提交 d1507613 编写于 作者: T Travis CI

Deploy to GitHub Pages: 3a93fa77

上级 2fa6a89b
...@@ -876,7 +876,69 @@ X and Y and returns that as the output.</p> ...@@ -876,7 +876,69 @@ X and Y and returns that as the output.</p>
<dl class="function"> <dl class="function">
<dt> <dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">cross_entropy</code><span class="sig-paren">(</span><em>input</em>, <em>label</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt> <code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">cross_entropy</code><span class="sig-paren">(</span><em>input</em>, <em>label</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>This function computes cross_entropy using the input and label.</p> <dd><p><strong>Cross Entropy Layer</strong></p>
<p>This layer computes the cross entropy between <cite>input</cite> and <cite>label</cite>. It supports
both standard cross-entropy and soft-label cross-entropy loss computation.</p>
<ol class="arabic">
<li><dl class="first docutils">
<dt>One-hot cross-entropy:</dt>
<dd><p class="first"><cite>soft_label = False</cite>, <cite>Label[i, 0]</cite> indicates the class index for sample i:</p>
<div class="last math">
\[Y[i] = -\log(X[i, Label[i]])\]</div>
</dd>
</dl>
</li>
<li><dl class="first docutils">
<dt>Soft-label cross-entropy:</dt>
<dd><p class="first"><cite>soft_label = True</cite>, <cite>Label[i, j]</cite> indicates the soft label of class j
for sample i:</p>
<div class="last math">
\[Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}\]</div>
</dd>
</dl>
<p>Please make sure that in this case the summation of each row of <cite>label</cite>
equals one.</p>
</li>
<li><dl class="first docutils">
<dt>One-hot cross-entropy with vecterized <cite>label</cite>:</dt>
<dd><p class="first last">As a special case of 2), when each row of &#8216;label&#8217; has only one
non-zero element which is equal to 1, soft-label cross-entropy degenerates
to a one-hot cross-entropy with one-hot label representation.</p>
</dd>
</dl>
</li>
</ol>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>input</strong> (<em>Variable|list</em>) &#8211; a 2-D tensor with shape [N x D], where N is the
batch size and D is the number of classes. This input is a probability
computed by the previous operator, which is almost always the result
of a softmax operator.</li>
<li><strong>label</strong> (<em>Variable|list</em>) &#8211; the ground truth which is a 2-D tensor. When
<cite>soft_label</cite> is set to <cite>False</cite>, <cite>label</cite> is a tensor&lt;int64&gt; with shape
[N x 1]. When <cite>soft_label</cite> is set to <cite>True</cite>, <cite>label</cite> is a
tensor&lt;float/double&gt; with shape [N x D].</li>
<li><strong>soft_label</strong> (bool, via <cite>**kwargs</cite>) &#8211; a flag indicating whether to interpretate
the given labels as soft labels, default <cite>False</cite>.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">A 2-D tensor with shape [N x 1], the cross entropy loss.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Raises:</th><td class="field-body"><p class="first last"><cite>ValueError</cite> &#8211; 1) the 1st dimension of <cite>input</cite> and <cite>label</cite> are not equal; 2) when <cite>soft_label == True</cite>, and the 2nd dimension of <cite>input</cite> and <cite>label</cite> are not equal; 3) when <cite>soft_label == False</cite>, and the 2nd dimension of <cite>label</cite> is not 1.</p>
</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">predict</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">net</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="n">classdim</span><span class="p">,</span> <span class="n">act</span><span class="o">=</span><span class="s1">&#39;softmax&#39;</span><span class="p">)</span>
<span class="n">cost</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">cross_entropy</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">predict</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="n">label</span><span class="p">)</span>
</pre></div>
</div>
</dd></dl> </dd></dl>
</div> </div>
......
...@@ -3741,12 +3741,12 @@ ...@@ -3741,12 +3741,12 @@
"inputs" : [ "inputs" : [
{ {
"name" : "X", "name" : "X",
"comment" : "(Tensor, default Tensor<float>), a 2-D tensor with shape N x D, where N is the batch size and D is the number of classes. This input is a probability computed by the previous operator, which is almost always the result of a softmax operator.", "comment" : "(Tensor, default Tensor<float>), a 2-D tensor with shape [N x D], where N is the batch size and D is the number of classes. This input is a probability computed by the previous operator, which is almost always the result of a softmax operator.",
"duplicable" : 0, "duplicable" : 0,
"intermediate" : 0 "intermediate" : 0
}, { }, {
"name" : "Label", "name" : "Label",
"comment" : "(Tensor), the ground truth which is a 2-D tensor. When soft_label is set to false, Label is a Tensor<int64> with shape [N x 1]. When soft_label is set to true, Label is a Tensor<float/double> with shape [N x K].", "comment" : "(Tensor), the ground truth which is a 2-D tensor. When soft_label is set to false, Label is a Tensor<int64> with shape [N x 1]. When soft_label is set to true, Label is a Tensor<float/double> with shape [N x D].",
"duplicable" : 0, "duplicable" : 0,
"intermediate" : 0 "intermediate" : 0
} ], } ],
......
因为 它太大了无法显示 source diff 。你可以改为 查看blob
...@@ -889,7 +889,69 @@ X and Y and returns that as the output.</p> ...@@ -889,7 +889,69 @@ X and Y and returns that as the output.</p>
<dl class="function"> <dl class="function">
<dt> <dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">cross_entropy</code><span class="sig-paren">(</span><em>input</em>, <em>label</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt> <code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">cross_entropy</code><span class="sig-paren">(</span><em>input</em>, <em>label</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>This function computes cross_entropy using the input and label.</p> <dd><p><strong>Cross Entropy Layer</strong></p>
<p>This layer computes the cross entropy between <cite>input</cite> and <cite>label</cite>. It supports
both standard cross-entropy and soft-label cross-entropy loss computation.</p>
<ol class="arabic">
<li><dl class="first docutils">
<dt>One-hot cross-entropy:</dt>
<dd><p class="first"><cite>soft_label = False</cite>, <cite>Label[i, 0]</cite> indicates the class index for sample i:</p>
<div class="last math">
\[Y[i] = -\log(X[i, Label[i]])\]</div>
</dd>
</dl>
</li>
<li><dl class="first docutils">
<dt>Soft-label cross-entropy:</dt>
<dd><p class="first"><cite>soft_label = True</cite>, <cite>Label[i, j]</cite> indicates the soft label of class j
for sample i:</p>
<div class="last math">
\[Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}\]</div>
</dd>
</dl>
<p>Please make sure that in this case the summation of each row of <cite>label</cite>
equals one.</p>
</li>
<li><dl class="first docutils">
<dt>One-hot cross-entropy with vecterized <cite>label</cite>:</dt>
<dd><p class="first last">As a special case of 2), when each row of &#8216;label&#8217; has only one
non-zero element which is equal to 1, soft-label cross-entropy degenerates
to a one-hot cross-entropy with one-hot label representation.</p>
</dd>
</dl>
</li>
</ol>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
<li><strong>input</strong> (<em>Variable|list</em>) &#8211; a 2-D tensor with shape [N x D], where N is the
batch size and D is the number of classes. This input is a probability
computed by the previous operator, which is almost always the result
of a softmax operator.</li>
<li><strong>label</strong> (<em>Variable|list</em>) &#8211; the ground truth which is a 2-D tensor. When
<cite>soft_label</cite> is set to <cite>False</cite>, <cite>label</cite> is a tensor&lt;int64&gt; with shape
[N x 1]. When <cite>soft_label</cite> is set to <cite>True</cite>, <cite>label</cite> is a
tensor&lt;float/double&gt; with shape [N x D].</li>
<li><strong>soft_label</strong> (bool, via <cite>**kwargs</cite>) &#8211; a flag indicating whether to interpretate
the given labels as soft labels, default <cite>False</cite>.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">A 2-D tensor with shape [N x 1], the cross entropy loss.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Raises:</th><td class="field-body"><p class="first last"><cite>ValueError</cite> &#8211; 1) the 1st dimension of <cite>input</cite> and <cite>label</cite> are not equal; 2) when <cite>soft_label == True</cite>, and the 2nd dimension of <cite>input</cite> and <cite>label</cite> are not equal; 3) when <cite>soft_label == False</cite>, and the 2nd dimension of <cite>label</cite> is not 1.</p>
</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">predict</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">net</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="n">classdim</span><span class="p">,</span> <span class="n">act</span><span class="o">=</span><span class="s1">&#39;softmax&#39;</span><span class="p">)</span>
<span class="n">cost</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">cross_entropy</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">predict</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="n">label</span><span class="p">)</span>
</pre></div>
</div>
</dd></dl> </dd></dl>
</div> </div>
......
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册