Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
cf6f28f9
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
cf6f28f9
编写于
4月 22, 2020
作者:
X
xiaoting
提交者:
GitHub
4月 22, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Cherry-pick Release 2.0] Add `nn.interpolate ` (#23434) (#23843)
* Add `nn.interpolate ` (#23434)
上级
5743cb83
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
1281 addition
and
4 deletion
+1281
-4
paddle/fluid/operators/interpolate_op.cc
paddle/fluid/operators/interpolate_op.cc
+35
-3
paddle/fluid/operators/interpolate_op.cu
paddle/fluid/operators/interpolate_op.cu
+216
-0
paddle/fluid/operators/interpolate_op.h
paddle/fluid/operators/interpolate_op.h
+164
-0
python/paddle/fluid/tests/unittests/test_bicubic_interp_op.py
...on/paddle/fluid/tests/unittests/test_bicubic_interp_op.py
+459
-0
python/paddle/fluid/tests/unittests/test_trilinear_interp_op.py
.../paddle/fluid/tests/unittests/test_trilinear_interp_op.py
+10
-0
python/paddle/nn/functional/__init__.py
python/paddle/nn/functional/__init__.py
+1
-1
python/paddle/nn/functional/common.py
python/paddle/nn/functional/common.py
+396
-0
未找到文件。
paddle/fluid/operators/interpolate_op.cc
浏览文件 @
cf6f28f9
...
@@ -26,7 +26,8 @@ static void Interpolate2DInferShapeCheck(framework::InferShapeContext* ctx) {
...
@@ -26,7 +26,8 @@ static void Interpolate2DInferShapeCheck(framework::InferShapeContext* ctx) {
auto
interp_method
=
ctx
->
Attrs
().
Get
<
std
::
string
>
(
"interp_method"
);
auto
interp_method
=
ctx
->
Attrs
().
Get
<
std
::
string
>
(
"interp_method"
);
PADDLE_ENFORCE
(
PADDLE_ENFORCE
(
"bilinear"
==
interp_method
||
"nearest"
==
interp_method
,
"bilinear"
==
interp_method
||
"nearest"
==
interp_method
||
"bicubic"
==
interp_method
,
"Interpolation method can only be
\"
bilinear
\"
or
\"
nearest
\"
when "
"Interpolation method can only be
\"
bilinear
\"
or
\"
nearest
\"
when "
"Input(X) dimension is 4"
);
"Input(X) dimension is 4"
);
const
DataLayout
data_layout
=
framework
::
StringToDataLayout
(
const
DataLayout
data_layout
=
framework
::
StringToDataLayout
(
...
@@ -264,7 +265,8 @@ class InterpolateOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -264,7 +265,8 @@ class InterpolateOpMaker : public framework::OpProtoAndCheckerMaker {
"method, can be
\"
bilinear
\"
for "
"method, can be
\"
bilinear
\"
for "
"bilinear interpolation,
\"
trilinear
\"
for trilinear "
"bilinear interpolation,
\"
trilinear
\"
for trilinear "
"interpolation and
\"
nearest
\"
for nearest "
"interpolation and
\"
nearest
\"
for nearest "
"neighbor interpolation."
)
"neighbor interpolation, and
\"
bicubic
\"
for bicubic"
"interpolation."
)
.
SetDefault
(
"bilinear"
);
.
SetDefault
(
"bilinear"
);
AddAttr
<
bool
>
(
AddAttr
<
bool
>
(
"align_corners"
,
"align_corners"
,
...
@@ -299,6 +301,11 @@ class InterpolateOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -299,6 +301,11 @@ class InterpolateOpMaker : public framework::OpProtoAndCheckerMaker {
H-direction and W-direction in this op) on a rectilinear 3D grid.
H-direction and W-direction in this op) on a rectilinear 3D grid.
The linear interpolation is performed on three directions.
The linear interpolation is performed on three directions.
Bicubic interpolation is an extension of cubic interpolation for interpolating
data points on a two-dimensional regular grid. The interpolated surface is
smoother than corresponding surfaces obtained by bilinear interpolation or
nearest-neighbor interpolation.
Align_corners and align_mode are optional parameters,the calculation method
Align_corners and align_mode are optional parameters,the calculation method
of interpolation can be selected by them.
of interpolation can be selected by them.
...
@@ -376,7 +383,20 @@ class InterpolateOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -376,7 +383,20 @@ class InterpolateOpMaker : public framework::OpProtoAndCheckerMaker {
D_out = D_{in} * scale_{factor}
D_out = D_{in} * scale_{factor}
H_out = H_{in} * scale_{factor}
H_out = H_{in} * scale_{factor}
W_out = W_{in} * scale_{factor}
W_out = W_{in} * scale_{factor}
Bicubic interpolation:
if:
align_corners = False
input : (N,C,H_in,W_in)
output: (N,C,H_out,W_out) where:
H_out = (H_{in}+0.5) * scale_{factor} - 0.5
W_out = (W_{in}+0.5) * scale_{factor} - 0.5
else:
input : (N,C,H_in,W_in)
output: (N,C,H_out,W_out) where:
H_out = H_{in} * scale_{factor}
W_out = W_{in} * scale_{factor}
For details of nearest neighbor interpolation, please refer to Wikipedia:
For details of nearest neighbor interpolation, please refer to Wikipedia:
https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
...
@@ -386,6 +406,9 @@ class InterpolateOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -386,6 +406,9 @@ class InterpolateOpMaker : public framework::OpProtoAndCheckerMaker {
For details of trilinear interpolation, please refer to Wikipedia:
For details of trilinear interpolation, please refer to Wikipedia:
https://en.wikipedia.org/wiki/Trilinear_interpolation
https://en.wikipedia.org/wiki/Trilinear_interpolation
For details of bicubic interpolation, please refer to Wikipedia:
https://en.wikipedia.org/wiki/Bicubic_interpolation
)DOC"
);
)DOC"
);
}
}
};
};
...
@@ -469,6 +492,11 @@ REGISTER_OPERATOR(trilinear_interp, ops::InterpolateOp, ops::InterpolateOpMaker,
...
@@ -469,6 +492,11 @@ REGISTER_OPERATOR(trilinear_interp, ops::InterpolateOp, ops::InterpolateOpMaker,
ops
::
InterpolateGradMaker
<
paddle
::
imperative
::
OpBase
>
);
ops
::
InterpolateGradMaker
<
paddle
::
imperative
::
OpBase
>
);
REGISTER_OPERATOR
(
trilinear_interp_grad
,
ops
::
InterpolateOpGrad
,
REGISTER_OPERATOR
(
trilinear_interp_grad
,
ops
::
InterpolateOpGrad
,
ops
::
InterpolateGradNoNeedBufferVarsInference
);
ops
::
InterpolateGradNoNeedBufferVarsInference
);
REGISTER_OPERATOR
(
bicubic_interp
,
ops
::
InterpolateOp
,
ops
::
InterpolateOpMaker
,
ops
::
InterpolateGradMaker
<
paddle
::
framework
::
OpDesc
>
,
ops
::
InterpolateGradMaker
<
paddle
::
imperative
::
OpBase
>
);
REGISTER_OPERATOR
(
bicubic_interp_grad
,
ops
::
InterpolateOpGrad
,
ops
::
InterpolateGradNoNeedBufferVarsInference
);
REGISTER_OP_CPU_KERNEL
(
bilinear_interp
,
ops
::
InterpolateKernel
<
float
>
,
REGISTER_OP_CPU_KERNEL
(
bilinear_interp
,
ops
::
InterpolateKernel
<
float
>
,
ops
::
InterpolateKernel
<
double
>
,
ops
::
InterpolateKernel
<
double
>
,
ops
::
InterpolateKernel
<
uint8_t
>
);
ops
::
InterpolateKernel
<
uint8_t
>
);
...
@@ -484,3 +512,7 @@ REGISTER_OP_CPU_KERNEL(trilinear_interp, ops::InterpolateKernel<float>,
...
@@ -484,3 +512,7 @@ REGISTER_OP_CPU_KERNEL(trilinear_interp, ops::InterpolateKernel<float>,
ops
::
InterpolateKernel
<
uint8_t
>
);
ops
::
InterpolateKernel
<
uint8_t
>
);
REGISTER_OP_CPU_KERNEL
(
trilinear_interp_grad
,
ops
::
InterpolateGradKernel
<
float
>
,
REGISTER_OP_CPU_KERNEL
(
trilinear_interp_grad
,
ops
::
InterpolateGradKernel
<
float
>
,
ops
::
InterpolateGradKernel
<
double
>
);
ops
::
InterpolateGradKernel
<
double
>
);
REGISTER_OP_CPU_KERNEL
(
bicubic_interp
,
ops
::
InterpolateKernel
<
float
>
,
ops
::
InterpolateKernel
<
double
>
);
REGISTER_OP_CPU_KERNEL
(
bicubic_interp_grad
,
ops
::
InterpolateGradKernel
<
float
>
,
ops
::
InterpolateGradKernel
<
double
>
);
paddle/fluid/operators/interpolate_op.cu
浏览文件 @
cf6f28f9
...
@@ -506,6 +506,206 @@ __global__ void KeTrilinearInterpBw(
...
@@ -506,6 +506,206 @@ __global__ void KeTrilinearInterpBw(
}
}
}
}
template
<
typename
T
>
__device__
__forceinline__
static
T
Kecubic_interp
(
const
T
x0
,
const
T
x1
,
const
T
x2
,
const
T
x3
,
T
t
)
{
T
coeffs
[
4
];
T
a
=
-
0.75
;
T
x_1
=
t
;
T
x_2
=
1.0
-
t
;
coeffs
[
0
]
=
cubic_convolution2
<
T
>
(
x_1
+
1.0
,
a
);
coeffs
[
1
]
=
cubic_convolution1
<
T
>
(
x_1
,
a
);
coeffs
[
2
]
=
cubic_convolution1
<
T
>
(
x_2
,
a
);
coeffs
[
3
]
=
cubic_convolution2
<
T
>
(
x_2
+
1.0
,
a
);
return
x0
*
coeffs
[
0
]
+
x1
*
coeffs
[
1
]
+
x2
*
coeffs
[
2
]
+
x3
*
coeffs
[
3
];
}
template
<
typename
T
>
__global__
void
KeBicubicInterpFw
(
const
T
*
in
,
const
size_t
in_img_h
,
const
size_t
in_img_w
,
const
size_t
input_h
,
const
size_t
input_w
,
T
*
out
,
const
size_t
out_img_h
,
const
size_t
out_img_w
,
const
size_t
output_h
,
const
size_t
output_w
,
const
size_t
num_channels
,
const
float
ratio_h
,
const
float
ratio_w
,
const
bool
align_corners
,
const
DataLayout
data_layout
)
{
int
nthreads
=
output_h
*
output_w
;
int
tid
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
stride
=
blockDim
.
x
*
gridDim
.
x
;
for
(;
tid
<
nthreads
;
tid
+=
stride
)
{
int
out_id_h
=
tid
/
output_w
;
int
out_id_w
=
tid
%
output_w
;
int
in_img_size
=
input_w
/
num_channels
;
int
out_img_size
=
output_w
/
num_channels
;
int
channel_id
,
out_img_idy
,
out_img_idx
;
if
(
data_layout
==
DataLayout
::
kNCHW
)
{
channel_id
=
out_id_w
/
out_img_size
;
out_img_idy
=
(
out_id_w
%
out_img_size
)
/
out_img_w
;
out_img_idx
=
tid
%
out_img_w
;
}
else
{
out_img_idy
=
out_id_w
/
(
out_img_w
*
num_channels
);
out_img_idx
=
out_id_w
%
(
out_img_w
*
num_channels
)
/
num_channels
;
channel_id
=
tid
%
num_channels
;
}
T
in_img_idy
=
align_corners
?
static_cast
<
T
>
(
ratio_h
*
out_img_idy
)
:
static_cast
<
T
>
(
ratio_h
*
(
out_img_idy
+
0.5
)
-
0.5
);
int
input_y
=
floorf
(
in_img_idy
);
const
T
y_t
=
in_img_idy
-
input_y
;
T
in_img_idx
=
align_corners
?
static_cast
<
T
>
(
ratio_w
*
out_img_idx
)
:
static_cast
<
T
>
(
ratio_w
*
(
out_img_idx
+
0.5
)
-
0.5
);
int
input_x
=
floorf
(
in_img_idx
);
const
T
x_t
=
in_img_idx
-
input_x
;
T
coefficients
[
4
];
const
T
*
in_pos_0
;
const
T
*
in_pos_1
;
const
T
*
in_pos_2
;
const
T
*
in_pos_3
;
int
access_x_0
;
if
(
data_layout
==
DataLayout
::
kNCHW
)
{
for
(
int
k
=
0
;
k
<
4
;
k
++
)
{
int
access_y
=
max
(
min
(
input_y
-
1
+
k
,
static_cast
<
int
>
(
in_img_h
-
1
)),
0
);
access_x_0
=
max
(
min
(
input_x
-
1
,
static_cast
<
int
>
(
in_img_w
-
1
)),
0
);
int
access_x_1
=
max
(
min
(
input_x
+
0
,
static_cast
<
int
>
(
in_img_w
-
1
)),
0
);
int
access_x_2
=
max
(
min
(
input_x
+
1
,
static_cast
<
int
>
(
in_img_w
-
1
)),
0
);
int
access_x_3
=
max
(
min
(
input_x
+
2
,
static_cast
<
int
>
(
in_img_w
-
1
)),
0
);
in_pos_0
=
&
in
[
out_id_h
*
input_w
+
channel_id
*
in_img_size
+
access_y
*
in_img_w
+
access_x_0
];
in_pos_1
=
&
in
[
out_id_h
*
input_w
+
channel_id
*
in_img_size
+
access_y
*
in_img_w
+
access_x_1
];
in_pos_2
=
&
in
[
out_id_h
*
input_w
+
channel_id
*
in_img_size
+
access_y
*
in_img_w
+
access_x_2
];
in_pos_3
=
&
in
[
out_id_h
*
input_w
+
channel_id
*
in_img_size
+
access_y
*
in_img_w
+
access_x_3
];
coefficients
[
k
]
=
Kecubic_interp
<
T
>
(
in_pos_0
[
0
],
in_pos_1
[
0
],
in_pos_2
[
0
],
in_pos_3
[
0
],
x_t
);
}
out
[
out_id_h
*
output_w
+
out_id_w
]
=
Kecubic_interp
<
T
>
(
coefficients
[
0
],
coefficients
[
1
],
coefficients
[
2
],
coefficients
[
3
],
y_t
);
}
else
{
for
(
int
k
=
0
;
k
<
4
;
k
++
)
{
int
access_y
=
max
(
min
(
input_y
-
1
+
k
,
static_cast
<
int
>
((
in_img_h
-
1
))),
0
);
int
access_x_0
=
max
(
min
(
input_x
-
1
,
static_cast
<
int
>
((
in_img_w
-
1
))),
0
);
int
access_x_1
=
max
(
min
(
input_x
+
0
,
static_cast
<
int
>
((
in_img_w
-
1
))),
0
);
int
access_x_2
=
max
(
min
(
input_x
+
1
,
static_cast
<
int
>
((
in_img_w
-
1
))),
0
);
int
access_x_3
=
max
(
min
(
input_x
+
2
,
static_cast
<
int
>
((
in_img_w
-
1
))),
0
);
const
T
*
in_pos_0
=
&
in
[
out_id_h
*
input_w
+
access_y
*
in_img_w
*
num_channels
+
access_x_0
*
num_channels
+
channel_id
];
const
T
*
in_pos_1
=
&
in
[
out_id_h
*
input_w
+
access_y
*
in_img_w
*
num_channels
+
access_x_1
*
num_channels
+
channel_id
];
const
T
*
in_pos_2
=
&
in
[
out_id_h
*
input_w
+
access_y
*
in_img_w
*
num_channels
+
access_x_2
*
num_channels
+
channel_id
];
const
T
*
in_pos_3
=
&
in
[
out_id_h
*
input_w
+
access_y
*
in_img_w
*
num_channels
+
access_x_3
*
num_channels
+
channel_id
];
coefficients
[
k
]
=
Kecubic_interp
(
in_pos_0
[
0
],
in_pos_1
[
0
],
in_pos_2
[
0
],
in_pos_3
[
0
],
x_t
);
}
out
[
out_id_h
*
output_w
+
out_id_w
]
=
static_cast
<
T
>
(
Kecubic_interp
(
coefficients
[
0
],
coefficients
[
1
],
coefficients
[
2
],
coefficients
[
3
],
y_t
));
}
}
}
template
<
typename
T
>
__global__
void
KeBicubicInterpBw
(
T
*
in
,
const
size_t
in_img_h
,
const
size_t
in_img_w
,
const
size_t
input_h
,
const
size_t
input_w
,
const
T
*
out
,
const
size_t
out_img_h
,
const
size_t
out_img_w
,
const
size_t
output_h
,
const
size_t
output_w
,
const
size_t
num_channels
,
const
float
ratio_h
,
const
float
ratio_w
,
const
bool
align_corners
,
const
DataLayout
data_layout
)
{
int
nthreads
=
output_h
*
output_w
;
int
tid
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
stride
=
blockDim
.
x
*
gridDim
.
x
;
for
(;
tid
<
nthreads
;
tid
+=
stride
)
{
int
out_id_h
=
tid
/
output_w
;
int
out_id_w
=
tid
%
output_w
;
int
in_img_size
=
input_w
/
num_channels
;
int
out_img_size
=
output_w
/
num_channels
;
int
channel_id
,
out_img_idy
,
out_img_idx
;
if
(
data_layout
==
DataLayout
::
kNCHW
)
{
channel_id
=
out_id_w
/
out_img_size
;
out_img_idy
=
(
out_id_w
%
out_img_size
)
/
out_img_w
;
out_img_idx
=
tid
%
out_img_w
;
}
else
{
out_img_idy
=
out_id_w
/
(
out_img_w
*
num_channels
);
out_img_idx
=
out_id_w
%
(
out_img_w
*
num_channels
)
/
num_channels
;
channel_id
=
tid
%
num_channels
;
}
T
in_img_idy
=
align_corners
?
static_cast
<
T
>
(
ratio_h
*
out_img_idy
)
:
static_cast
<
T
>
(
ratio_h
*
(
out_img_idy
+
0.5
)
-
0.5
);
int
input_y
=
floorf
(
in_img_idy
);
const
T
y_t
=
in_img_idy
-
input_y
;
T
in_img_idx
=
align_corners
?
static_cast
<
T
>
(
ratio_w
*
out_img_idx
)
:
static_cast
<
T
>
(
ratio_w
*
(
out_img_idx
+
0.5
)
-
0.5
);
int
input_x
=
floorf
(
in_img_idx
);
const
T
x_t
=
in_img_idx
-
input_x
;
T
x_coeffs
[
4
];
T
y_coeffs
[
4
];
get_cubic_upsample_coefficients
(
x_coeffs
,
x_t
);
get_cubic_upsample_coefficients
(
y_coeffs
,
y_t
);
const
T
*
out_pos
=
&
out
[
out_id_h
*
output_w
+
out_id_w
];
T
*
in_pos
;
for
(
int
i
=
0
;
i
<
4
;
i
++
)
{
for
(
int
j
=
0
;
j
<
4
;
j
++
)
{
int
access_y
=
max
(
min
(
static_cast
<
int
>
(
input_y
-
1
+
j
),
static_cast
<
int
>
(
in_img_h
-
1
)),
0
);
int
access_x
=
max
(
min
(
static_cast
<
int
>
(
input_x
-
1
+
i
),
static_cast
<
int
>
(
in_img_w
-
1
)),
0
);
if
(
data_layout
==
DataLayout
::
kNCHW
)
{
in_pos
=
&
in
[
out_id_h
*
input_w
+
channel_id
*
in_img_size
+
access_y
*
in_img_w
+
access_x
];
}
else
{
in_pos
=
&
in
[
out_id_h
*
input_w
+
access_y
*
in_img_w
*
num_channels
+
access_x
*
num_channels
+
channel_id
];
}
platform
::
CudaAtomicAdd
(
&
in_pos
[
0
],
(
out_pos
[
0
]
*
y_coeffs
[
j
]
*
x_coeffs
[
i
]));
}
}
}
}
template
<
typename
T
>
template
<
typename
T
>
static
void
Interpolate2DCUDAFwd
(
const
framework
::
ExecutionContext
&
ctx
,
static
void
Interpolate2DCUDAFwd
(
const
framework
::
ExecutionContext
&
ctx
,
const
Tensor
&
input
,
Tensor
*
output
)
{
const
Tensor
&
input
,
Tensor
*
output
)
{
...
@@ -602,6 +802,11 @@ static void Interpolate2DCUDAFwd(const framework::ExecutionContext& ctx,
...
@@ -602,6 +802,11 @@ static void Interpolate2DCUDAFwd(const framework::ExecutionContext& ctx,
ctx
.
cuda_device_context
().
stream
()
>>>
(
ctx
.
cuda_device_context
().
stream
()
>>>
(
input_data
,
in_h
,
in_w
,
n
,
in_chw
,
output_data
,
out_h
,
out_w
,
n
,
input_data
,
in_h
,
in_w
,
n
,
in_chw
,
output_data
,
out_h
,
out_w
,
n
,
out_chw
,
c
,
ratio_h
,
ratio_w
,
align_corners
,
align_mode
,
data_layout
);
out_chw
,
c
,
ratio_h
,
ratio_w
,
align_corners
,
align_mode
,
data_layout
);
}
else
if
(
"bicubic"
==
interp_method
)
{
KeBicubicInterpFw
<
T
><<<
config
.
blocks
,
512
,
0
,
ctx
.
cuda_device_context
().
stream
()
>>>
(
input_data
,
in_h
,
in_w
,
n
,
in_chw
,
output_data
,
out_h
,
out_w
,
n
,
out_chw
,
c
,
ratio_h
,
ratio_w
,
align_corners
,
data_layout
);
}
}
}
}
...
@@ -806,6 +1011,11 @@ static void Interpolate2DCUDABwd(const framework::ExecutionContext& ctx,
...
@@ -806,6 +1011,11 @@ static void Interpolate2DCUDABwd(const framework::ExecutionContext& ctx,
input_grad_data
,
in_h
,
in_w
,
n
,
in_chw
,
output_grad_data
,
out_h
,
out_w
,
input_grad_data
,
in_h
,
in_w
,
n
,
in_chw
,
output_grad_data
,
out_h
,
out_w
,
n
,
out_chw
,
c
,
ratio_h
,
ratio_w
,
align_corners
,
align_mode
,
n
,
out_chw
,
c
,
ratio_h
,
ratio_w
,
align_corners
,
align_mode
,
data_layout
);
data_layout
);
}
else
if
(
"bicubic"
==
interp_method
)
{
KeBicubicInterpBw
<
T
><<<
config
.
blocks
,
512
,
0
,
ctx
.
cuda_device_context
().
stream
()
>>>
(
input_grad_data
,
in_h
,
in_w
,
n
,
in_chw
,
output_grad_data
,
out_h
,
out_w
,
n
,
out_chw
,
c
,
ratio_h
,
ratio_w
,
align_corners
,
data_layout
);
}
}
}
}
...
@@ -968,3 +1178,9 @@ REGISTER_OP_CUDA_KERNEL(trilinear_interp, ops::InterpolateOpCUDAKernel<float>,
...
@@ -968,3 +1178,9 @@ REGISTER_OP_CUDA_KERNEL(trilinear_interp, ops::InterpolateOpCUDAKernel<float>,
REGISTER_OP_CUDA_KERNEL
(
trilinear_interp_grad
,
REGISTER_OP_CUDA_KERNEL
(
trilinear_interp_grad
,
ops
::
InterpolateGradOpCUDAKernel
<
float
>
,
ops
::
InterpolateGradOpCUDAKernel
<
float
>
,
ops
::
InterpolateGradOpCUDAKernel
<
double
>
);
ops
::
InterpolateGradOpCUDAKernel
<
double
>
);
REGISTER_OP_CUDA_KERNEL
(
bicubic_interp
,
ops
::
InterpolateOpCUDAKernel
<
float
>
,
ops
::
InterpolateOpCUDAKernel
<
double
>
,
ops
::
InterpolateOpCUDAKernel
<
int
>
);
REGISTER_OP_CUDA_KERNEL
(
bicubic_interp_grad
,
ops
::
InterpolateGradOpCUDAKernel
<
float
>
,
ops
::
InterpolateGradOpCUDAKernel
<
double
>
);
paddle/fluid/operators/interpolate_op.h
浏览文件 @
cf6f28f9
...
@@ -10,10 +10,12 @@
...
@@ -10,10 +10,12 @@
limitations under the License. */
limitations under the License. */
#pragma once
#pragma once
#include <algorithm>
#include <string>
#include <string>
#include <vector>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/hostdevice.h"
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
namespace
operators
{
...
@@ -342,6 +344,106 @@ static void TrilinearInterpolation(
...
@@ -342,6 +344,106 @@ static void TrilinearInterpolation(
}
}
}
}
template
<
typename
T
>
HOSTDEVICE
inline
T
cubic_convolution1
(
T
x
,
T
A
)
{
return
((
A
+
2
)
*
x
-
(
A
+
3
))
*
x
*
x
+
1
;
}
template
<
typename
T
>
HOSTDEVICE
inline
T
cubic_convolution2
(
T
x
,
T
A
)
{
return
((
A
*
x
-
5
*
A
)
*
x
+
8
*
A
)
*
x
-
4
*
A
;
}
template
<
typename
T
>
HOSTDEVICE
inline
void
get_cubic_upsample_coefficients
(
T
coeffs
[
4
],
T
t
)
{
T
A
=
-
0.75
;
T
x1
=
t
;
coeffs
[
0
]
=
cubic_convolution2
<
T
>
(
x1
+
1.0
,
A
);
coeffs
[
1
]
=
cubic_convolution1
<
T
>
(
x1
,
A
);
// opposite coefficients
T
x2
=
1.0
-
t
;
coeffs
[
2
]
=
cubic_convolution1
<
T
>
(
x2
,
A
);
coeffs
[
3
]
=
cubic_convolution2
<
T
>
(
x2
+
1.0
,
A
);
}
template
<
typename
T
>
static
inline
T
cubic_interp
(
T
x0
,
T
x1
,
T
x2
,
T
x3
,
T
t
)
{
T
coeffs
[
4
];
get_cubic_upsample_coefficients
<
T
>
(
coeffs
,
t
);
return
x0
*
coeffs
[
0
]
+
x1
*
coeffs
[
1
]
+
x2
*
coeffs
[
2
]
+
x3
*
coeffs
[
3
];
}
template
<
typename
T
>
static
void
BicubicInterpolation
(
const
Tensor
&
input
,
Tensor
*
output
,
const
float
ratio_h
,
const
float
ratio_w
,
const
int
in_h
,
const
int
in_w
,
const
int
n
,
const
int
c
,
const
int
out_h
,
const
int
out_w
,
const
bool
align_corners
,
const
DataLayout
data_layout
)
{
auto
input_t
=
EigenTensor
<
T
,
4
>::
From
(
input
);
auto
output_t
=
EigenTensor
<
T
,
4
>::
From
(
*
output
);
for
(
int
k
=
0
;
k
<
out_h
;
k
++
)
{
// loop for images
T
y_n
=
align_corners
?
static_cast
<
T
>
(
ratio_h
*
k
)
:
static_cast
<
T
>
(
ratio_h
*
(
k
+
0.5
)
-
0.5
);
int
input_y
=
floorf
(
y_n
);
const
T
y_t
=
y_n
-
input_y
;
for
(
int
l
=
0
;
l
<
out_w
;
l
++
)
{
T
x_n
=
align_corners
?
static_cast
<
T
>
(
ratio_w
*
l
)
:
static_cast
<
T
>
(
ratio_w
*
(
l
+
0.5
)
-
0.5
);
int
input_x
=
floorf
(
x_n
);
const
T
x_t
=
x_n
-
input_x
;
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
// loop for batches
for
(
int
j
=
0
;
j
<
c
;
j
++
)
{
// loop for channels
T
coefficients
[
4
];
// interp 4 times in x direction
for
(
int
ii
=
0
;
ii
<
4
;
ii
++
)
{
int
access_y
=
std
::
max
(
std
::
min
(
input_y
-
1
+
ii
,
in_h
-
1
),
static_cast
<
int
>
(
0
));
int
access_x_0
=
std
::
max
(
std
::
min
(
input_x
-
1
,
in_w
-
1
),
static_cast
<
int
>
(
0
));
int
access_x_1
=
std
::
max
(
std
::
min
(
input_x
+
0
,
in_w
-
1
),
static_cast
<
int
>
(
0
));
int
access_x_2
=
std
::
max
(
std
::
min
(
input_x
+
1
,
in_w
-
1
),
static_cast
<
int
>
(
0
));
int
access_x_3
=
std
::
max
(
std
::
min
(
input_x
+
2
,
in_w
-
1
),
static_cast
<
int
>
(
0
));
if
(
data_layout
==
DataLayout
::
kNCHW
)
{
coefficients
[
ii
]
=
cubic_interp
<
T
>
(
input_t
(
i
,
j
,
access_y
,
access_x_0
),
input_t
(
i
,
j
,
access_y
,
access_x_1
),
input_t
(
i
,
j
,
access_y
,
access_x_2
),
input_t
(
i
,
j
,
access_y
,
access_x_3
),
x_t
);
}
else
{
coefficients
[
ii
]
=
cubic_interp
<
T
>
(
input_t
(
i
,
access_y
,
access_x_0
,
j
),
input_t
(
i
,
access_y
,
access_x_1
,
j
),
input_t
(
i
,
access_y
,
access_x_2
,
j
),
input_t
(
i
,
access_y
,
access_x_3
,
j
),
x_t
);
}
}
// interp y direction
if
(
data_layout
==
DataLayout
::
kNCHW
)
{
output_t
(
i
,
j
,
k
,
l
)
=
cubic_interp
<
T
>
(
coefficients
[
0
],
coefficients
[
1
],
coefficients
[
2
],
coefficients
[
3
],
y_t
);
}
else
{
output_t
(
i
,
k
,
l
,
j
)
=
cubic_interp
<
T
>
(
coefficients
[
0
],
coefficients
[
1
],
coefficients
[
2
],
coefficients
[
3
],
y_t
);
}
}
}
}
}
}
template
<
typename
T
>
template
<
typename
T
>
static
void
NearestNeighborInterpolateGrad
(
static
void
NearestNeighborInterpolateGrad
(
const
Tensor
&
output_grad
,
Tensor
*
input_grad
,
const
float
ratio_h
,
const
Tensor
&
output_grad
,
Tensor
*
input_grad
,
const
float
ratio_h
,
...
@@ -509,6 +611,61 @@ static void TrilinearInterpolationGrad(
...
@@ -509,6 +611,61 @@ static void TrilinearInterpolationGrad(
}
}
}
}
template
<
typename
T
>
static
void
BicubicInterpolationGrad
(
const
Tensor
&
output_grad
,
Tensor
*
input_grad
,
const
float
ratio_h
,
const
float
ratio_w
,
const
int
in_h
,
const
int
in_w
,
const
int
n
,
const
int
c
,
const
int
out_h
,
const
int
out_w
,
const
bool
align_corners
,
const
DataLayout
data_layout
)
{
auto
input_grad_t
=
EigenTensor
<
T
,
4
>::
From
(
*
input_grad
);
auto
output_grad_t
=
EigenTensor
<
T
,
4
>::
From
(
output_grad
);
for
(
int
k
=
0
;
k
<
out_h
;
k
++
)
{
// loop for images
T
y_n
=
align_corners
?
static_cast
<
T
>
(
ratio_h
*
k
)
:
static_cast
<
T
>
(
ratio_h
*
(
k
+
0.5
)
-
0.5
);
int
input_y
=
floorf
(
y_n
);
T
y_t
=
y_n
-
input_y
;
for
(
int
l
=
0
;
l
<
out_w
;
l
++
)
{
T
x_n
=
align_corners
?
static_cast
<
T
>
(
ratio_w
*
l
)
:
static_cast
<
T
>
(
ratio_w
*
(
l
+
0.5
)
-
0.5
);
int
input_x
=
floorf
(
x_n
);
T
x_t
=
x_n
-
input_x
;
T
x_coeffs
[
4
];
T
y_coeffs
[
4
];
get_cubic_upsample_coefficients
<
T
>
(
x_coeffs
,
x_t
);
get_cubic_upsample_coefficients
<
T
>
(
y_coeffs
,
y_t
);
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
// loop for batches
for
(
int
j
=
0
;
j
<
c
;
j
++
)
{
// loop for channels
// bicubic interpolation grad
for
(
int
ii
=
0
;
ii
<
4
;
ii
++
)
{
for
(
int
jj
=
0
;
jj
<
4
;
jj
++
)
{
int
access_x
=
std
::
max
(
std
::
min
(
input_x
-
1
+
ii
,
in_w
-
1
),
static_cast
<
int
>
(
0
));
int
access_y
=
std
::
max
(
std
::
min
(
input_y
-
1
+
jj
,
in_h
-
1
),
static_cast
<
int
>
(
0
));
if
(
data_layout
==
DataLayout
::
kNCHW
)
{
T
grad
=
output_grad_t
(
i
,
j
,
k
,
l
);
input_grad_t
(
i
,
j
,
access_y
,
access_x
)
+=
grad
*
y_coeffs
[
jj
]
*
x_coeffs
[
ii
];
}
else
{
T
grad
=
output_grad_t
(
i
,
k
,
l
,
j
);
input_grad_t
(
i
,
access_y
,
access_x
,
j
)
+=
grad
*
y_coeffs
[
jj
]
*
x_coeffs
[
ii
];
}
}
}
}
}
}
}
}
template
<
typename
T
>
template
<
typename
T
>
static
void
Interpolate2DCPUFwd
(
const
framework
::
ExecutionContext
&
ctx
,
static
void
Interpolate2DCPUFwd
(
const
framework
::
ExecutionContext
&
ctx
,
const
Tensor
&
input
,
Tensor
*
output
)
{
const
Tensor
&
input
,
Tensor
*
output
)
{
...
@@ -587,6 +744,9 @@ static void Interpolate2DCPUFwd(const framework::ExecutionContext& ctx,
...
@@ -587,6 +744,9 @@ static void Interpolate2DCPUFwd(const framework::ExecutionContext& ctx,
}
else
if
(
"nearest"
==
interp_method
)
{
}
else
if
(
"nearest"
==
interp_method
)
{
NearestNeighborInterpolate
<
T
>
(
input
,
output
,
ratio_h
,
ratio_w
,
n
,
c
,
out_h
,
NearestNeighborInterpolate
<
T
>
(
input
,
output
,
ratio_h
,
ratio_w
,
n
,
c
,
out_h
,
out_w
,
align_corners
,
data_layout
);
out_w
,
align_corners
,
data_layout
);
}
else
if
(
"bicubic"
==
interp_method
)
{
BicubicInterpolation
<
T
>
(
input
,
output
,
ratio_h
,
ratio_w
,
in_h
,
in_w
,
n
,
c
,
out_h
,
out_w
,
align_corners
,
data_layout
);
}
}
}
}
...
@@ -759,6 +919,10 @@ static void Interpolate2DCPUBwd(const framework::ExecutionContext& ctx,
...
@@ -759,6 +919,10 @@ static void Interpolate2DCPUBwd(const framework::ExecutionContext& ctx,
NearestNeighborInterpolateGrad
<
T
>
(
output_grad
,
input_grad
,
ratio_h
,
ratio_w
,
NearestNeighborInterpolateGrad
<
T
>
(
output_grad
,
input_grad
,
ratio_h
,
ratio_w
,
n
,
c
,
out_h
,
out_w
,
align_corners
,
n
,
c
,
out_h
,
out_w
,
align_corners
,
data_layout
);
data_layout
);
}
else
if
(
"bicubic"
==
interp_method
)
{
BicubicInterpolationGrad
<
T
>
(
output_grad
,
input_grad
,
ratio_h
,
ratio_w
,
in_h
,
in_w
,
n
,
c
,
out_h
,
out_w
,
align_corners
,
data_layout
);
}
}
}
}
...
...
python/paddle/fluid/tests/unittests/test_bicubic_interp_op.py
0 → 100644
浏览文件 @
cf6f28f9
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
import
paddle.fluid.core
as
core
import
paddle.fluid
as
fluid
import
paddle
from
paddle.fluid
import
Program
,
program_guard
from
paddle.nn.functional
import
*
def
cubic_1
(
x
,
a
):
return
((
a
+
2
)
*
x
-
(
a
+
3
))
*
x
*
x
+
1
def
cubic_2
(
x
,
a
):
return
((
a
*
x
-
5
*
a
)
*
x
+
8
*
a
)
*
x
-
4
*
a
def
cubic_interp1d
(
x0
,
x1
,
x2
,
x3
,
t
):
param
=
[
0
,
0
,
0
,
0
]
a
=
-
0.75
x_1
=
t
x_2
=
1.0
-
t
param
[
0
]
=
cubic_2
(
x_1
+
1.0
,
a
)
param
[
1
]
=
cubic_1
(
x_1
,
a
)
param
[
2
]
=
cubic_1
(
x_2
,
a
)
param
[
3
]
=
cubic_2
(
x_2
+
1.0
,
a
)
return
x0
*
param
[
0
]
+
x1
*
param
[
1
]
+
x2
*
param
[
2
]
+
x3
*
param
[
3
]
def
value_bound
(
input
,
w
,
h
,
x
,
y
):
access_x
=
int
(
max
(
min
(
x
,
w
-
1
),
0
))
access_y
=
int
(
max
(
min
(
y
,
h
-
1
),
0
))
return
input
[:,
:,
access_y
,
access_x
]
def
bicubic_interp_np
(
input
,
out_h
,
out_w
,
out_size
=
None
,
actual_shape
=
None
,
align_corners
=
True
,
data_layout
=
'kNCHW'
):
"""trilinear interpolation implement in shape [N, C, H, W]"""
if
data_layout
==
"NHWC"
:
input
=
np
.
transpose
(
input
,
(
0
,
3
,
1
,
2
))
# NHWC => NCHW
if
out_size
is
not
None
:
out_h
=
out_size
[
0
]
out_w
=
out_size
[
1
]
if
actual_shape
is
not
None
:
out_h
=
actual_shape
[
0
]
out_w
=
actual_shape
[
1
]
batch_size
,
channel
,
in_h
,
in_w
=
input
.
shape
ratio_h
=
ratio_w
=
0.0
if
out_h
>
1
:
if
(
align_corners
):
ratio_h
=
(
in_h
-
1.0
)
/
(
out_h
-
1.0
)
else
:
ratio_h
=
1.0
*
in_h
/
out_h
if
out_w
>
1
:
if
(
align_corners
):
ratio_w
=
(
in_w
-
1.0
)
/
(
out_w
-
1.0
)
else
:
ratio_w
=
1.0
*
in_w
/
out_w
out
=
np
.
zeros
((
batch_size
,
channel
,
out_h
,
out_w
))
for
k
in
range
(
out_h
):
if
(
align_corners
):
h
=
ratio_h
*
k
else
:
h
=
ratio_h
*
(
k
+
0.5
)
-
0.5
input_y
=
np
.
floor
(
h
)
y_t
=
h
-
input_y
for
l
in
range
(
out_w
):
if
(
align_corners
):
w
=
ratio_w
*
l
else
:
w
=
ratio_w
*
(
l
+
0.5
)
-
0.5
input_x
=
np
.
floor
(
w
)
x_t
=
w
-
input_x
for
i
in
range
(
batch_size
):
for
j
in
range
(
channel
):
coefficients
=
[
0
,
0
,
0
,
0
]
for
ii
in
range
(
4
):
access_x_0
=
int
(
max
(
min
(
input_x
-
1
,
in_w
-
1
),
0
))
access_x_1
=
int
(
max
(
min
(
input_x
+
0
,
in_w
-
1
),
0
))
access_x_2
=
int
(
max
(
min
(
input_x
+
1
,
in_w
-
1
),
0
))
access_x_3
=
int
(
max
(
min
(
input_x
+
2
,
in_w
-
1
),
0
))
access_y
=
int
(
max
(
min
(
input_y
-
1
+
ii
,
in_h
-
1
),
0
))
coefficients
[
ii
]
=
cubic_interp1d
(
input
[
i
,
j
,
access_y
,
access_x_0
],
input
[
i
,
j
,
access_y
,
access_x_1
],
input
[
i
,
j
,
access_y
,
access_x_2
],
input
[
i
,
j
,
access_y
,
access_x_3
],
x_t
)
out
[
i
,
j
,
k
,
l
]
=
cubic_interp1d
(
coefficients
[
0
],
coefficients
[
1
],
coefficients
[
2
],
coefficients
[
3
],
y_t
)
if
data_layout
==
"NHWC"
:
out
=
np
.
transpose
(
out
,
(
0
,
2
,
3
,
1
))
# NCHW => NHWC
return
out
.
astype
(
input
.
dtype
)
class
TestBicubicInterpOp
(
OpTest
):
def
setUp
(
self
):
self
.
out_size
=
None
self
.
actual_shape
=
None
self
.
data_layout
=
'NCHW'
self
.
init_test_case
()
self
.
op_type
=
"bicubic_interp"
input_np
=
np
.
random
.
random
(
self
.
input_shape
).
astype
(
"float64"
)
if
self
.
data_layout
==
"NCHW"
:
in_h
=
self
.
input_shape
[
2
]
in_w
=
self
.
input_shape
[
3
]
else
:
in_h
=
self
.
input_shape
[
1
]
in_w
=
self
.
input_shape
[
2
]
if
self
.
scale
>
0
:
out_h
=
int
(
in_h
*
self
.
scale
)
out_w
=
int
(
in_w
*
self
.
scale
)
else
:
out_h
=
self
.
out_h
out_w
=
self
.
out_w
output_np
=
bicubic_interp_np
(
input_np
,
out_h
,
out_w
,
self
.
out_size
,
self
.
actual_shape
,
self
.
align_corners
,
self
.
data_layout
)
self
.
inputs
=
{
'X'
:
input_np
}
if
self
.
out_size
is
not
None
:
self
.
inputs
[
'OutSize'
]
=
self
.
out_size
if
self
.
actual_shape
is
not
None
:
self
.
inputs
[
'OutSize'
]
=
self
.
actual_shape
self
.
attrs
=
{
'out_h'
:
self
.
out_h
,
'out_w'
:
self
.
out_w
,
'scale'
:
self
.
scale
,
'interp_method'
:
self
.
interp_method
,
'align_corners'
:
self
.
align_corners
,
'data_layout'
:
self
.
data_layout
}
self
.
outputs
=
{
'Out'
:
output_np
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
,
in_place
=
True
)
def
init_test_case
(
self
):
self
.
interp_method
=
'bicubic'
self
.
input_shape
=
[
2
,
3
,
5
,
5
]
self
.
out_h
=
2
self
.
out_w
=
2
self
.
scale
=
0.
self
.
out_size
=
np
.
array
([
3
,
3
]).
astype
(
"int32"
)
self
.
align_corners
=
True
class
TestBicubicInterpCase1
(
TestBicubicInterpOp
):
def
init_test_case
(
self
):
self
.
interp_method
=
'bicubic'
self
.
input_shape
=
[
4
,
1
,
7
,
8
]
self
.
out_h
=
1
self
.
out_w
=
1
self
.
scale
=
0.
self
.
align_corners
=
True
class
TestBicubicInterpCase2
(
TestBicubicInterpOp
):
def
init_test_case
(
self
):
self
.
interp_method
=
'bicubic'
self
.
input_shape
=
[
3
,
3
,
9
,
6
]
self
.
out_h
=
10
self
.
out_w
=
8
self
.
scale
=
0.
self
.
align_corners
=
True
class
TestBicubicInterpCase3
(
TestBicubicInterpOp
):
def
init_test_case
(
self
):
self
.
interp_method
=
'bicubic'
self
.
input_shape
=
[
1
,
1
,
32
,
64
]
self
.
out_h
=
64
self
.
out_w
=
32
self
.
scale
=
0.
self
.
align_corners
=
False
class
TestBicubicInterpCase4
(
TestBicubicInterpOp
):
def
init_test_case
(
self
):
self
.
interp_method
=
'bicubic'
self
.
input_shape
=
[
4
,
1
,
7
,
8
]
self
.
out_h
=
1
self
.
out_w
=
1
self
.
scale
=
0.
self
.
out_size
=
np
.
array
([
2
,
2
]).
astype
(
"int32"
)
self
.
align_corners
=
True
class
TestBicubicInterpCase5
(
TestBicubicInterpOp
):
def
init_test_case
(
self
):
self
.
interp_method
=
'bicubic'
self
.
input_shape
=
[
3
,
3
,
9
,
6
]
self
.
out_h
=
11
self
.
out_w
=
11
self
.
scale
=
0.
self
.
out_size
=
np
.
array
([
6
,
4
]).
astype
(
"int32"
)
self
.
align_corners
=
False
class
TestBicubicInterpCase6
(
TestBicubicInterpOp
):
def
init_test_case
(
self
):
self
.
interp_method
=
'bicubic'
self
.
input_shape
=
[
1
,
1
,
32
,
64
]
self
.
out_h
=
64
self
.
out_w
=
32
self
.
scale
=
0
self
.
out_size
=
np
.
array
([
64
,
32
]).
astype
(
"int32"
)
self
.
align_corners
=
False
class
TestBicubicInterpSame
(
TestBicubicInterpOp
):
def
init_test_case
(
self
):
self
.
interp_method
=
'bicubic'
self
.
input_shape
=
[
2
,
3
,
32
,
64
]
self
.
out_h
=
32
self
.
out_w
=
64
self
.
scale
=
0.
self
.
align_corners
=
True
class
TestBicubicInterpDataLayout
(
TestBicubicInterpOp
):
def
init_test_case
(
self
):
self
.
interp_method
=
'bicubic'
self
.
input_shape
=
[
2
,
5
,
5
,
3
]
self
.
out_h
=
2
self
.
out_w
=
2
self
.
scale
=
0.
self
.
out_size
=
np
.
array
([
3
,
3
]).
astype
(
"int32"
)
self
.
align_corners
=
True
self
.
data_layout
=
"NHWC"
class
TestBicubicInterpOpAPI
(
unittest
.
TestCase
):
def
test_case
(
self
):
x_data
=
np
.
random
.
random
((
2
,
3
,
6
,
6
)).
astype
(
"float32"
)
dim_data
=
np
.
array
([
12
]).
astype
(
"int32"
)
shape_data
=
np
.
array
([
12
,
12
]).
astype
(
"int32"
)
actual_size_data
=
np
.
array
([
12
,
12
]).
astype
(
"int32"
)
scale_data
=
np
.
array
([
2.0
]).
astype
(
"float32"
)
prog
=
fluid
.
Program
()
startup_prog
=
fluid
.
Program
()
place
=
fluid
.
CUDAPlace
(
0
)
if
fluid
.
core
.
is_compiled_with_cuda
(
)
else
fluid
.
CPUPlace
()
with
fluid
.
program_guard
(
prog
,
startup_prog
):
x
=
fluid
.
data
(
name
=
"x"
,
shape
=
[
2
,
3
,
6
,
6
],
dtype
=
"float32"
)
dim
=
fluid
.
data
(
name
=
"dim"
,
shape
=
[
1
],
dtype
=
"int32"
)
shape_tensor
=
fluid
.
data
(
name
=
"shape_tensor"
,
shape
=
[
2
],
dtype
=
"int32"
)
actual_size
=
fluid
.
data
(
name
=
"actual_size"
,
shape
=
[
2
],
dtype
=
"int32"
)
scale_tensor
=
fluid
.
data
(
name
=
"scale_tensor"
,
shape
=
[
1
],
dtype
=
"float32"
)
out1
=
interpolate
(
x
,
out_shape
=
[
12
,
12
],
resample
=
'BICUBIC'
,
align_corners
=
False
)
out2
=
interpolate
(
x
,
out_shape
=
[
12
,
dim
],
resample
=
'BICUBIC'
,
align_corners
=
False
)
out3
=
interpolate
(
x
,
out_shape
=
shape_tensor
,
resample
=
'BICUBIC'
,
align_corners
=
False
)
out4
=
interpolate
(
x
,
out_shape
=
[
4
,
4
],
actual_shape
=
actual_size
,
resample
=
'BICUBIC'
,
align_corners
=
False
)
out5
=
interpolate
(
x
,
scale
=
scale_tensor
,
resample
=
'BICUBIC'
,
align_corners
=
False
)
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
results
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"x"
:
x_data
,
"dim"
:
dim_data
,
"shape_tensor"
:
shape_data
,
"actual_size"
:
actual_size_data
,
"scale_tensor"
:
scale_data
},
fetch_list
=
[
out1
,
out2
,
out3
,
out4
,
out5
],
return_numpy
=
True
)
expect_res
=
bicubic_interp_np
(
x_data
,
out_h
=
12
,
out_w
=
12
,
align_corners
=
False
)
for
res
in
results
:
self
.
assertTrue
(
np
.
allclose
(
res
,
expect_res
))
with
fluid
.
dygraph
.
guard
():
x
=
fluid
.
dygraph
.
to_variable
(
x_data
)
interp
=
interpolate
(
x
,
out_shape
=
[
12
,
12
],
resample
=
'BICUBIC'
,
align_corners
=
False
)
dy_result
=
interp
.
numpy
()
expect
=
bicubic_interp_np
(
x_data
,
out_h
=
12
,
out_w
=
12
,
align_corners
=
False
)
self
.
assertTrue
(
np
.
allclose
(
dy_result
,
expect
))
class
TestBicubicOpError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
with
program_guard
(
Program
(),
Program
()):
# the input of interpoalte must be Variable.
x1
=
fluid
.
create_lod_tensor
(
np
.
array
([
-
1
,
3
,
5
,
5
]),
[[
1
,
1
,
1
,
1
]],
fluid
.
CPUPlace
())
self
.
assertRaises
(
TypeError
,
interpolate
,
x1
)
def
test_mode_type
():
# mode must be "BILINEAR" "TRILINEAR" "NEAREST" "BICUBIC"
x
=
fluid
.
data
(
name
=
"x"
,
shape
=
[
2
,
3
,
6
,
6
],
dtype
=
"float32"
)
out
=
interpolate
(
x
,
out_shape
=
[
12
,
12
],
resample
=
'UNKONWN'
,
align_corners
=
False
)
def
test_input_shape
():
x
=
fluid
.
data
(
name
=
"x"
,
shape
=
[
2
],
dtype
=
"float32"
)
out
=
interpolate
(
x
,
out_shape
=
[
12
,
12
],
resample
=
'BICUBIC'
,
align_corners
=
False
)
def
test_align_corcers
():
x
=
fluid
.
data
(
name
=
"x"
,
shape
=
[
2
,
3
,
6
,
6
],
dtype
=
"float32"
)
interpolate
(
x
,
out_shape
=
[
12
,
12
],
resample
=
'BICUBIC'
,
align_corners
=
3
)
def
test_out_shape
():
x
=
fluid
.
data
(
name
=
"x"
,
shape
=
[
2
,
3
,
6
,
6
],
dtype
=
"float32"
)
out
=
interpolate
(
x
,
out_shape
=
[
12
],
resample
=
'BICUBIC'
,
align_corners
=
False
)
def
test_attr_data_format
():
# for 5-D input, data_format only can be NCDHW or NDHWC
input
=
fluid
.
data
(
name
=
"input"
,
shape
=
[
2
,
3
,
6
,
9
,
4
],
dtype
=
"float32"
)
out
=
interpolate
(
input
,
out_shape
=
[
4
,
8
,
4
,
5
],
resample
=
'TRILINEAR'
,
data_format
=
'NHWC'
)
def
test_actual_shape
():
# the actual_shape must be Variable.
x
=
fluid
.
create_lod_tensor
(
np
.
array
([
-
1
,
3
,
5
,
5
]),
[[
1
,
1
,
1
,
1
]],
fluid
.
CPUPlace
())
out
=
interpolate
(
x
,
out_shape
=
[
12
,
12
],
resample
=
'BICUBIC'
,
align_corners
=
False
)
def
test_scale_value
():
# the scale must be greater than zero.
x
=
fluid
.
data
(
name
=
"x"
,
shape
=
[
2
,
3
,
6
,
6
],
dtype
=
"float32"
)
out
=
interpolate
(
x
,
out_shape
=
None
,
resample
=
'BICUBIC'
,
align_corners
=
False
,
scale
=-
2.0
)
def
test_attr_5D_input
():
# for 5-D input, data_format only can be NCDHW or NDHWC
input
=
fluid
.
data
(
name
=
"input"
,
shape
=
[
2
,
3
,
6
,
9
,
4
],
dtype
=
"float32"
)
out
=
interpolate
(
input
,
out_shape
=
[
4
,
8
,
4
,
5
],
resample
=
'TRILINEAR'
,
data_format
=
'NDHWC'
)
def
test_scale_type
():
# the scale must be greater than zero.
x
=
fluid
.
data
(
name
=
"x"
,
shape
=
[
2
,
3
,
6
,
6
],
dtype
=
"float32"
)
scale
=
fluid
.
create_lod_tensor
(
np
.
array
([
-
1
,
3
,
5
,
5
]),
[[
1
,
1
,
1
,
1
]],
fluid
.
CPUPlace
())
out
=
interpolate
(
x
,
out_shape
=
None
,
resample
=
'BICUBIC'
,
align_corners
=
False
,
scale
=
scale
)
def
test_align_mode
():
x
=
fluid
.
data
(
name
=
"x"
,
shape
=
[
2
,
3
,
6
,
6
],
dtype
=
"float32"
)
out
=
interpolate
(
x
,
out_shape
=
None
,
resample
=
'NEAREST'
,
align_corners
=
False
,
align_mode
=
2
,
scale
=
1.0
)
def
test_outshape_and_scale
():
x
=
fluid
.
data
(
name
=
"x"
,
shape
=
[
2
,
3
,
6
,
6
],
dtype
=
"float32"
)
out
=
interpolate
(
x
,
out_shape
=
None
,
resample
=
'BICUBIC'
,
align_corners
=
False
,
scale
=
None
)
self
.
assertRaises
(
ValueError
,
test_mode_type
)
self
.
assertRaises
(
ValueError
,
test_input_shape
)
self
.
assertRaises
(
TypeError
,
test_align_corcers
)
self
.
assertRaises
(
ValueError
,
test_attr_data_format
)
self
.
assertRaises
(
TypeError
,
test_actual_shape
)
self
.
assertRaises
(
ValueError
,
test_scale_value
)
self
.
assertRaises
(
ValueError
,
test_out_shape
)
self
.
assertRaises
(
ValueError
,
test_attr_5D_input
)
self
.
assertRaises
(
TypeError
,
test_scale_type
)
self
.
assertRaises
(
ValueError
,
test_align_mode
)
self
.
assertRaises
(
ValueError
,
test_outshape_and_scale
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_trilinear_interp_op.py
浏览文件 @
cf6f28f9
...
@@ -19,6 +19,7 @@ import numpy as np
...
@@ -19,6 +19,7 @@ import numpy as np
from
op_test
import
OpTest
from
op_test
import
OpTest
import
paddle.fluid.core
as
core
import
paddle.fluid.core
as
core
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
from
paddle.nn.functional
import
*
def
trilinear_interp_np
(
input
,
def
trilinear_interp_np
(
input
,
...
@@ -586,6 +587,15 @@ class TestTrilinearInterpAPI(unittest.TestCase):
...
@@ -586,6 +587,15 @@ class TestTrilinearInterpAPI(unittest.TestCase):
out4
=
fluid
.
layers
.
resize_trilinear
(
out4
=
fluid
.
layers
.
resize_trilinear
(
x
,
out_shape
=
[
4
,
4
,
8
],
actual_shape
=
actual_size
)
x
,
out_shape
=
[
4
,
4
,
8
],
actual_shape
=
actual_size
)
out5
=
fluid
.
layers
.
resize_trilinear
(
x
,
scale
=
scale_tensor
)
out5
=
fluid
.
layers
.
resize_trilinear
(
x
,
scale
=
scale_tensor
)
out6
=
interpolate
(
x
,
scale
=
scale_tensor
,
resample
=
'TRILINEAR'
,
data_format
=
"NCDHW"
)
out7
=
interpolate
(
x
,
out_shape
=
[
4
,
4
,
8
],
resample
=
'TRILINEAR'
,
data_format
=
"NCDHW"
)
out8
=
interpolate
(
x
,
out_shape
=
shape_tensor
,
resample
=
'TRILINEAR'
,
data_format
=
"NCDHW"
)
x_data
=
np
.
random
.
random
((
2
,
3
,
6
,
9
,
4
)).
astype
(
"float32"
)
x_data
=
np
.
random
.
random
((
2
,
3
,
6
,
9
,
4
)).
astype
(
"float32"
)
dim_data
=
np
.
array
([
18
]).
astype
(
"int32"
)
dim_data
=
np
.
array
([
18
]).
astype
(
"int32"
)
...
...
python/paddle/nn/functional/__init__.py
浏览文件 @
cf6f28f9
...
@@ -187,4 +187,4 @@ from .extension import row_conv #DEFINE_ALIAS
...
@@ -187,4 +187,4 @@ from .extension import row_conv #DEFINE_ALIAS
# from .common import unfold #DEFINE_ALIAS
# from .common import unfold #DEFINE_ALIAS
# from .common import bilinear_tensor_product #DEFINE_ALIAS
# from .common import bilinear_tensor_product #DEFINE_ALIAS
# from .common import assign #DEFINE_ALIAS
# from .common import assign #DEFINE_ALIAS
# from .common import interpolate
#DEFINE_ALIAS
from
.common
import
interpolate
#DEFINE_ALIAS
python/paddle/nn/functional/common.py
浏览文件 @
cf6f28f9
...
@@ -12,6 +12,10 @@
...
@@ -12,6 +12,10 @@
# See the License for the specific language governing permissions and
# See the License for the specific language governing permissions and
# limitations under the License.
# limitations under the License.
import
warnings
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.layers.tensor
import
Variable
,
fill_constant
# TODO: define the common functions to build a neural network
# TODO: define the common functions to build a neural network
# __all__ = ['dropout',
# __all__ = ['dropout',
# 'embedding',
# 'embedding',
...
@@ -25,3 +29,395 @@
...
@@ -25,3 +29,395 @@
# 'bilinear_tensor_product',
# 'bilinear_tensor_product',
# 'assign',
# 'assign',
# 'interpolate']
# 'interpolate']
__all__
=
[
'interpolate'
]
def
interpolate
(
input
,
out_shape
=
None
,
scale
=
None
,
name
=
None
,
resample
=
'BILINEAR'
,
actual_shape
=
None
,
align_corners
=
True
,
align_mode
=
1
,
data_format
=
'NCHW'
):
"""
This op resizes a batch of images.
The input must be a 4-D Tensor of the shape (num_batches, channels, in_h, in_w)
or (num_batches, in_h, in_w, channels), or a 5-D Tensor of the shape
(num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels),
and the resizing only applies on the three dimensions(depth, height and width).
**Warning:** the parameter :attr:`actual_shape` will be deprecated in the
future and only use :attr:`out_shape` instead.
Supporting resample methods:
'BILINEAR' : Bilinear interpolation
'TRILINEAR' : Trilinear interpolation
'NEAREST' : Nearest neighbor interpolation
'BICUBIC' : Bicubic interpolation
Nearest neighbor interpolation is to perform nearest neighbor interpolation
in both the 3rd dimension(in height direction) and the 4th dimension(in width
direction) on input tensor.
Bilinear interpolation is an extension of linear interpolation for
interpolating functions of two variables (e.g. H-direction and
W-direction in this op) on a rectilinear 2D grid. The key idea is
to perform linear interpolation first in one direction, and then
again in the other direction.
Trilinear interpolation is an extension of linear interpolation for
interpolating functions of three variables (e.g. D-direction,
H-direction and W-direction in this op) on a rectilinear 3D grid.
The linear interpolation is performed on three directions.
Align_corners and align_mode are optional parameters,the calculation method
of interpolation can be selected by them.
Bicubic interpolation is an extension of cubic interpolation for interpolating
data points on a two-dimensional regular grid. The interpolated surface is
smoother than corresponding surfaces obtained by bilinear interpolation or
nearest-neighbor interpolation.
Example:
.. code-block:: text
For scale:
if align_corners = True && out_size > 1 :
scale_factor = (in_size-1.0)/(out_size-1.0)
else:
scale_factor = float(in_size/out_size)
Nearest neighbor interpolation:
if:
align_corners = False
input : (N,C,H_in,W_in)
output: (N,C,H_out,W_out) where:
H_out = floor (H_{in} * scale_{factor})
W_out = floor (W_{in} * scale_{factor})
else:
align_corners = True
input : (N,C,H_in,W_in)
output: (N,C,H_out,W_out) where:
H_out = round(H_{in} * scale_{factor})
W_out = round(W_{in} * scale_{factor})
Bilinear interpolation:
if:
align_corners = False , align_mode = 0
input : (N,C,H_in,W_in)
output: (N,C,H_out,W_out) where:
H_out = (H_{in}+0.5) * scale_{factor} - 0.5
W_out = (W_{in}+0.5) * scale_{factor} - 0.5
else:
input : (N,C,H_in,W_in)
output: (N,C,H_out,W_out) where:
H_out = H_{in} * scale_{factor}
W_out = W_{in} * scale_{factor}
Bicubic interpolation:
if:
align_corners = False
input : (N,C,H_in,W_in)
output: (N,C,H_out,W_out) where:
H_out = (H_{in}+0.5) * scale_{factor} - 0.5
W_out = (W_{in}+0.5) * scale_{factor} - 0.5
else:
input : (N,C,H_in,W_in)
output: (N,C,H_out,W_out) where:
H_out = H_{in} * scale_{factor}
W_out = W_{in} * scale_{factor}
Trilinear interpolation:
if:
align_corners = False , align_mode = 0
input : (N,C,D_in,H_in,W_in)
output: (N,C,D_out,H_out,W_out) where:
D_out = (D_{in}+0.5) * scale_{factor} - 0.5
H_out = (H_{in}+0.5) * scale_{factor} - 0.5
W_out = (W_{in}+0.5) * scale_{factor} - 0.5
else:
input : (N,C,D_in,H_in,W_in)
output: (N,C,D_out,H_out,W_out) where:
D_out = D_{in} * scale_{factor}
H_out = H_{in} * scale_{factor}
W_out = W_{in} * scale_{factor}
For details of nearest neighbor interpolation, please refer to Wikipedia:
https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.
For details of bilinear interpolation, please refer to Wikipedia:
https://en.wikipedia.org/wiki/Bilinear_interpolation.
For details of trilinear interpolation, please refer to Wikipedia:
https://en.wikipedia.org/wiki/Trilinear_interpolation.
For details of bicubic interpolation, please refer to Wikipedia:
https://en.wikipedia.org/wiki/Bicubic_interpolation
Parameters:
input (Variable): 4-D or 5-D Tensor, its data type is float32, float64, or uint8,
its data format is specified by :attr:`data_format`.
out_shape(list|tuple|Variable|None): Output shape of image resize
layer, the shape is (out_h, out_w) when input is a 4-D Tensor and is
(out_d, out_h, out_w) when input is a 5-D Tensor. Default: None. If
a list, each element can be an integer or a Tensor Variable of shape: [1].
If a Tensor Variable, its dimensions size should be a 1.
scale(float|Variable|None): The multiplier for the input height or width. At
least one of :attr:`out_shape` or :attr:`scale` must be set.
And :attr:`out_shape` has a higher priority than :attr:`scale`.
Default: None.
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
resample(str): The resample method. It supports 'BILINEAR', 'TRILINEAR' ,
'BICUBIC' and 'NEAREST' currently. Default: 'BILINEAR'
actual_shape(Variable): An optional input to specify output shape
dynamically. If provided, image resize
according to this given shape rather than
:attr:`out_shape` and :attr:`scale` specifying
shape. That is to say actual_shape has the
highest priority. It is recommended to use
:attr:`out_shape` if you want to specify output
shape dynamically, because :attr:`actual_shape`
will be deprecated. When using actual_shape to
specify output shape, one of :attr:`out_shape`
and :attr:`scale` should also be set, otherwise
errors would be occurred in graph constructing stage.
Default: None
align_corners(bool) : An optional bool, If True, the centers of the 4 corner pixels of the
input and output tensors are aligned, preserving the values at the
corner pixels.
Default: True
align_mode(int) : An optional for bilinear interpolation. can be
\'
0
\'
for src_idx = scale*(dst_indx+0.5)-0.5 , can be
\'
1
\'
for
src_idx = scale*dst_index.
data_format (str, optional): Specify the data format of the input, and the data format of the output
will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`, `"NCDHW"`,
`"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
`[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored
in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
Returns:
A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),
or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels).
Raises:
TypeError: out_shape should be a list or tuple or Variable.
TypeError: actual_shape should either be Variable or None.
ValueError: The 'resample' of image_resize can only be 'BILINEAR',
'TRILINEAR', 'BICUBIC', or 'NEAREST' currently.
ValueError: 'BILINEAR', 'BICUBIC' and 'NEAREST' only support 4-D tensor.
ValueError: 'TRILINEAR' only support 5-D tensor.
ValueError: One of out_shape and scale must not be None.
ValueError: out_shape length should be 2 for input 4-D tensor.
ValueError: out_shape length should be 3 for input 5-D tensor.
ValueError: scale should be greater than zero.
TypeError: align_corners should be a bool value
ValueError: align_mode can only be '0' or '1'
ValueError: data_format can only be 'NCHW', 'NHWC', 'NCDHW' or 'NDHWC'.
Examples:
.. code-block:: python
#declarative mode
import paddle
import numpy as np
input = fluid.data(name="input", shape=[None,3,6,10])
#1
output = paddle.nn.functional.interpolate(input=input,out_shape=[12,12])
#2
#x = np.array([2]).astype("int32")
#dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
#fluid.layers.assign(input=x, output=dim1)
#output = paddle.nn.functional.interpolate(input=input,out_shape=[12,dim1])
#3
#x = np.array([3,12]).astype("int32")
#shape_tensor = fluid.data(name="shape_tensor", shape=[2], dtype="int32")
#fluid.layers.assign(input=x, output=shape_tensor)
#output = paddle.nn.functional.interpolate(input=input,out_shape=shape_tensor)
#4
#x = np.array([0.5]).astype("float32")
#scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
#fluid.layers.assign(x,scale_tensor)
#output = paddle.nn.functional.interpolate(input=input,scale=scale_tensor)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
input_data = np.random.rand(2,3,6,10).astype("float32")
output_data = exe.run(fluid.default_main_program(),
feed={"input":input_data},
fetch_list=[output],
return_numpy=True)
print(output_data[0].shape)
#1
# (2, 3, 12, 12)
#2
# (2, 3, 12, 2)
#3
# (2, 3, 3, 12)
#4
# (2, 3, 3, 5)
#imperative mode
import paddle.fluid.dygraph as dg
with dg.guard(place) as g:
input = dg.to_variable(input_data)
output = paddle.nn.functional.interpolate(input=input, out_shape=[12,12])
print(output.shape)
# [2L, 3L, 12L, 12L]
"""
resample_methods
=
{
'BILINEAR'
:
'bilinear'
,
'TRILINEAR'
:
'trilinear'
,
'NEAREST'
:
'nearest'
,
'BICUBIC'
:
'bicubic'
,
}
if
resample
not
in
resample_methods
:
raise
ValueError
(
"The 'resample' of image_resize can only be 'BILINEAR', 'TRILINEAR', "
" 'BICUBIC' or 'NEAREST' currently."
)
resample_type
=
resample_methods
[
resample
]
if
resample
in
[
'BILINEAR'
,
'NEAREST'
,
'BICUBIC'
]
and
len
(
input
.
shape
)
!=
4
:
raise
ValueError
(
"'BILINEAR', 'BICUBIC' and 'NEAREST' only support 4-D tensor."
)
if
resample
==
'TRILINEAR'
and
len
(
input
.
shape
)
!=
5
:
raise
ValueError
(
"'TRILINEAR'only support 5-D tensor."
)
if
not
isinstance
(
align_corners
,
bool
):
raise
TypeError
(
"Attr align_corners should be a bool value"
)
if
align_mode
!=
0
and
align_mode
!=
1
:
raise
ValueError
(
"align_mode can only be 0 or 1"
)
if
out_shape
is
None
and
scale
is
None
:
raise
ValueError
(
"One of out_shape and scale must not be None."
)
helper
=
LayerHelper
(
'{}_interp'
.
format
(
resample_type
),
**
locals
())
dtype
=
helper
.
input_dtype
()
if
len
(
input
.
shape
)
==
4
and
data_format
not
in
[
'NCHW'
,
'NHWC'
]:
raise
ValueError
(
"Got wrong value for param `data_format`: "
+
data_format
+
" received but only `NCHW` or `NHWC` supported for 4-D input."
)
elif
len
(
input
.
shape
)
==
5
and
data_format
not
in
[
'NCDHW'
,
'NDHWC'
]:
raise
ValueError
(
"Got wrong value for param `data_format`: "
+
data_format
+
" received but only `NCDHW` or `NDHWC` supported for 5-D input."
)
def
_is_list_or_turple_
(
data
):
return
(
isinstance
(
data
,
list
)
or
isinstance
(
data
,
tuple
))
if
data_format
==
'NCHW'
or
data_format
==
'NCDHW'
:
data_layout
=
'NCHW'
if
data_format
==
'NHWC'
or
data_format
==
'NDHWC'
:
data_layout
=
'NHWC'
inputs
=
{
"X"
:
input
}
attrs
=
{
"out_d"
:
-
1
,
"out_h"
:
-
1
,
"out_w"
:
-
1
,
"interp_method"
:
resample_type
,
"align_corners"
:
align_corners
,
"align_mode"
:
align_mode
,
"data_layout"
:
data_layout
}
if
out_shape
is
not
None
:
if
isinstance
(
out_shape
,
Variable
):
out_shape
.
stop_gradient
=
True
inputs
[
'OutSize'
]
=
out_shape
else
:
if
not
(
_is_list_or_turple_
(
out_shape
)):
raise
TypeError
(
"out_shape should be a list or tuple or Variable."
)
# Validate the shape
contain_var
=
False
for
dim_idx
,
dim_size
in
enumerate
(
out_shape
):
if
isinstance
(
dim_size
,
Variable
):
contain_var
=
True
continue
assert
dim_size
>
0
,
(
"Each dimension size given in out_shape must be greater than 0."
)
if
contain_var
:
new_size_tensor
=
[]
size_list
=
[]
for
dim
in
out_shape
:
if
isinstance
(
dim
,
Variable
):
dim
.
stop_gradient
=
True
new_size_tensor
.
append
(
dim
)
size_list
.
append
(
-
1
)
else
:
assert
(
isinstance
(
dim
,
int
))
temp_out
=
helper
.
create_variable_for_type_inference
(
'int32'
)
fill_constant
(
[
1
],
'int32'
,
dim
,
force_cpu
=
True
,
out
=
temp_out
)
new_size_tensor
.
append
(
temp_out
)
size_list
.
append
(
dim
)
inputs
[
'SizeTensor'
]
=
new_size_tensor
if
len
(
input
.
shape
)
==
4
:
if
len
(
out_shape
)
!=
2
:
raise
ValueError
(
"out_shape length should be 2 for "
"input 4-D tensor."
)
if
contain_var
:
attrs
[
'out_h'
]
=
size_list
[
0
]
attrs
[
'out_w'
]
=
size_list
[
1
]
else
:
out_shape
=
list
(
map
(
int
,
out_shape
))
attrs
[
'out_h'
]
=
out_shape
[
0
]
attrs
[
'out_w'
]
=
out_shape
[
1
]
if
len
(
input
.
shape
)
==
5
:
if
len
(
out_shape
)
!=
3
:
raise
ValueError
(
"out_shape length should be 3 for "
"input 5-D tensor."
)
if
contain_var
:
attrs
[
'out_d'
]
=
size_list
[
0
]
attrs
[
'out_h'
]
=
size_list
[
1
]
attrs
[
'out_w'
]
=
size_list
[
2
]
else
:
out_shape
=
list
(
map
(
int
,
out_shape
))
attrs
[
'out_d'
]
=
out_shape
[
0
]
attrs
[
'out_h'
]
=
out_shape
[
1
]
attrs
[
'out_w'
]
=
out_shape
[
2
]
else
:
if
isinstance
(
scale
,
Variable
):
scale
.
stop_gradient
=
True
inputs
[
"Scale"
]
=
scale
elif
isinstance
(
scale
,
float
)
or
isinstance
(
scale
,
int
):
if
scale
<=
0
:
raise
ValueError
(
"Attr(scale) should be greater than zero."
)
attrs
[
'scale'
]
=
float
(
scale
)
else
:
raise
TypeError
(
"Attr(scale)'s type should be float, int or Variable."
)
if
isinstance
(
actual_shape
,
Variable
):
warnings
.
warn
(
"actual_shape will be deprecated, it is recommended to use "
"out_shape instead of actual_shape to specify output shape dynamically."
)
actual_shape
.
stop_gradient
=
True
inputs
[
"OutSize"
]
=
actual_shape
elif
actual_shape
is
not
None
:
raise
TypeError
(
"actual_shape should either be Variable or None."
)
out
=
helper
.
create_variable_for_type_inference
(
dtype
)
helper
.
append_op
(
type
=
'{}_interp'
.
format
(
resample_type
),
inputs
=
inputs
,
outputs
=
{
"Out"
:
out
},
attrs
=
attrs
)
return
out
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录