提交 d2dfa70d 编写于 作者: D dangqingqing

data converter

上级 be3f7cb9
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
import py_paddle.swig_paddle
import numpy
__all__ = ['DataConverter']
class IDataConverter(object):
def __init__(self, input_type, pos):
"""
:param input_type: data type
:type input_type: dp2.InputType
:param pos: which input, start from 0
:type pos: int
"""
self.input_type = input_type
assert isinstance(self.input_type, dp2.InputType)
self.pos = pos
def convert(self, data, argument):
"""
Conv data to paddle format.
:param data: input data
:param argument: paddle format
"""
pass
class DenseConvert(IDataConverter):
def __init__(self, input_type, pos):
IDataConverter.__init__(self, input_type, pos)
def convert(self, data, argument):
"""
:param data: input data
:type data: list | numpy array
:param argument: the type which paddle is acceptable
:type argument: swig_paddle.Arguments
"""
assert isinstance(argument, swig_paddle.Arguments)
if data.dtype != numpy.float32:
data = data.astype(numpy.float32)
m = swig_paddle.Matrix.createDenseFromNumpy(data, True, False)
argument.setSlotValue(self.pos, m)
class SparseBinaryConvert(IDataConverter):
def __init__(self, input_type, pos):
IDataConverter.__init__(self, input_type, pos)
self.__rows__ = [0]
self.__cols__ = []
self.__height__ = 0
self.__nnz__ = 0
self.__value__ = []
def fill_csr(self, data):
self.__height__ = len(data)
for x in data:
self.__rows__.append(self.__rows__[-1] + len(x))
self__cols__ = data.flatten()
def convert(self, data, argument):
assert isinstance(argument, swig_paddle.Arguments)
fill_csr(data)
m = swig_paddle.Matrix.createSparse(self.__height__,
self.input_type.dim,
len(self.__cols__),
len(self.__value__) == 0)
assert isinstance(m, swig_paddle.Matrix)
m.sparseCopyFrom(self.__rows__, self.__cols__, self.__value__)
argument.setSlotValue(self.pos, m)
class SparseFloatConvert(SparseBinaryConvert):
def __init__(self, input_type, pos):
SparseBinaryConvert.__init__(self, input_type, pos)
def fill_csr(self, data):
self.__height__ = len(data)
for x in data:
self.__rows__.append(self.__rows__[-1] + len(x))
self.__cols__.extend((x[0] for x in data))
self.__value__.extend((x[1] for x in data))
class IndexConvert(IDataConverter):
def __init__(self, input_type, pos):
IDataConverter.__init__(self, input_type, pos)
self.__ids__ = []
def convert(self, data, argument):
assert isinstance(argument, swig_paddle.Arguments)
self.__ids__ = data.flatten()
ids = swig_paddle.IVector.create(self.__ids__)
argument.setSlotIds(self.pos, ids)
class SequenceConvert(IDataConverter):
def __init__(self, input_type, pos, inner_convert, setter):
"""
:param input_type: the type of input data
:type input_type: dp2.InputType
:param pos: the position of this input
:type pos: int
:param inner_convert: DataConvert type
:type inner_convert: DenseConvert|SparseBinaryConvert|
SparseFloatConvert|IndexConvert
:param setter:
:type setter:
"""
IDataConverter.__init__(self, input_type, pos)
self.__seq__ = [0]
self.__inner_convert__ = inner_convert
self.__setter__ = setter
def fill_seq(self, data):
for each in data:
self.__seq__.append(self.__seq__[-1] + self.get_size(each))
def convert(self, data, argument):
fill_seq(data)
seq = swig_paddle.IVector.create(self.__seq__, False)
self.__setter__(argument, self.pos, seq)
dat = []
for each in data:
dat.append(each)
self.__inner_scanner__.convert(dat, argument)
def get_size(self, data):
if isinstance(self.__inner_scanner__, SequenceConvert):
return sum(self.__inner_scanner__.get_size(item) for item in dat)
else:
return len(data)
class DataConverter(object):
def __init__(self, input_mapper):
"""
Usege:
.. code-block:: python
inputs = [('image', dense_vector), ('label', integer_value)]
cvt = DataConverter(inputs)
arg = cvt.convert(minibatch_data, {'image':0, 'label':1})
:param input_mapper: list of (input_name, input_type)
:type input_mapper: list
"""
assert isinstance(self.input_types, collections.Sequence)
self.input_names = []
self.input_types = []
for each in self.input_types:
self.input_names.append(each[0])
self.input_types.append(each[1])
assert isinstance(each[1], dp2.InputType)
def convert(self, data, input_dict=None, argument=None):
"""
Convert minibatch data to Paddle's argument. The data is numpy array
or list.
:param data: input samples, for example, [column0, column1, ...] or
(column0, column1, ...) each column is one minibatch
feature. Note, if only one column featrue, data also
shuld be a list or tupe, [column0] or (column0).
:type data: list|tuple
:param input_dict: a dictionary to specify the correspondence
of data_layer and input data. If None,
the feature order in argument and data is the same.
:type input_dict: dict, like {string:integer, string, integer, ...}|None
:param argument: converted data will be saved in this argument. If None,
it will create a swig_paddle.Arguments firstly.
:param type: swig_paddle.Arguments|None
"""
if argument is None:
argument = swig_paddle.Arguments.createArguments(0)
assert isinstance(argument, swig_paddle.Arguments)
argument.resize(len(self.input_types))
converts = [
DataConverter.create_scanner(i, each_type)
for i, each_type in enumerate(self.input_types)
]
for i, cvt in enumerate(converts):
if input_dict is not None:
dat = data[input_dict[self.input_names[i]]]
else:
dat = data[i]
cvt.convert(dat, argument)
return argument
def __call__(self, dat, argument=None):
return self.convert(dat, argument)
@staticmethod
def create_scanner(pos, each):
assert isinstance(each, dp2.InputType)
retv = None
if each.type == dp2.DataType.Dense:
retv = DenseConvert(each, pos)
elif each.type == dp2.DataType.Index:
retv = IndexConvert(each, pos)
elif each.type == dp2.DataType.SparseNonValue:
retv = SparseBinaryConvert(each, pos)
elif each.type == dp2.DataType.SparseValue:
retv = SparseFloatConvert(each, pos)
assert retv is not None
if each.seq_type == dp2.SequenceType.SUB_SEQUENCE:
retv = SequenceConvert(
each, pos, retv,
lambda arg, pos, seq: arg.setSlotSubSequenceStartPositions(pos, seq)
)
if each.seq_type in [
dp2.SequenceType.SUB_SEQUENCE, dp2.SequenceType.SEQUENCE
]:
retv = SequenceConvert(
each, pos, retv,
lambda arg, pos, seq: arg.setSlotSequenceStartPositions(pos, seq)
)
return retv
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册