未验证 提交 d263238f 编写于 作者: R ruri 提交者: GitHub

cherry pick 17947 test=release/1.5 (#18048)

上级 072347ff
......@@ -117,7 +117,7 @@ paddle.fluid.layers.sequence_slice (ArgSpec(args=['input', 'offset', 'length', '
paddle.fluid.layers.dropout (ArgSpec(args=['x', 'dropout_prob', 'is_test', 'seed', 'name', 'dropout_implementation'], varargs=None, keywords=None, defaults=(False, None, None, 'downgrade_in_infer')), ('document', 'f1dd22f7351f7f9853212958e0d8aa7a'))
paddle.fluid.layers.split (ArgSpec(args=['input', 'num_or_sections', 'dim', 'name'], varargs=None, keywords=None, defaults=(-1, None)), ('document', '59b28903ce8fb6a7e3861ff355592eb4'))
paddle.fluid.layers.ctc_greedy_decoder (ArgSpec(args=['input', 'blank', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '2bc3a59efa9d52b628a6255422d9f0e8'))
paddle.fluid.layers.edit_distance (ArgSpec(args=['input', 'label', 'normalized', 'ignored_tokens'], varargs=None, keywords=None, defaults=(True, None)), ('document', '97f0262f97602644c83142789d784571'))
paddle.fluid.layers.edit_distance (ArgSpec(args=['input', 'label', 'normalized', 'ignored_tokens'], varargs=None, keywords=None, defaults=(True, None)), ('document', 'f2c252aa2f83f8e503ffaf79668eaa28'))
paddle.fluid.layers.l2_normalize (ArgSpec(args=['x', 'axis', 'epsilon', 'name'], varargs=None, keywords=None, defaults=(1e-12, None)), ('document', '35c6a241bcc1a1fc89508860d82ad62b'))
paddle.fluid.layers.matmul (ArgSpec(args=['x', 'y', 'transpose_x', 'transpose_y', 'alpha', 'name'], varargs=None, keywords=None, defaults=(False, False, 1.0, None)), ('document', 'aa27ca4405e70c6a733cb9806a76af30'))
paddle.fluid.layers.topk (ArgSpec(args=['input', 'k', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '2a1e9ea041ff4d6a9948bb8d03b743ea'))
......
......@@ -5295,7 +5295,7 @@ def topk(input, k, name=None):
def edit_distance(input, label, normalized=True, ignored_tokens=None):
"""
EditDistance operator computes the edit distances between a batch of
Edit distance operator computes the edit distances between a batch of
hypothesis strings and their references. Edit distance, also called
Levenshtein distance, measures how dissimilar two strings are by counting
the minimum number of operations to transform one string into anthor.
......@@ -5331,9 +5331,28 @@ def edit_distance(input, label, normalized=True, ignored_tokens=None):
Examples:
.. code-block:: python
x = fluid.layers.data(name='x', shape=[1], dtype='float32')
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
cost = fluid.layers.edit_distance(input=x,label=y)
import paddle.fluid as fluid
x = fluid.layers.data(name='x', shape=[1], dtype='int64')
y = fluid.layers.data(name='y', shape=[1], dtype='int64')
cost, _ = fluid.layers.edit_distance(input=x, label=y)
cpu = fluid.core.CPUPlace()
exe = fluid.Executor(cpu)
exe.run(fluid.default_startup_program())
import numpy
x_ = numpy.random.randint(5, size=(2, 1)).astype('int64')
y_ = numpy.random.randint(5, size=(2, 1)).astype('int64')
print(x_)
print(y_)
x = fluid.create_lod_tensor(x_, [[2]], cpu)
y = fluid.create_lod_tensor(y_, [[2]], cpu)
outs = exe.run(feed={'x':x, 'y':y}, fetch_list=[cost.name])
print(outs)
"""
helper = LayerHelper("edit_distance", **locals())
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册