attrs['dropout_prob']}
def test_check_output(self):
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册