Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
cd02d9c8
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
cd02d9c8
编写于
9月 22, 2020
作者:
Z
zhhsplendid
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Splite PR, test=develop
上级
f4f5f3f2
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
0 addition
and
676 deletion
+0
-676
python/paddle/fluid/tests/unittests/dygraph_to_static/test_ptb_lm_v2.py
...fluid/tests/unittests/dygraph_to_static/test_ptb_lm_v2.py
+0
-314
python/paddle/fluid/tests/unittests/dygraph_to_static/test_resnet_v2.py
...fluid/tests/unittests/dygraph_to_static/test_resnet_v2.py
+0
-362
未找到文件。
python/paddle/fluid/tests/unittests/dygraph_to_static/test_ptb_lm_v2.py
已删除
100644 → 0
浏览文件 @
f4f5f3f2
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
,
division
,
print_function
import
logging
import
time
import
unittest
import
numpy
as
np
import
paddle
PRINT_STEP
=
20
SEED
=
2020
program_translator
=
paddle
.
fluid
.
dygraph
.
dygraph_to_static
.
ProgramTranslator
()
class
SimpleLSTMRNN
(
paddle
.
fluid
.
Layer
):
def
__init__
(
self
,
hidden_size
,
num_steps
,
num_layers
=
2
,
init_scale
=
0.1
,
dropout
=
None
):
super
(
SimpleLSTMRNN
,
self
).
__init__
()
self
.
_hidden_size
=
hidden_size
self
.
_num_layers
=
num_layers
self
.
_init_scale
=
init_scale
self
.
_dropout
=
dropout
self
.
_num_steps
=
num_steps
self
.
cell_array
=
[]
self
.
hidden_array
=
[]
self
.
weight_1_arr
=
[]
self
.
weight_2_arr
=
[]
self
.
bias_arr
=
[]
self
.
mask_array
=
[]
for
i
in
range
(
self
.
_num_layers
):
weight_1
=
self
.
create_parameter
(
attr
=
paddle
.
ParamAttr
(
initializer
=
paddle
.
nn
.
initializer
.
Uniform
(
low
=-
self
.
_init_scale
,
high
=
self
.
_init_scale
)),
shape
=
[
self
.
_hidden_size
*
2
,
self
.
_hidden_size
*
4
],
dtype
=
"float32"
,
default_initializer
=
paddle
.
nn
.
initializer
.
Uniform
(
low
=-
self
.
_init_scale
,
high
=
self
.
_init_scale
))
self
.
weight_1_arr
.
append
(
self
.
add_parameter
(
'w_%d'
%
i
,
weight_1
))
bias_1
=
self
.
create_parameter
(
attr
=
paddle
.
ParamAttr
(
initializer
=
paddle
.
nn
.
initializer
.
Uniform
(
low
=-
self
.
_init_scale
,
high
=
self
.
_init_scale
)),
shape
=
[
self
.
_hidden_size
*
4
],
dtype
=
"float32"
,
default_initializer
=
paddle
.
nn
.
initializer
.
Constant
(
0.0
))
self
.
bias_arr
.
append
(
self
.
add_parameter
(
'b_%d'
%
i
,
bias_1
))
def
forward
(
self
,
input_embedding
,
init_hidden
=
None
,
init_cell
=
None
):
cell_array
=
[]
hidden_array
=
[]
for
i
in
range
(
self
.
_num_layers
):
hidden_array
.
append
(
init_hidden
[
i
])
cell_array
.
append
(
init_cell
[
i
])
res
=
[]
for
index
in
range
(
self
.
_num_steps
):
step_input
=
input_embedding
[:,
index
,
:]
for
k
in
range
(
self
.
_num_layers
):
pre_hidden
=
hidden_array
[
k
]
pre_cell
=
cell_array
[
k
]
weight_1
=
self
.
weight_1_arr
[
k
]
bias
=
self
.
bias_arr
[
k
]
nn
=
paddle
.
concat
(
x
=
[
step_input
,
pre_hidden
],
axis
=
1
)
gate_input
=
paddle
.
matmul
(
x
=
nn
,
y
=
weight_1
)
gate_input
=
paddle
.
add
(
x
=
gate_input
,
y
=
bias
)
i
,
j
,
f
,
o
=
paddle
.
split
(
x
=
gate_input
,
num_or_sections
=
4
,
axis
=-
1
)
c
=
pre_cell
*
paddle
.
nn
.
functional
.
sigmoid
(
f
)
+
paddle
.
nn
.
functional
.
sigmoid
(
i
)
*
paddle
.
tanh
(
j
)
m
=
paddle
.
tanh
(
c
)
*
paddle
.
nn
.
functional
.
sigmoid
(
o
)
hidden_array
[
k
]
=
m
cell_array
[
k
]
=
c
step_input
=
m
if
self
.
_dropout
is
not
None
and
self
.
_dropout
>
0.0
:
step_input
=
paddle
.
fluid
.
layers
.
dropout
(
step_input
,
dropout_prob
=
self
.
_dropout
,
dropout_implementation
=
'upscale_in_train'
)
res
.
append
(
step_input
)
real_res
=
paddle
.
concat
(
x
=
res
,
axis
=
1
)
real_res
=
paddle
.
fluid
.
layers
.
reshape
(
real_res
,
[
-
1
,
self
.
_num_steps
,
self
.
_hidden_size
])
last_hidden
=
paddle
.
concat
(
x
=
hidden_array
,
axis
=
1
)
last_hidden
=
paddle
.
fluid
.
layers
.
reshape
(
last_hidden
,
shape
=
[
-
1
,
self
.
_num_layers
,
self
.
_hidden_size
])
last_hidden
=
paddle
.
transpose
(
x
=
last_hidden
,
perm
=
[
1
,
0
,
2
])
last_cell
=
paddle
.
concat
(
x
=
cell_array
,
axis
=
1
)
last_cell
=
paddle
.
fluid
.
layers
.
reshape
(
last_cell
,
shape
=
[
-
1
,
self
.
_num_layers
,
self
.
_hidden_size
])
last_cell
=
paddle
.
transpose
(
x
=
last_cell
,
perm
=
[
1
,
0
,
2
])
return
real_res
,
last_hidden
,
last_cell
class
PtbModel
(
paddle
.
fluid
.
Layer
):
def
__init__
(
self
,
hidden_size
,
vocab_size
,
num_layers
=
2
,
num_steps
=
20
,
init_scale
=
0.1
,
dropout
=
None
):
super
(
PtbModel
,
self
).
__init__
()
self
.
hidden_size
=
hidden_size
self
.
vocab_size
=
vocab_size
self
.
init_scale
=
init_scale
self
.
num_layers
=
num_layers
self
.
num_steps
=
num_steps
self
.
dropout
=
dropout
self
.
simple_lstm_rnn
=
SimpleLSTMRNN
(
hidden_size
,
num_steps
,
num_layers
=
num_layers
,
init_scale
=
init_scale
,
dropout
=
dropout
)
self
.
embedding
=
paddle
.
fluid
.
dygraph
.
nn
.
Embedding
(
size
=
[
vocab_size
,
hidden_size
],
dtype
=
'float32'
,
is_sparse
=
False
,
param_attr
=
paddle
.
ParamAttr
(
name
=
'embedding_para'
,
initializer
=
paddle
.
nn
.
initializer
.
Uniform
(
low
=-
init_scale
,
high
=
init_scale
)))
self
.
softmax_weight
=
self
.
create_parameter
(
attr
=
paddle
.
ParamAttr
(),
shape
=
[
self
.
hidden_size
,
self
.
vocab_size
],
dtype
=
"float32"
,
default_initializer
=
paddle
.
nn
.
initializer
.
Uniform
(
low
=-
self
.
init_scale
,
high
=
self
.
init_scale
))
self
.
softmax_bias
=
self
.
create_parameter
(
attr
=
paddle
.
ParamAttr
(),
shape
=
[
self
.
vocab_size
],
dtype
=
"float32"
,
default_initializer
=
paddle
.
nn
.
initializer
.
Uniform
(
low
=-
self
.
init_scale
,
high
=
self
.
init_scale
))
def
build_once
(
self
,
input
,
label
,
init_hidden
,
init_cell
):
pass
@
paddle
.
fluid
.
dygraph
.
jit
.
declarative
def
forward
(
self
,
input
,
label
,
init_hidden
,
init_cell
):
init_h
=
paddle
.
fluid
.
layers
.
reshape
(
init_hidden
,
shape
=
[
self
.
num_layers
,
-
1
,
self
.
hidden_size
])
init_c
=
paddle
.
fluid
.
layers
.
reshape
(
init_cell
,
shape
=
[
self
.
num_layers
,
-
1
,
self
.
hidden_size
])
x_emb
=
self
.
embedding
(
input
)
x_emb
=
paddle
.
fluid
.
layers
.
reshape
(
x_emb
,
shape
=
[
-
1
,
self
.
num_steps
,
self
.
hidden_size
])
if
self
.
dropout
is
not
None
and
self
.
dropout
>
0.0
:
x_emb
=
paddle
.
fluid
.
layers
.
dropout
(
x_emb
,
dropout_prob
=
self
.
dropout
,
dropout_implementation
=
'upscale_in_train'
)
rnn_out
,
last_hidden
,
last_cell
=
self
.
simple_lstm_rnn
(
x_emb
,
init_h
,
init_c
)
projection
=
paddle
.
matmul
(
x
=
rnn_out
,
y
=
self
.
softmax_weight
)
projection
=
paddle
.
add
(
x
=
projection
,
y
=
self
.
softmax_bias
)
loss
=
paddle
.
nn
.
functional
.
softmax_with_cross_entropy
(
logits
=
projection
,
label
=
label
,
soft_label
=
False
)
loss
=
paddle
.
fluid
.
layers
.
reshape
(
loss
,
shape
=
[
-
1
,
self
.
num_steps
])
loss
=
paddle
.
reduce_mean
(
loss
,
dim
=
[
0
])
loss
=
paddle
.
reduce_sum
(
loss
)
return
loss
,
last_hidden
,
last_cell
def
debug_emb
(
self
):
np
.
save
(
"emb_grad"
,
self
.
x_emb
.
gradient
())
def
train
(
place
):
num_layers
=
1
batch_size
=
4
hidden_size
=
10
num_steps
=
3
init_scale
=
0.1
max_epoch
=
1
dropout
=
0.0
vocab_size
=
1000
batch_num
=
200
paddle
.
disable_static
(
place
)
paddle
.
manual_seed
(
SEED
)
paddle
.
framework
.
random
.
_manual_program_seed
(
SEED
)
ptb_model
=
PtbModel
(
hidden_size
=
hidden_size
,
vocab_size
=
vocab_size
,
num_layers
=
num_layers
,
num_steps
=
num_steps
,
init_scale
=
init_scale
,
dropout
=
dropout
)
sgd
=
paddle
.
optimizer
.
SGD
(
learning_rate
=
1e-3
,
parameters
=
ptb_model
.
parameters
())
for
epoch_id
in
range
(
max_epoch
):
total_loss
=
0.0
iters
=
0.0
total_sample
=
0
init_hidden_data
=
np
.
zeros
(
(
num_layers
,
batch_size
,
hidden_size
),
dtype
=
'float32'
)
init_cell_data
=
np
.
zeros
(
(
num_layers
,
batch_size
,
hidden_size
),
dtype
=
'float32'
)
init_hidden
=
paddle
.
to_tensor
(
data
=
init_hidden_data
,
dtype
=
None
,
place
=
None
,
stop_gradient
=
True
)
init_cell
=
paddle
.
to_tensor
(
data
=
init_cell_data
,
dtype
=
None
,
place
=
None
,
stop_gradient
=
True
)
for
step_id
in
range
(
batch_num
):
x_data
=
np
.
arange
(
12
).
reshape
(
4
,
3
).
astype
(
'int64'
)
y_data
=
np
.
arange
(
1
,
13
).
reshape
(
4
,
3
).
astype
(
'int64'
)
y_data
=
y_data
.
reshape
((
-
1
,
1
))
x_data
=
x_data
.
reshape
((
-
1
,
num_steps
,
1
))
y_data
=
y_data
.
reshape
((
-
1
,
num_steps
,
1
))
x
=
paddle
.
to_tensor
(
data
=
x_data
,
dtype
=
None
,
place
=
None
,
stop_gradient
=
True
)
y
=
paddle
.
to_tensor
(
data
=
y_data
,
dtype
=
None
,
place
=
None
,
stop_gradient
=
True
)
dy_loss
,
last_hidden
,
last_cell
=
ptb_model
(
x
,
y
,
init_hidden
,
init_cell
)
out_loss
=
dy_loss
.
numpy
()
dy_loss
.
backward
()
sgd
.
minimize
(
dy_loss
)
ptb_model
.
clear_gradients
()
total_loss
+=
out_loss
iters
+=
num_steps
total_sample
+=
1
if
step_id
%
PRINT_STEP
==
0
:
if
step_id
==
0
:
logging
.
info
(
"epoch %d | step %d, loss %0.3f"
%
(
epoch_id
,
step_id
,
total_loss
/
total_sample
))
avg_batch_time
=
time
.
time
()
else
:
speed
=
PRINT_STEP
/
(
time
.
time
()
-
avg_batch_time
)
logging
.
info
(
"epoch %d | step %d, loss %0.3f, speed %.3f steps/s"
%
(
epoch_id
,
step_id
,
total_loss
/
total_sample
,
speed
))
avg_batch_time
=
time
.
time
()
ret
=
out_loss
,
last_hidden
.
numpy
(),
last_cell
.
numpy
()
paddle
.
enable_static
()
return
ret
def
train_dygraph
(
place
):
program_translator
.
enable
(
False
)
return
train
(
place
)
def
train_static
(
place
):
program_translator
.
enable
(
True
)
return
train
(
place
)
class
TestPtb
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
place
=
paddle
.
CUDAPlace
(
0
)
if
paddle
.
fluid
.
is_compiled_with_cuda
()
\
else
paddle
.
CPUPlace
()
def
test_check_result
(
self
):
loss_1
,
hidden_1
,
cell_1
=
train_static
(
self
.
place
)
loss_2
,
hidden_2
,
cell_2
=
train_dygraph
(
self
.
place
)
self
.
assertTrue
(
np
.
allclose
(
loss_1
,
loss_2
),
msg
=
"static loss: {}
\n
dygraph loss: {}"
.
format
(
loss_1
,
loss_2
))
self
.
assertTrue
(
np
.
allclose
(
hidden_1
,
hidden_2
),
msg
=
"static hidden: {}
\n
dygraph acc1: {}"
.
format
(
hidden_1
,
hidden_2
))
self
.
assertTrue
(
np
.
allclose
(
cell_1
,
cell_2
),
msg
=
"static cell: {}
\n
dygraph cell: {}"
.
format
(
cell_1
,
cell_2
))
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/dygraph_to_static/test_resnet_v2.py
已删除
100644 → 0
浏览文件 @
f4f5f3f2
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
math
import
time
import
unittest
import
numpy
as
np
import
paddle
from
predictor_utils
import
PredictorTools
SEED
=
2020
IMAGENET1000
=
1281167
base_lr
=
0.001
momentum_rate
=
0.9
l2_decay
=
1e-4
# NOTE: Reduce batch_size from 8 to 2 to avoid unittest timeout.
batch_size
=
2
epoch_num
=
1
place
=
paddle
.
CUDAPlace
(
0
)
if
paddle
.
fluid
.
is_compiled_with_cuda
()
\
else
paddle
.
CPUPlace
()
MODEL_SAVE_PATH
=
"./resnet_v2.inference.model"
DY_STATE_DICT_SAVE_PATH
=
"./resnet_v2.dygraph"
program_translator
=
paddle
.
jit
.
ProgramTranslator
()
if
paddle
.
fluid
.
is_compiled_with_cuda
():
paddle
.
fluid
.
set_flags
({
'FLAGS_cudnn_deterministic'
:
True
})
def
optimizer_setting
(
parameter_list
=
None
):
optimizer
=
paddle
.
optimizer
.
Momentum
(
learning_rate
=
base_lr
,
momentum
=
momentum_rate
,
weight_decay
=
paddle
.
fluid
.
regularizer
.
L2Decay
(
l2_decay
),
parameters
=
parameter_list
)
return
optimizer
class
ConvBNLayer
(
paddle
.
nn
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_filters
,
filter_size
,
stride
=
1
,
groups
=
1
,
act
=
None
):
super
(
ConvBNLayer
,
self
).
__init__
()
self
.
_conv
=
paddle
.
nn
.
Conv2d
(
in_channels
=
num_channels
,
out_channels
=
num_filters
,
kernel_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
groups
,
bias_attr
=
False
)
self
.
_batch_norm
=
paddle
.
nn
.
BatchNorm
(
num_filters
,
act
=
act
)
def
forward
(
self
,
inputs
):
y
=
self
.
_conv
(
inputs
)
y
=
self
.
_batch_norm
(
y
)
return
y
class
BottleneckBlock
(
paddle
.
nn
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_filters
,
stride
,
shortcut
=
True
):
super
(
BottleneckBlock
,
self
).
__init__
()
self
.
conv0
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
1
,
act
=
'relu'
)
self
.
conv1
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_filters
=
num_filters
,
filter_size
=
3
,
stride
=
stride
,
act
=
'relu'
)
self
.
conv2
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_filters
=
num_filters
*
4
,
filter_size
=
1
,
act
=
None
)
if
not
shortcut
:
self
.
short
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
*
4
,
filter_size
=
1
,
stride
=
stride
)
self
.
shortcut
=
shortcut
self
.
_num_channels_out
=
num_filters
*
4
def
forward
(
self
,
inputs
):
y
=
self
.
conv0
(
inputs
)
conv1
=
self
.
conv1
(
y
)
conv2
=
self
.
conv2
(
conv1
)
if
self
.
shortcut
:
short
=
inputs
else
:
short
=
self
.
short
(
inputs
)
y
=
paddle
.
add
(
x
=
short
,
y
=
conv2
)
layer_helper
=
paddle
.
fluid
.
layer_helper
.
LayerHelper
(
self
.
full_name
(),
act
=
'relu'
)
return
layer_helper
.
append_activation
(
y
)
class
ResNet
(
paddle
.
nn
.
Layer
):
def
__init__
(
self
,
layers
=
50
,
class_dim
=
102
):
super
(
ResNet
,
self
).
__init__
()
self
.
layers
=
layers
supported_layers
=
[
50
,
101
,
152
]
assert
layers
in
supported_layers
,
\
"supported layers are {} but input layer is {}"
.
format
(
supported_layers
,
layers
)
if
layers
==
50
:
depth
=
[
3
,
4
,
6
,
3
]
elif
layers
==
101
:
depth
=
[
3
,
4
,
23
,
3
]
elif
layers
==
152
:
depth
=
[
3
,
8
,
36
,
3
]
num_channels
=
[
64
,
256
,
512
,
1024
]
num_filters
=
[
64
,
128
,
256
,
512
]
self
.
conv
=
ConvBNLayer
(
num_channels
=
3
,
num_filters
=
64
,
filter_size
=
7
,
stride
=
2
,
act
=
'relu'
)
self
.
pool2d_max
=
paddle
.
fluid
.
dygraph
.
nn
.
Pool2D
(
pool_size
=
3
,
pool_stride
=
2
,
pool_padding
=
1
,
pool_type
=
'max'
)
self
.
bottleneck_block_list
=
[]
for
block
in
range
(
len
(
depth
)):
shortcut
=
False
for
i
in
range
(
depth
[
block
]):
bottleneck_block
=
self
.
add_sublayer
(
'bb_%d_%d'
%
(
block
,
i
),
BottleneckBlock
(
num_channels
=
num_channels
[
block
]
if
i
==
0
else
num_filters
[
block
]
*
4
,
num_filters
=
num_filters
[
block
],
stride
=
2
if
i
==
0
and
block
!=
0
else
1
,
shortcut
=
shortcut
))
self
.
bottleneck_block_list
.
append
(
bottleneck_block
)
shortcut
=
True
self
.
pool2d_avg
=
paddle
.
fluid
.
dygraph
.
nn
.
Pool2D
(
pool_size
=
7
,
pool_type
=
'avg'
,
global_pooling
=
True
)
self
.
pool2d_avg_output
=
num_filters
[
len
(
num_filters
)
-
1
]
*
4
*
1
*
1
stdv
=
1.0
/
math
.
sqrt
(
2048
*
1.0
)
self
.
out
=
paddle
.
nn
.
Linear
(
in_features
=
self
.
pool2d_avg_output
,
out_features
=
class_dim
,
weight_attr
=
paddle
.
ParamAttr
(
initializer
=
paddle
.
nn
.
initializer
.
Uniform
(
-
stdv
,
stdv
)))
@
paddle
.
fluid
.
dygraph
.
declarative
def
forward
(
self
,
inputs
):
y
=
self
.
conv
(
inputs
)
y
=
self
.
pool2d_max
(
y
)
for
bottleneck_block
in
self
.
bottleneck_block_list
:
y
=
bottleneck_block
(
y
)
y
=
self
.
pool2d_avg
(
y
)
y
=
paddle
.
fluid
.
layers
.
reshape
(
y
,
shape
=
[
-
1
,
self
.
pool2d_avg_output
])
pred
=
self
.
out
(
y
)
pred
=
paddle
.
nn
.
functional
.
softmax
(
pred
)
return
pred
def
reader_decorator
(
reader
):
def
__reader__
():
for
item
in
reader
():
img
=
np
.
array
(
item
[
0
]).
astype
(
'float32'
).
reshape
(
3
,
224
,
224
)
label
=
np
.
array
(
item
[
1
]).
astype
(
'int64'
).
reshape
(
1
)
yield
img
,
label
return
__reader__
def
train
(
to_static
):
"""
Tests model decorated by `dygraph_to_static_output` in static mode. For users, the model is defined in dygraph mode and trained in static mode.
"""
paddle
.
disable_static
(
place
)
np
.
random
.
seed
(
SEED
)
paddle
.
manual_seed
(
SEED
)
paddle
.
framework
.
random
.
_manual_program_seed
(
SEED
)
train_reader
=
paddle
.
batch
(
reader_decorator
(
paddle
.
dataset
.
flowers
.
train
(
use_xmap
=
False
)),
batch_size
=
batch_size
,
drop_last
=
True
)
data_loader
=
paddle
.
io
.
DataLoader
.
from_generator
(
capacity
=
5
,
iterable
=
True
)
data_loader
.
set_sample_list_generator
(
train_reader
)
resnet
=
ResNet
()
optimizer
=
optimizer_setting
(
parameter_list
=
resnet
.
parameters
())
for
epoch
in
range
(
epoch_num
):
total_loss
=
0.0
total_acc1
=
0.0
total_acc5
=
0.0
total_sample
=
0
for
batch_id
,
data
in
enumerate
(
data_loader
()):
start_time
=
time
.
time
()
img
,
label
=
data
pred
=
resnet
(
img
)
loss
=
paddle
.
fluid
.
layers
.
cross_entropy
(
input
=
pred
,
label
=
label
)
avg_loss
=
paddle
.
mean
(
x
=
loss
)
acc_top1
=
paddle
.
metric
.
accuracy
(
input
=
pred
,
label
=
label
,
k
=
1
)
acc_top5
=
paddle
.
metric
.
accuracy
(
input
=
pred
,
label
=
label
,
k
=
5
)
avg_loss
.
backward
()
optimizer
.
minimize
(
avg_loss
)
resnet
.
clear_gradients
()
total_loss
+=
avg_loss
total_acc1
+=
acc_top1
total_acc5
+=
acc_top5
total_sample
+=
1
end_time
=
time
.
time
()
if
batch_id
%
2
==
0
:
print
(
"epoch %d | batch step %d, loss %0.3f, acc1 %0.3f, acc5 %0.3f, time %f"
%
\
(
epoch
,
batch_id
,
total_loss
.
numpy
()
/
total_sample
,
\
total_acc1
.
numpy
()
/
total_sample
,
total_acc5
.
numpy
()
/
total_sample
,
end_time
-
start_time
))
if
batch_id
==
10
:
if
to_static
:
paddle
.
fluid
.
dygraph
.
jit
.
save
(
resnet
,
MODEL_SAVE_PATH
)
else
:
paddle
.
fluid
.
dygraph
.
save_dygraph
(
resnet
.
state_dict
(),
DY_STATE_DICT_SAVE_PATH
)
# avoid dataloader throw abort signaal
data_loader
.
_reset
()
break
paddle
.
enable_static
()
return
total_loss
.
numpy
()
def
predict_dygraph
(
data
):
program_translator
.
enable
(
False
)
paddle
.
disable_static
(
place
)
resnet
=
ResNet
()
model_dict
,
_
=
paddle
.
fluid
.
dygraph
.
load_dygraph
(
DY_STATE_DICT_SAVE_PATH
)
resnet
.
set_dict
(
model_dict
)
resnet
.
eval
()
pred_res
=
resnet
(
paddle
.
to_tensor
(
data
=
data
,
dtype
=
None
,
place
=
None
,
stop_gradient
=
True
))
ret
=
pred_res
.
numpy
()
paddle
.
enable_static
()
return
ret
def
predict_static
(
data
):
exe
=
paddle
.
static
.
Executor
(
place
)
[
inference_program
,
feed_target_names
,
fetch_targets
]
=
paddle
.
io
.
load_inference_model
(
MODEL_SAVE_PATH
,
executor
=
exe
,
params_filename
=
paddle
.
fluid
.
dygraph
.
io
.
VARIABLE_FILENAME
)
pred_res
=
exe
.
run
(
inference_program
,
feed
=
{
feed_target_names
[
0
]:
data
},
fetch_list
=
fetch_targets
)
return
pred_res
[
0
]
def
predict_dygraph_jit
(
data
):
paddle
.
disable_static
(
place
)
resnet
=
paddle
.
fluid
.
dygraph
.
jit
.
load
(
MODEL_SAVE_PATH
)
resnet
.
eval
()
pred_res
=
resnet
(
data
)
ret
=
pred_res
.
numpy
()
paddle
.
enable_static
()
return
ret
def
predict_analysis_inference
(
data
):
output
=
PredictorTools
(
MODEL_SAVE_PATH
,
paddle
.
fluid
.
dygraph
.
io
.
VARIABLE_FILENAME
,
[
data
])
out
=
output
()
return
out
class
TestResnet
(
unittest
.
TestCase
):
def
train
(
self
,
to_static
):
program_translator
.
enable
(
to_static
)
return
train
(
to_static
)
def
verify_predict
(
self
):
image
=
np
.
random
.
random
([
1
,
3
,
224
,
224
]).
astype
(
'float32'
)
dy_pre
=
predict_dygraph
(
image
)
st_pre
=
predict_static
(
image
)
dy_jit_pre
=
predict_dygraph_jit
(
image
)
predictor_pre
=
predict_analysis_inference
(
image
)
self
.
assertTrue
(
np
.
allclose
(
dy_pre
,
st_pre
),
msg
=
"dy_pre:
\n
{}
\n
, st_pre:
\n
{}."
.
format
(
dy_pre
,
st_pre
))
self
.
assertTrue
(
np
.
allclose
(
dy_jit_pre
,
st_pre
),
msg
=
"dy_jit_pre:
\n
{}
\n
, st_pre:
\n
{}."
.
format
(
dy_jit_pre
,
st_pre
))
self
.
assertTrue
(
np
.
allclose
(
predictor_pre
,
st_pre
),
msg
=
"predictor_pre:
\n
{}
\n
, st_pre:
\n
{}."
.
format
(
predictor_pre
,
st_pre
))
def
test_resnet
(
self
):
static_loss
=
self
.
train
(
to_static
=
True
)
dygraph_loss
=
self
.
train
(
to_static
=
False
)
self
.
assertTrue
(
np
.
allclose
(
static_loss
,
dygraph_loss
),
msg
=
"static_loss: {}
\n
dygraph_loss: {}"
.
format
(
static_loss
,
dygraph_loss
))
self
.
verify_predict
()
def
test_in_static_mode_mkldnn
(
self
):
paddle
.
fluid
.
set_flags
({
'FLAGS_use_mkldnn'
:
True
})
try
:
train
(
to_static
=
True
)
finally
:
paddle
.
fluid
.
set_flags
({
'FLAGS_use_mkldnn'
:
False
})
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录