Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
c7449227
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
c7449227
编写于
1月 29, 2019
作者:
T
tensor-tang
提交者:
GitHub
1月 29, 2019
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #15563 from tensor-tang/jit/softmax
refine softmax kernel
上级
245b1f05
d59f7335
变更
22
隐藏空白更改
内联
并排
Showing
22 changed file
with
637 addition
and
148 deletion
+637
-148
paddle/fluid/operators/jit/benchmark.cc
paddle/fluid/operators/jit/benchmark.cc
+62
-42
paddle/fluid/operators/jit/gen/CMakeLists.txt
paddle/fluid/operators/jit/gen/CMakeLists.txt
+2
-0
paddle/fluid/operators/jit/gen/act.cc
paddle/fluid/operators/jit/gen/act.cc
+25
-3
paddle/fluid/operators/jit/gen/hopv.cc
paddle/fluid/operators/jit/gen/hopv.cc
+103
-0
paddle/fluid/operators/jit/gen/hopv.h
paddle/fluid/operators/jit/gen/hopv.h
+90
-0
paddle/fluid/operators/jit/gen/jitcode.h
paddle/fluid/operators/jit/gen/jitcode.h
+1
-0
paddle/fluid/operators/jit/helper.cc
paddle/fluid/operators/jit/helper.cc
+3
-0
paddle/fluid/operators/jit/helper.h
paddle/fluid/operators/jit/helper.h
+22
-0
paddle/fluid/operators/jit/kernel_base.h
paddle/fluid/operators/jit/kernel_base.h
+15
-0
paddle/fluid/operators/jit/more/mix/CMakeLists.txt
paddle/fluid/operators/jit/more/mix/CMakeLists.txt
+1
-0
paddle/fluid/operators/jit/more/mix/mix.cc
paddle/fluid/operators/jit/more/mix/mix.cc
+62
-0
paddle/fluid/operators/jit/more/mix/mix.h
paddle/fluid/operators/jit/more/mix/mix.h
+4
-0
paddle/fluid/operators/jit/more/mkl/CMakeLists.txt
paddle/fluid/operators/jit/more/mkl/CMakeLists.txt
+1
-0
paddle/fluid/operators/jit/more/mkl/mkl.cc
paddle/fluid/operators/jit/more/mkl/mkl.cc
+18
-0
paddle/fluid/operators/jit/more/mkl/mkl.h
paddle/fluid/operators/jit/more/mkl/mkl.h
+27
-0
paddle/fluid/operators/jit/refer/CMakeLists.txt
paddle/fluid/operators/jit/refer/CMakeLists.txt
+3
-0
paddle/fluid/operators/jit/refer/refer.cc
paddle/fluid/operators/jit/refer/refer.cc
+5
-0
paddle/fluid/operators/jit/refer/refer.h
paddle/fluid/operators/jit/refer/refer.h
+39
-0
paddle/fluid/operators/jit/test.cc
paddle/fluid/operators/jit/test.cc
+146
-79
paddle/fluid/operators/math/CMakeLists.txt
paddle/fluid/operators/math/CMakeLists.txt
+1
-1
paddle/fluid/operators/math/softmax_impl.h
paddle/fluid/operators/math/softmax_impl.h
+5
-23
paddle/fluid/platform/dynload/mklml.h
paddle/fluid/platform/dynload/mklml.h
+2
-0
未找到文件。
paddle/fluid/operators/jit/benchmark.cc
浏览文件 @
c7449227
...
...
@@ -158,7 +158,7 @@ void BenchAllImpls(const typename KernelTuples::attr_type& attr, Args... args) {
using
Tensor
=
paddle
::
framework
::
Tensor
;
template
<
paddle
::
operators
::
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
template
<
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
void
BenchXYZNKernel
()
{
for
(
int
d
:
TestSizes
())
{
Tensor
x
,
y
,
z
;
...
...
@@ -175,7 +175,7 @@ void BenchXYZNKernel() {
}
}
template
<
paddle
::
operators
::
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
template
<
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
void
BenchAXYNKernel
()
{
for
(
int
d
:
TestSizes
())
{
const
T
a
=
static_cast
<
T
>
(
3
);
...
...
@@ -187,10 +187,23 @@ void BenchAXYNKernel() {
RandomVec
<
T
>
(
d
,
x_data
);
BenchAllImpls
<
KT
,
jit
::
AXYNTuples
<
T
>
,
PlaceType
>
(
d
,
&
a
,
x
.
data
<
T
>
(),
y_data
,
d
);
// test inplace
BenchAllImpls
<
KT
,
jit
::
AXYNTuples
<
T
>
,
PlaceType
>
(
d
,
&
a
,
x
.
data
<
T
>
(),
x_data
,
d
);
}
}
template
<
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
void
BenchXRNKernel
()
{
for
(
int
d
:
TestSizes
())
{
Tensor
x
;
RandomVec
<
T
>
(
d
,
x
.
mutable_data
<
T
>
({
d
},
PlaceType
()));
T
res
;
BenchAllImpls
<
KT
,
jit
::
XRNTuples
<
T
>
,
PlaceType
>
(
d
,
x
.
data
<
T
>
(),
&
res
,
d
);
}
}
template
<
paddle
::
operators
::
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
template
<
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
void
BenchXYNKernel
()
{
for
(
int
d
:
TestSizes
())
{
Tensor
x
,
y
;
...
...
@@ -203,7 +216,7 @@ void BenchXYNKernel() {
}
}
template
<
paddle
::
operators
::
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
template
<
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
void
BenchLSTMKernel
()
{
for
(
bool
use_peephole
:
{
true
,
false
})
{
for
(
int
d
:
TestSizes
())
{
...
...
@@ -240,7 +253,7 @@ void BenchLSTMKernel() {
}
}
template
<
paddle
::
operators
::
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
template
<
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
void
BenchGRUKernel
()
{
for
(
int
d
:
TestSizes
())
{
const
jit
::
gru_attr_t
attr
(
d
,
jit
::
kVSigmoid
,
jit
::
kVTanh
);
...
...
@@ -262,7 +275,7 @@ void BenchGRUKernel() {
}
}
template
<
paddle
::
operators
::
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
template
<
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
void
BenchSeqPoolKernel
()
{
std
::
vector
<
jit
::
SeqPoolType
>
pool_types
=
{
jit
::
SeqPoolType
::
kSum
,
jit
::
SeqPoolType
::
kAvg
,
jit
::
SeqPoolType
::
kSqrt
};
...
...
@@ -284,7 +297,7 @@ void BenchSeqPoolKernel() {
}
}
template
<
paddle
::
operators
::
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
template
<
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
void
BenchMatMulKernel
()
{
for
(
int
m
:
{
1
,
2
,
3
,
4
})
{
for
(
int
n
:
TestSizes
())
{
...
...
@@ -305,57 +318,64 @@ void BenchMatMulKernel() {
}
}
template
<
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
void
BenchSoftmaxKernel
()
{
for
(
int
bs
:
{
1
,
2
,
10
})
{
for
(
int
n
:
TestSizes
())
{
Tensor
x
,
y
;
x
.
Resize
({
bs
,
n
});
y
.
Resize
({
bs
,
n
});
RandomVec
<
T
>
(
bs
*
n
,
x
.
mutable_data
<
T
>
(
PlaceType
()),
-
2.
f
,
2.
f
);
const
T
*
x_data
=
x
.
data
<
T
>
();
T
*
y_data
=
y
.
mutable_data
<
T
>
(
PlaceType
());
BenchAllImpls
<
KT
,
jit
::
SoftmaxTuples
<
T
>
,
PlaceType
>
(
n
,
x_data
,
y_data
,
n
,
bs
);
}
}
}
using
T
=
float
;
using
PlaceTyp
e
=
paddle
::
platform
::
CPUPlace
;
using
CPUPlac
e
=
paddle
::
platform
::
CPUPlace
;
// xyzn
BENCH_FP32_CPU
(
kVMul
)
{
BenchXYZNKernel
<
jit
::
kVMul
,
T
,
PlaceType
>
();
}
BENCH_FP32_CPU
(
kVAdd
)
{
BenchXYZNKernel
<
jit
::
kVAdd
,
T
,
PlaceType
>
();
}
BENCH_FP32_CPU
(
kVAddRelu
)
{
BenchXYZNKernel
<
jit
::
kVAddRelu
,
T
,
PlaceType
>
();
}
BENCH_FP32_CPU
(
kVSub
)
{
BenchXYZNKernel
<
jit
::
kVSub
,
T
,
PlaceType
>
();
}
BENCH_FP32_CPU
(
kVMul
)
{
BenchXYZNKernel
<
jit
::
kVMul
,
T
,
CPUPlace
>
();
}
BENCH_FP32_CPU
(
kVAdd
)
{
BenchXYZNKernel
<
jit
::
kVAdd
,
T
,
CPUPlace
>
();
}
BENCH_FP32_CPU
(
kVAddRelu
)
{
BenchXYZNKernel
<
jit
::
kVAddRelu
,
T
,
CPUPlace
>
();
}
BENCH_FP32_CPU
(
kVSub
)
{
BenchXYZNKernel
<
jit
::
kVSub
,
T
,
CPUPlace
>
();
}
// axyn
BENCH_FP32_CPU
(
kVScal
)
{
BenchAXYNKernel
<
jit
::
kVScal
,
T
,
PlaceType
>
();
}
BENCH_FP32_CPU
(
kVScal
)
{
BenchAXYNKernel
<
jit
::
kVScal
,
T
,
CPUPlace
>
();
}
BENCH_FP32_CPU
(
kVAddBias
)
{
BenchAXYNKernel
<
jit
::
kVAddBias
,
T
,
CPUPlace
>
();
}
BENCH_FP32_CPU
(
kVAddBias
)
{
BenchAXYNKernel
<
jit
::
kVAddBias
,
T
,
PlaceType
>
();
}
// xrn
BENCH_FP32_CPU
(
kHSum
)
{
BenchXRNKernel
<
jit
::
kHSum
,
T
,
CPUPlace
>
();
}
BENCH_FP32_CPU
(
kHMax
)
{
BenchXRNKernel
<
jit
::
kHMax
,
T
,
CPUPlace
>
();
}
// xyn
BENCH_FP32_CPU
(
kVRelu
)
{
BenchXYNKernel
<
jit
::
kVRelu
,
T
,
PlaceType
>
();
}
BENCH_FP32_CPU
(
kVIdentity
)
{
BenchXYNKernel
<
jit
::
kVIdentity
,
T
,
PlaceType
>
();
}
BENCH_FP32_CPU
(
kVSquare
)
{
BenchXYNKernel
<
jit
::
kVSquare
,
T
,
PlaceType
>
();
}
BENCH_FP32_CPU
(
kVExp
)
{
BenchXYNKernel
<
jit
::
kVExp
,
T
,
PlaceType
>
();
}
BENCH_FP32_CPU
(
kVSigmoid
)
{
BenchXYNKernel
<
jit
::
kVSigmoid
,
T
,
PlaceType
>
();
}
BENCH_FP32_CPU
(
kVTanh
)
{
BenchXYNKernel
<
jit
::
kVTanh
,
T
,
PlaceType
>
();
}
BENCH_FP32_CPU
(
kVRelu
)
{
BenchXYNKernel
<
jit
::
kVRelu
,
T
,
CPUPlace
>
();
}
BENCH_FP32_CPU
(
kVIdentity
)
{
BenchXYNKernel
<
jit
::
kVIdentity
,
T
,
CPUPlace
>
();
}
BENCH_FP32_CPU
(
kVSquare
)
{
BenchXYNKernel
<
jit
::
kVSquare
,
T
,
CPUPlace
>
();
}
BENCH_FP32_CPU
(
kVExp
)
{
BenchXYNKernel
<
jit
::
kVExp
,
T
,
CPUPlace
>
();
}
BENCH_FP32_CPU
(
kVSigmoid
)
{
BenchXYNKernel
<
jit
::
kVSigmoid
,
T
,
CPUPlace
>
();
}
BENCH_FP32_CPU
(
kVTanh
)
{
BenchXYNKernel
<
jit
::
kVTanh
,
T
,
CPUPlace
>
();
}
// lstm and peephole
BENCH_FP32_CPU
(
kLSTMCtHt
)
{
BenchLSTMKernel
<
jit
::
kLSTMCtHt
,
T
,
PlaceType
>
();
}
BENCH_FP32_CPU
(
kLSTMC1H1
)
{
BenchLSTMKernel
<
jit
::
kLSTMC1H1
,
T
,
PlaceType
>
();
}
BENCH_FP32_CPU
(
kLSTMCtHt
)
{
BenchLSTMKernel
<
jit
::
kLSTMCtHt
,
T
,
CPUPlace
>
();
}
BENCH_FP32_CPU
(
kLSTMC1H1
)
{
BenchLSTMKernel
<
jit
::
kLSTMC1H1
,
T
,
CPUPlace
>
();
}
// gru functions
BENCH_FP32_CPU
(
kGRUH1
)
{
BenchGRUKernel
<
jit
::
kGRUH1
,
T
,
PlaceType
>
();
}
BENCH_FP32_CPU
(
kGRUHtPart1
)
{
BenchGRUKernel
<
jit
::
kGRUHtPart1
,
T
,
PlaceType
>
();
}
BENCH_FP32_CPU
(
kGRUHtPart2
)
{
BenchGRUKernel
<
jit
::
kGRUHtPart2
,
T
,
PlaceType
>
();
}
BENCH_FP32_CPU
(
kGRUH1
)
{
BenchGRUKernel
<
jit
::
kGRUH1
,
T
,
CPUPlace
>
();
}
BENCH_FP32_CPU
(
kGRUHtPart1
)
{
BenchGRUKernel
<
jit
::
kGRUHtPart1
,
T
,
CPUPlace
>
();
}
BENCH_FP32_CPU
(
kGRUHtPart2
)
{
BenchGRUKernel
<
jit
::
kGRUHtPart2
,
T
,
CPUPlace
>
();
}
// seq pool function
BENCH_FP32_CPU
(
kSeqPool
)
{
BenchSeqPoolKernel
<
jit
::
kSeqPool
,
T
,
PlaceTyp
e
>
();
}
BENCH_FP32_CPU
(
kSeqPool
)
{
BenchSeqPoolKernel
<
jit
::
kSeqPool
,
T
,
CPUPlac
e
>
();
}
// matmul
BENCH_FP32_CPU
(
kMatMul
)
{
BenchMatMulKernel
<
jit
::
kMatMul
,
T
,
PlaceType
>
();
}
BENCH_FP32_CPU
(
kMatMul
)
{
BenchMatMulKernel
<
jit
::
kMatMul
,
T
,
CPUPlace
>
();
}
// softmax
BENCH_FP32_CPU
(
kSoftmax
)
{
BenchSoftmaxKernel
<
jit
::
kSoftmax
,
T
,
CPUPlace
>
();
}
// Benchmark all jit kernels including jitcode, mkl and refer.
// To use this tool, run command: ./benchmark [options...]
...
...
paddle/fluid/operators/jit/gen/CMakeLists.txt
浏览文件 @
c7449227
...
...
@@ -28,3 +28,5 @@ USE_JITKERNEL_GEN(kGRUHtPart1)
USE_JITKERNEL_GEN
(
kGRUHtPart2
)
USE_JITKERNEL_GEN
(
kNCHW16CMulNC
)
USE_JITKERNEL_GEN
(
kSeqPool
)
USE_JITKERNEL_GEN
(
kHMax
)
USE_JITKERNEL_GEN
(
kHSum
)
paddle/fluid/operators/jit/gen/act.cc
浏览文件 @
c7449227
...
...
@@ -81,9 +81,7 @@ void VActJitCode::genCode() {
#define DECLARE_ACT_CREATOR(name) \
class name##Creator : public JitCodeCreator<int> { \
public: \
bool UseMe(const int& attr) const override { \
return platform::MayIUse(platform::avx); \
} \
bool UseMe(const int& attr) const override; \
size_t CodeSize(const int& d) const override; \
std::unique_ptr<GenBase> CreateJitCode(const int& attr) const override { \
return make_unique<name##JitCode>(attr, CodeSize(attr)); \
...
...
@@ -98,6 +96,30 @@ DECLARE_ACT_CREATOR(VSigmoid);
DECLARE_ACT_CREATOR
(
VTanh
);
// TODO(TJ): tuning use me
bool
VReluCreator
::
UseMe
(
const
int
&
d
)
const
{
return
platform
::
MayIUse
(
platform
::
avx
);
}
bool
VSquareCreator
::
UseMe
(
const
int
&
d
)
const
{
return
platform
::
MayIUse
(
platform
::
avx
);
}
bool
VIdentityCreator
::
UseMe
(
const
int
&
d
)
const
{
return
platform
::
MayIUse
(
platform
::
avx
);
}
bool
VExpCreator
::
UseMe
(
const
int
&
d
)
const
{
return
platform
::
MayIUse
(
platform
::
avx
)
&&
d
<
32
;
}
bool
VSigmoidCreator
::
UseMe
(
const
int
&
d
)
const
{
return
platform
::
MayIUse
(
platform
::
avx
);
}
bool
VTanhCreator
::
UseMe
(
const
int
&
d
)
const
{
return
platform
::
MayIUse
(
platform
::
avx
);
}
size_t
VReluCreator
::
CodeSize
(
const
int
&
d
)
const
{
return
96
/* init size */
+
(
d
/
YMM_FLOAT_BLOCK
+
3
)
*
4
/* instructions */
*
...
...
paddle/fluid/operators/jit/gen/hopv.cc
0 → 100644
浏览文件 @
c7449227
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#include "paddle/fluid/operators/jit/gen/hopv.h"
#include "paddle/fluid/operators/jit/registry.h"
#include "paddle/fluid/platform/cpu_info.h"
namespace
paddle
{
namespace
operators
{
namespace
jit
{
namespace
gen
{
void
HOPVJitCode
::
genCode
()
{
const
int
num_blocks
=
num_
/
YMM_FLOAT_BLOCK
;
int
offset
=
0
;
if
(
num_blocks
>
0
)
{
// load one firstly
vmovups
(
ymm_tmp
,
ptr
[
param_src
]);
offset
+=
sizeof
(
float
)
*
YMM_FLOAT_BLOCK
;
for
(
int
i
=
1
;
i
<
num_blocks
;
++
i
)
{
vmovups
(
ymm_src
,
ptr
[
param_src
+
offset
]);
process
(
ymm_tmp
,
ymm_src
,
ymm_tmp
);
offset
+=
sizeof
(
float
)
*
YMM_FLOAT_BLOCK
;
}
vextractf128
(
xmm_dst
,
ymm_tmp
,
1
);
process
(
xmm_dst
,
xmm_dst
,
xmm_tmp
);
}
else
{
if
(
type_
==
operand_type
::
MAX
)
{
vbroadcastss
(
ymm_dst
,
ptr
[
param_src
]);
}
else
if
(
type_
==
operand_type
::
ADD
)
{
vxorps
(
ymm_dst
,
ymm_dst
,
ymm_dst
);
}
}
int
rest
=
num_
%
YMM_FLOAT_BLOCK
;
if
(
rest
>=
4
)
{
vmovups
(
xmm_src
,
ptr
[
param_src
+
offset
]);
offset
+=
sizeof
(
float
)
*
4
;
rest
-=
4
;
process
(
xmm_dst
,
xmm_dst
,
xmm_src
);
}
vpermilps
(
xmm_tmp
,
xmm_dst
,
16
+
8
+
3
);
process
(
xmm_dst
,
xmm_dst
,
xmm_tmp
);
if
(
rest
>=
2
)
{
vmovq
(
xmm_src
,
ptr
[
param_src
+
offset
]);
offset
+=
sizeof
(
float
)
*
2
;
rest
-=
2
;
process
(
xmm_dst
,
xmm_dst
,
xmm_src
);
}
vpermilps
(
xmm_tmp
,
xmm_dst
,
1
);
process
(
xmm_dst
,
xmm_dst
,
xmm_tmp
);
if
(
rest
>=
1
)
{
vmovss
(
xmm_src
,
ptr
[
param_src
+
offset
]);
process
(
xmm_dst
,
xmm_dst
,
xmm_src
);
}
vmovss
(
ptr
[
param_dst
],
xmm_dst
);
ret
();
}
#define DECLARE_HOP_CREATOR(name) \
class name##Creator : public JitCodeCreator<int> { \
public: \
bool UseMe(const int& attr) const override { \
return platform::MayIUse(platform::avx); \
} \
size_t CodeSize(const int& d) const override { \
return 96 + d / YMM_FLOAT_BLOCK * 4 * 8; \
} \
std::unique_ptr<GenBase> CreateJitCode(const int& attr) const override { \
return make_unique<name##JitCode>(attr, CodeSize(attr)); \
} \
}
DECLARE_HOP_CREATOR
(
HMax
);
DECLARE_HOP_CREATOR
(
HSum
);
#undef DECLARE_HOP_CREATOR
}
// namespace gen
}
// namespace jit
}
// namespace operators
}
// namespace paddle
namespace
gen
=
paddle
::
operators
::
jit
::
gen
;
REGISTER_JITKERNEL_GEN
(
kHMax
,
gen
::
HMaxCreator
);
REGISTER_JITKERNEL_GEN
(
kHSum
,
gen
::
HSumCreator
);
paddle/fluid/operators/jit/gen/hopv.h
0 → 100644
浏览文件 @
c7449227
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#pragma once
#include <string>
#include "glog/logging.h"
#include "paddle/fluid/operators/jit/gen/jitcode.h"
namespace
paddle
{
namespace
operators
{
namespace
jit
{
namespace
gen
{
// horizontal operand vector
class
HOPVJitCode
:
public
JitCode
{
public:
explicit
HOPVJitCode
(
int
d
,
operand_type
type
,
size_t
code_size
=
256
*
1024
,
void
*
code_ptr
=
nullptr
)
:
JitCode
(
code_size
,
code_ptr
),
num_
(
d
),
type_
(
type
)
{
if
(
!
(
type_
==
operand_type
::
MAX
||
type_
==
operand_type
::
ADD
))
{
LOG
(
FATAL
)
<<
"Do not support this operand type: "
<<
type_
;
}
this
->
genCode
();
}
virtual
const
char
*
name
()
const
{
std
::
string
base
=
"VXXJitCode"
;
if
(
type_
==
operand_type
::
MAX
)
{
base
+=
"_MAX"
;
}
else
{
base
+=
"_SUM"
;
}
return
base
.
c_str
();
}
void
genCode
()
override
;
protected:
template
<
typename
JMM
>
void
process
(
JMM
&
dst
,
JMM
&
src1
,
JMM
&
src2
)
{
// NOLINT
if
(
type_
==
operand_type
::
MAX
)
{
vmaxps
(
dst
,
src1
,
src2
);
}
else
if
(
type_
==
operand_type
::
ADD
)
{
vaddps
(
dst
,
src1
,
src2
);
}
}
private:
int
num_
;
operand_type
type_
;
reg64_t
param_src
{
abi_param1
};
reg64_t
param_dst
{
abi_param2
};
reg64_t
param_attr
{
abi_param3
};
ymm_t
ymm_tmp
=
ymm_t
(
0
);
ymm_t
ymm_src
=
ymm_t
(
1
);
ymm_t
ymm_dst
=
ymm_t
(
2
);
xmm_t
xmm_tmp
=
xmm_t
(
0
);
xmm_t
xmm_src
=
xmm_t
(
1
);
xmm_t
xmm_dst
=
xmm_t
(
2
);
};
#define DECLARE_HOP_JITCODE(name, op_type) \
class name##JitCode : public HOPVJitCode { \
public: \
explicit name##JitCode(int d, size_t code_size, void* code_ptr = nullptr) \
: HOPVJitCode(d, op_type, code_size, code_ptr) {} \
};
DECLARE_HOP_JITCODE
(
HMax
,
operand_type
::
MAX
);
DECLARE_HOP_JITCODE
(
HSum
,
operand_type
::
ADD
);
#undef DECLARE_HOP_JITCODE
}
// namespace gen
}
// namespace jit
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/jit/gen/jitcode.h
浏览文件 @
c7449227
...
...
@@ -47,6 +47,7 @@ using Label = Xbyak::Label;
typedef
enum
{
MUL
=
0
,
MAX
,
ADD
,
SUB
,
RELU
,
...
...
paddle/fluid/operators/jit/helper.cc
浏览文件 @
c7449227
...
...
@@ -49,6 +49,9 @@ const char* to_string(KernelType kt) {
ONE_CASE
(
kNCHW16CMulNC
);
ONE_CASE
(
kSeqPool
);
ONE_CASE
(
kMatMul
);
ONE_CASE
(
kHMax
);
ONE_CASE
(
kHSum
);
ONE_CASE
(
kSoftmax
);
default:
PADDLE_THROW
(
"Not support type: %d, or forget to add it."
,
kt
);
return
"NOT JITKernel"
;
...
...
paddle/fluid/operators/jit/helper.h
浏览文件 @
c7449227
...
...
@@ -118,6 +118,28 @@ typename KernelTuples::func_type Get(
return
GetRefer
<
KT
,
KernelTuples
>
();
}
template
<
KernelType
KT
,
typename
KernelTuples
>
class
KernelFuncsCache
{
public:
KernelFuncsCache
()
=
default
;
static
KernelFuncsCache
&
Instance
()
{
static
thread_local
KernelFuncsCache
<
KT
,
KernelTuples
>
g_func_cache
;
return
g_func_cache
;
}
bool
Has
(
int
key
)
const
{
return
funcs_
.
find
(
key
)
!=
funcs_
.
end
();
}
typename
KernelTuples
::
func_type
At
(
int
key
)
{
return
funcs_
.
at
(
key
);
}
void
Insert
(
int
key
,
typename
KernelTuples
::
func_type
func
)
{
funcs_
.
emplace
(
key
,
func
);
}
private:
std
::
unordered_map
<
int
,
typename
KernelTuples
::
func_type
>
funcs_
;
DISABLE_COPY_AND_ASSIGN
(
KernelFuncsCache
);
};
const
char
*
to_string
(
KernelType
kt
);
const
char
*
to_string
(
SeqPoolType
kt
);
...
...
paddle/fluid/operators/jit/kernel_base.h
浏览文件 @
c7449227
...
...
@@ -20,6 +20,7 @@ namespace paddle {
namespace
operators
{
namespace
jit
{
// TODO(TJ): reorder by alphabet
typedef
enum
{
kNone
=
0
,
kVMul
=
1
,
...
...
@@ -44,6 +45,9 @@ typedef enum {
kNCHW16CMulNC
,
kSeqPool
,
kMatMul
,
kHSum
,
// horizontal max
kHMax
,
// horizontal sum
kSoftmax
,
}
KernelType
;
typedef
enum
{
...
...
@@ -70,6 +74,10 @@ struct XYNTuples {
typedef
void
(
*
func_type
)(
const
T
*
,
T
*
,
int
);
};
// x, return and int
template
<
typename
T
>
struct
XRNTuples
:
public
XYNTuples
<
T
>
{};
typedef
struct
{
void
*
gates
;
// gates: x_ch, x_ih, x_fh, x_oh
const
void
*
ct_1
;
...
...
@@ -159,6 +167,13 @@ struct LayerNormTuples {
const
float
,
int
);
};
template
<
typename
T
>
struct
SoftmaxTuples
{
typedef
T
data_type
;
typedef
int
attr_type
;
typedef
void
(
*
func_type
)(
const
T
*
,
T
*
,
int
,
int
);
};
// nChw16c = nChw16c .* NC
template
<
typename
T
>
struct
NCHW16CMulNCTuples
{
...
...
paddle/fluid/operators/jit/more/mix/CMakeLists.txt
浏览文件 @
c7449227
...
...
@@ -12,3 +12,4 @@ USE_JITKERNEL_MORE(kLSTMC1H1, mix)
USE_JITKERNEL_MORE
(
kGRUH1, mix
)
USE_JITKERNEL_MORE
(
kGRUHtPart1, mix
)
USE_JITKERNEL_MORE
(
kGRUHtPart2, mix
)
USE_JITKERNEL_MORE
(
kSoftmax, mix
)
paddle/fluid/operators/jit/more/mix/mix.cc
浏览文件 @
c7449227
...
...
@@ -48,6 +48,65 @@ void VTanh(const T* x, T* y, int n) {
compute_addbias
(
&
b
,
y
,
y
,
n
);
}
void
Softmax
(
const
T
*
x
,
T
*
y
,
int
n
,
int
bs
)
{
typename
XRNTuples
<
T
>::
func_type
compute_hmax
{
nullptr
};
typename
XRNTuples
<
T
>::
func_type
compute_hsum
{
nullptr
};
typename
AXYNTuples
<
T
>::
func_type
compute_vscal
{
nullptr
};
typename
AXYNTuples
<
T
>::
func_type
compute_vaddbias
{
nullptr
};
typename
XYNTuples
<
T
>::
func_type
compute_vexp
{
nullptr
};
if
(
!
KernelFuncsCache
<
kHMax
,
XRNTuples
<
T
>>::
Instance
().
Has
(
n
))
{
compute_hmax
=
Get
<
kHMax
,
XRNTuples
<
T
>
,
platform
::
CPUPlace
>
(
n
);
KernelFuncsCache
<
kHMax
,
XRNTuples
<
T
>>::
Instance
().
Insert
(
n
,
compute_hmax
);
}
else
{
compute_hmax
=
KernelFuncsCache
<
kHMax
,
XRNTuples
<
T
>>::
Instance
().
At
(
n
);
}
if
(
!
KernelFuncsCache
<
kHSum
,
XRNTuples
<
T
>>::
Instance
().
Has
(
n
))
{
compute_hsum
=
Get
<
kHSum
,
XRNTuples
<
T
>
,
platform
::
CPUPlace
>
(
n
);
KernelFuncsCache
<
kHSum
,
XRNTuples
<
T
>>::
Instance
().
Insert
(
n
,
compute_hsum
);
}
else
{
compute_hsum
=
KernelFuncsCache
<
kHSum
,
XRNTuples
<
T
>>::
Instance
().
At
(
n
);
}
if
(
!
KernelFuncsCache
<
kVScal
,
AXYNTuples
<
T
>>::
Instance
().
Has
(
n
))
{
compute_vscal
=
Get
<
kVScal
,
AXYNTuples
<
T
>
,
platform
::
CPUPlace
>
(
n
);
KernelFuncsCache
<
kVScal
,
AXYNTuples
<
T
>>::
Instance
().
Insert
(
n
,
compute_vscal
);
}
else
{
compute_vscal
=
KernelFuncsCache
<
kVScal
,
AXYNTuples
<
T
>>::
Instance
().
At
(
n
);
}
if
(
!
KernelFuncsCache
<
kVAddBias
,
AXYNTuples
<
T
>>::
Instance
().
Has
(
n
))
{
compute_vaddbias
=
Get
<
kVAddBias
,
AXYNTuples
<
T
>
,
platform
::
CPUPlace
>
(
n
);
KernelFuncsCache
<
kVAddBias
,
AXYNTuples
<
T
>>::
Instance
().
Insert
(
n
,
compute_vaddbias
);
}
else
{
compute_vaddbias
=
KernelFuncsCache
<
kVAddBias
,
AXYNTuples
<
T
>>::
Instance
().
At
(
n
);
}
if
(
!
KernelFuncsCache
<
kVExp
,
XYNTuples
<
T
>>::
Instance
().
Has
(
n
))
{
compute_vexp
=
Get
<
KernelType
::
kVExp
,
XYNTuples
<
T
>
,
platform
::
CPUPlace
>
(
n
);
KernelFuncsCache
<
kVExp
,
XYNTuples
<
T
>>::
Instance
().
Insert
(
n
,
compute_vexp
);
}
else
{
compute_vexp
=
KernelFuncsCache
<
kVExp
,
XYNTuples
<
T
>>::
Instance
().
At
(
n
);
}
for
(
int
i
=
0
;
i
<
bs
;
++
i
)
{
T
scalar
;
compute_hmax
(
x
,
&
scalar
,
n
);
scalar
=
static_cast
<
T
>
(
0
)
-
scalar
;
compute_vaddbias
(
&
scalar
,
x
,
y
,
n
);
// x - max
compute_vexp
(
y
,
y
,
n
);
compute_hsum
(
y
,
&
scalar
,
n
);
scalar
=
static_cast
<
T
>
(
1
)
/
scalar
;
compute_vscal
(
&
scalar
,
y
,
y
,
n
);
x
+=
n
;
y
+=
n
;
}
}
void
(
*
getActFunc
(
KernelType
type
,
int
d
))(
const
T
*
,
T
*
,
int
)
{
// NOLINT
if
(
type
==
kVSigmoid
)
{
return
Get
<
kVSigmoid
,
XYNTuples
<
T
>
,
platform
::
CPUPlace
>
(
d
);
...
...
@@ -184,6 +243,8 @@ bool VSigmoidKernel::UseMe(const int& d) const { return true; }
bool
VTanhKernel
::
UseMe
(
const
int
&
d
)
const
{
return
true
;
}
bool
SoftmaxKernel
::
UseMe
(
const
int
&
d
)
const
{
return
true
;
}
bool
LSTMCtHtKernel
::
UseMe
(
const
lstm_attr_t
&
attr
)
const
{
return
true
;
}
bool
LSTMC1H1Kernel
::
UseMe
(
const
lstm_attr_t
&
attr
)
const
{
return
true
;
}
...
...
@@ -207,6 +268,7 @@ namespace mix = paddle::operators::jit::more::mix;
REGISTER_MORE_KERNEL
(
kVSigmoid
,
VSigmoid
);
REGISTER_MORE_KERNEL
(
kVTanh
,
VTanh
);
REGISTER_MORE_KERNEL
(
kSoftmax
,
Softmax
);
REGISTER_MORE_KERNEL
(
kLSTMCtHt
,
LSTMCtHt
);
REGISTER_MORE_KERNEL
(
kLSTMC1H1
,
LSTMC1H1
);
REGISTER_MORE_KERNEL
(
kGRUH1
,
GRUH1
);
...
...
paddle/fluid/operators/jit/more/mix/mix.h
浏览文件 @
c7449227
...
...
@@ -26,6 +26,7 @@ using T = float;
void
VSigmoid
(
const
T
*
x
,
T
*
y
,
int
n
);
void
VTanh
(
const
T
*
x
,
T
*
y
,
int
n
);
void
Softmax
(
const
T
*
x
,
T
*
y
,
int
n
,
int
bs
);
void
LSTMCtHt
(
lstm_t
*
step
,
const
lstm_attr_t
*
attr
);
void
LSTMC1H1
(
lstm_t
*
step
,
const
lstm_attr_t
*
attr
);
...
...
@@ -45,6 +46,9 @@ void GRUHtPart2(gru_t* step, const gru_attr_t* attr);
DECLARE_MORE_KERNEL
(
VSigmoid
,
XYNTuples
);
DECLARE_MORE_KERNEL
(
VTanh
,
XYNTuples
);
// XRN
DECLARE_MORE_KERNEL
(
Softmax
,
SoftmaxTuples
);
DECLARE_MORE_KERNEL
(
LSTMCtHt
,
LSTMTuples
);
DECLARE_MORE_KERNEL
(
LSTMC1H1
,
LSTMTuples
);
...
...
paddle/fluid/operators/jit/more/mkl/CMakeLists.txt
浏览文件 @
c7449227
...
...
@@ -12,3 +12,4 @@ USE_JITKERNEL_MORE(kVSquare, mkl)
USE_JITKERNEL_MORE
(
kVSigmoid, mkl
)
USE_JITKERNEL_MORE
(
kVTanh, mkl
)
USE_JITKERNEL_MORE
(
kSeqPool, mkl
)
USE_JITKERNEL_MORE
(
kSoftmax, mkl
)
paddle/fluid/operators/jit/more/mkl/mkl.cc
浏览文件 @
c7449227
...
...
@@ -116,6 +116,16 @@ void VAXPY<double>(double a, const double* x, double* y, int n) {
platform
::
dynload
::
cblas_daxpy
(
n
,
a
,
x
,
1
,
y
,
1
);
}
template
<
>
void
ASum
<
float
>
(
const
float
*
x
,
float
*
res
,
int
n
)
{
res
[
0
]
=
platform
::
dynload
::
cblas_sasum
(
n
,
x
,
1
);
}
template
<
>
void
ASum
<
double
>
(
const
double
*
x
,
double
*
res
,
int
n
)
{
res
[
0
]
=
platform
::
dynload
::
cblas_dasum
(
n
,
x
,
1
);
}
// TODO(TJ): tuning me carefully on AVX, AVX2 and AVX512
template
<
>
bool
MatMulKernel
<
float
>::
UseMe
(
const
int
&
d
)
const
{
...
...
@@ -167,6 +177,12 @@ bool SeqPoolKernel<double>::UseMe(const seq_pool_attr_t& attr) const {
return
true
;
}
template
<
>
bool
SoftmaxKernel
<
float
>::
UseMe
(
const
int
&
d
)
const
{
// tuned on avx2
return
platform
::
MayIUse
(
platform
::
avx
)
&&
d
<
60
;
}
#define AWALYS_USE_ME_WITH_DOUBLE(func) \
template <> \
bool func##Kernel<double>::UseMe(const int& d) const { \
...
...
@@ -181,6 +197,7 @@ AWALYS_USE_ME_WITH_DOUBLE(VExp);
AWALYS_USE_ME_WITH_DOUBLE
(
VSigmoid
);
AWALYS_USE_ME_WITH_DOUBLE
(
VTanh
);
AWALYS_USE_ME_WITH_DOUBLE
(
VSquare
);
AWALYS_USE_ME_WITH_DOUBLE
(
Softmax
);
#undef AWALYS_USE_ME_WITH_DOUBLE
}
// namespace mkl
...
...
@@ -204,5 +221,6 @@ REGISTER_MKL_KERNEL(kVSquare, VSquare);
REGISTER_MKL_KERNEL
(
kVSigmoid
,
VSigmoid
);
REGISTER_MKL_KERNEL
(
kVTanh
,
VTanh
);
REGISTER_MKL_KERNEL
(
kSeqPool
,
SeqPool
);
REGISTER_MKL_KERNEL
(
kSoftmax
,
Softmax
);
#undef REGISTER_MKL_KERNEL
paddle/fluid/operators/jit/more/mkl/mkl.h
浏览文件 @
c7449227
...
...
@@ -16,6 +16,7 @@
#include <cmath>
#include <type_traits>
#include <vector>
#include "paddle/fluid/operators/jit/kernel_base.h"
namespace
paddle
{
...
...
@@ -90,6 +91,30 @@ void SeqPool(const T* x, T* y, const seq_pool_attr_t* attr) {
}
}
template
<
typename
T
>
void
ASum
(
const
T
*
x
,
T
*
res
,
int
n
);
template
<
typename
T
>
void
Softmax
(
const
T
*
x
,
T
*
y
,
int
n
,
int
bs
)
{
std
::
vector
<
T
>
entities
(
bs
);
for
(
int
i
=
0
;
i
<
bs
;
++
i
)
{
entities
[
i
]
=
x
[
i
*
n
];
for
(
int
c
=
1
;
c
<
n
;
++
c
)
{
entities
[
i
]
=
x
[
i
*
n
+
c
]
>
entities
[
i
]
?
x
[
i
*
n
+
c
]
:
entities
[
i
];
}
for
(
int
c
=
0
;
c
<
n
;
++
c
)
{
y
[
i
*
n
+
c
]
=
x
[
i
*
n
+
c
]
-
entities
[
i
];
}
}
VExp
(
y
,
y
,
n
*
bs
);
for
(
int
i
=
0
;
i
<
bs
;
++
i
)
{
T
sum
;
ASum
(
&
y
[
i
*
n
],
&
sum
,
n
);
sum
=
static_cast
<
T
>
(
1
)
/
sum
;
VScal
(
&
sum
,
&
y
[
i
*
n
],
&
y
[
i
*
n
],
n
);
}
}
#define DECLARE_MKL_KERNEL(name, tuples) \
template <typename T> \
class name##Kernel : public KernelMore<tuples<T>> { \
...
...
@@ -117,6 +142,8 @@ DECLARE_MKL_KERNEL(VSquare, XYNTuples);
DECLARE_MKL_KERNEL
(
SeqPool
,
SeqPoolTuples
);
DECLARE_MKL_KERNEL
(
Softmax
,
SoftmaxTuples
);
#undef DECLARE_MKL_KERNEL
}
// namespace mkl
...
...
paddle/fluid/operators/jit/refer/CMakeLists.txt
浏览文件 @
c7449227
...
...
@@ -29,3 +29,6 @@ USE_JITKERNEL_REFER(kNCHW16CMulNC)
USE_JITKERNEL_REFER
(
kSeqPool
)
USE_JITKERNEL_REFER
(
kMatMul
)
USE_JITKERNEL_REFER
(
kVSquare
)
USE_JITKERNEL_REFER
(
kHSum
)
USE_JITKERNEL_REFER
(
kHMax
)
USE_JITKERNEL_REFER
(
kSoftmax
)
paddle/fluid/operators/jit/refer/refer.cc
浏览文件 @
c7449227
...
...
@@ -52,4 +52,9 @@ REGISTER_REFER_KERNEL(kSeqPool, SeqPool);
REGISTER_REFER_KERNEL
(
kMatMul
,
MatMul
);
REGISTER_REFER_KERNEL
(
kHMax
,
HMax
);
REGISTER_REFER_KERNEL
(
kHSum
,
HSum
);
REGISTER_REFER_KERNEL
(
kSoftmax
,
Softmax
);
#undef REGISTER_REFER_KERNEL
paddle/fluid/operators/jit/refer/refer.h
浏览文件 @
c7449227
...
...
@@ -378,6 +378,40 @@ void MatMul(const T* A, const T* B, T* C, int M, int N, int K) {
}
}
template
<
typename
T
>
void
HMax
(
const
T
*
x
,
T
*
res
,
int
n
)
{
res
[
0
]
=
x
[
0
];
for
(
int
i
=
1
;
i
<
n
;
++
i
)
{
res
[
0
]
=
res
[
0
]
<
x
[
i
]
?
x
[
i
]
:
res
[
0
];
}
}
template
<
typename
T
>
void
HSum
(
const
T
*
x
,
T
*
res
,
int
n
)
{
res
[
0
]
=
x
[
0
];
for
(
int
i
=
1
;
i
<
n
;
++
i
)
{
res
[
0
]
+=
x
[
i
];
}
}
// y = e^(x - max(x))
// y = y / sum(y)
template
<
typename
T
>
void
Softmax
(
const
T
*
x
,
T
*
y
,
int
n
,
int
bs
=
1
)
{
for
(
int
i
=
0
;
i
<
bs
;
++
i
)
{
T
scalar
;
HMax
(
x
,
&
scalar
,
n
);
scalar
=
static_cast
<
T
>
(
0
)
-
scalar
;
VAddBias
(
&
scalar
,
x
,
y
,
n
);
// x - max
VExp
(
y
,
y
,
n
);
HSum
(
y
,
&
scalar
,
n
);
scalar
=
static_cast
<
T
>
(
1
)
/
scalar
;
VScal
(
&
scalar
,
y
,
y
,
n
);
x
+=
n
;
y
+=
n
;
}
}
#define DECLARE_REFER_KERNEL(name, tuples) \
template <typename T> \
class name##Kernel : public ReferKernel<tuples<T>> { \
...
...
@@ -421,6 +455,11 @@ DECLARE_REFER_KERNEL(SeqPool, SeqPoolTuples);
DECLARE_REFER_KERNEL
(
MatMul
,
MatMulTuples
);
DECLARE_REFER_KERNEL
(
HMax
,
XRNTuples
);
DECLARE_REFER_KERNEL
(
HSum
,
XRNTuples
);
DECLARE_REFER_KERNEL
(
Softmax
,
SoftmaxTuples
);
#undef DECLARE_REFER_KERNEL
}
// namespace refer
...
...
paddle/fluid/operators/jit/test.cc
浏览文件 @
c7449227
...
...
@@ -61,6 +61,7 @@ std::vector<int> TestSizes() {
}
namespace
jit
=
paddle
::
operators
::
jit
;
using
CPUPlace
=
paddle
::
platform
::
CPUPlace
;
template
<
typename
KernelTuples
,
typename
...
Args
>
struct
TestFuncWithRefer
{
...
...
@@ -121,6 +122,40 @@ struct TestFuncWithRefer<jit::AXYNTuples<T>, T, std::vector<T>,
}
};
template
<
typename
T
>
struct
TestFuncWithRefer
<
jit
::
SoftmaxTuples
<
T
>
,
std
::
vector
<
T
>
,
std
::
vector
<
T
>
,
int
,
int
>
{
void
operator
()(
const
typename
jit
::
SoftmaxTuples
<
T
>::
func_type
tgt
,
const
std
::
vector
<
T
>&
x
,
const
std
::
vector
<
T
>&
yref
,
int
n
,
int
bs
)
{
EXPECT_TRUE
(
tgt
!=
nullptr
);
EXPECT_EQ
(
yref
.
size
(),
x
.
size
());
EXPECT_EQ
(
x
.
size
(),
static_cast
<
size_t
>
(
n
*
bs
));
const
T
*
x_data
=
x
.
data
();
const
T
*
yref_data
=
yref
.
data
();
std
::
vector
<
T
>
ytgt
(
n
*
bs
);
T
*
ytgt_data
=
ytgt
.
data
();
// test normal
tgt
(
x_data
,
ytgt_data
,
n
,
bs
);
ExpectEQ
<
T
>
(
ytgt_data
,
yref_data
,
n
*
bs
);
// test inplace x
std
::
copy
(
x
.
begin
(),
x
.
end
(),
ytgt
.
begin
());
tgt
(
ytgt_data
,
ytgt_data
,
n
,
bs
);
ExpectEQ
<
T
>
(
ytgt_data
,
yref_data
,
n
*
bs
);
}
};
template
<
typename
T
>
struct
TestFuncWithRefer
<
jit
::
XRNTuples
<
T
>
,
std
::
vector
<
T
>
,
T
>
{
void
operator
()(
const
typename
jit
::
XRNTuples
<
T
>::
func_type
tgt
,
const
std
::
vector
<
T
>&
x
,
const
T
ref_res
)
{
EXPECT_TRUE
(
tgt
!=
nullptr
);
T
tgt_res
;
tgt
(
x
.
data
(),
&
tgt_res
,
x
.
size
());
ExpectEQ
<
T
>
(
&
tgt_res
,
&
ref_res
,
1
);
}
};
template
<
typename
T
>
struct
TestFuncWithRefer
<
jit
::
XYNTuples
<
T
>
,
std
::
vector
<
T
>
,
std
::
vector
<
T
>>
{
void
operator
()(
const
typename
jit
::
XYNTuples
<
T
>::
func_type
tgt
,
...
...
@@ -172,7 +207,7 @@ struct TestFuncWithRefer<jit::LSTMTuples<T>, std::vector<T>, std::vector<T>,
T
*
ht_data
=
ht
.
data
();
T
*
checked_data
=
checked
.
data
();
paddle
::
operators
::
jit
::
lstm_t
step
;
jit
::
lstm_t
step
;
step
.
gates
=
x_data
;
step
.
ct_1
=
ct_1_data
;
step
.
ct
=
ct_data
;
...
...
@@ -208,7 +243,7 @@ struct TestFuncWithRefer<jit::GRUTuples<T>, std::vector<T>, std::vector<T>,
const
T
*
ht_ref_data
=
ht_ref
.
data
();
T
*
x_data
=
x
.
data
();
T
*
ht_data
=
ht
.
data
();
paddle
::
operators
::
jit
::
gru_t
step
;
jit
::
gru_t
step
;
step
.
gates
=
x_data
;
step
.
ht_1
=
ht_1_data
;
step
.
ht
=
ht_data
;
...
...
@@ -255,8 +290,8 @@ struct TestFuncWithRefer<jit::MatMulTuples<T>, std::vector<T>, std::vector<T>,
}
};
template
<
paddle
::
operators
::
jit
::
KernelType
KT
,
typename
KernelTuples
,
typename
PlaceType
,
typename
...
Args
>
template
<
jit
::
KernelType
KT
,
typename
KernelTuples
,
typename
PlaceType
,
typename
...
Args
>
void
TestAllImpls
(
const
typename
KernelTuples
::
attr_type
&
attr
,
Args
...
args
)
{
TestFuncWithRefer
<
KernelTuples
,
Args
...
>
test
;
// test jitcode
...
...
@@ -286,9 +321,8 @@ void TestAllImpls(const typename KernelTuples::attr_type& attr, Args... args) {
test
(
tgt
,
args
...);
}
template
<
paddle
::
operators
::
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
template
<
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
void
TestXYZNKernel
()
{
namespace
jit
=
paddle
::
operators
::
jit
;
VLOG
(
10
)
<<
"===== Test JITKernel "
<<
jit
::
to_string
(
KT
);
for
(
int
d
:
TestSizes
())
{
auto
ref
=
jit
::
GetRefer
<
KT
,
jit
::
XYZNTuples
<
T
>>
();
...
...
@@ -320,9 +354,8 @@ void TestXYZNKernel() {
}
}
template
<
paddle
::
operators
::
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
template
<
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
void
TestAXYNKernel
()
{
namespace
jit
=
paddle
::
operators
::
jit
;
VLOG
(
10
)
<<
"===== Test JITKernel "
<<
jit
::
to_string
(
KT
);
for
(
int
d
:
TestSizes
())
{
auto
ref
=
jit
::
GetRefer
<
KT
,
jit
::
AXYNTuples
<
T
>>
();
...
...
@@ -347,9 +380,26 @@ void TestAXYNKernel() {
}
}
template
<
paddle
::
operators
::
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
template
<
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
void
TestXRNKernel
()
{
VLOG
(
10
)
<<
"===== Test JITKernel "
<<
jit
::
to_string
(
KT
);
auto
last_acc
=
acc
;
acc
=
1e-4
;
for
(
int
d
:
TestSizes
())
{
auto
ref
=
jit
::
GetRefer
<
KT
,
jit
::
XRNTuples
<
T
>>
();
EXPECT_TRUE
(
ref
!=
nullptr
);
std
::
vector
<
T
>
x
(
d
);
RandomVec
<
T
>
(
d
,
x
.
data
(),
-
2.
f
,
2.
f
);
T
ref_res
;
ref
(
x
.
data
(),
&
ref_res
,
d
);
TestAllImpls
<
KT
,
jit
::
XRNTuples
<
T
>
,
PlaceType
,
std
::
vector
<
T
>
,
T
>
(
d
,
x
,
ref_res
);
}
acc
=
last_acc
;
}
template
<
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
void
TestXYNKernel
()
{
namespace
jit
=
paddle
::
operators
::
jit
;
VLOG
(
10
)
<<
"===== Test JITKernel "
<<
jit
::
to_string
(
KT
);
for
(
int
d
:
TestSizes
())
{
auto
ref
=
jit
::
GetRefer
<
KT
,
jit
::
XYNTuples
<
T
>>
();
...
...
@@ -373,9 +423,8 @@ void TestXYNKernel() {
}
}
template
<
paddle
::
operators
::
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
template
<
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
void
TestLSTMKernel
()
{
namespace
jit
=
paddle
::
operators
::
jit
;
VLOG
(
10
)
<<
"===== Test JITKernel "
<<
jit
::
to_string
(
KT
);
std
::
vector
<
std
::
string
>
all_acts
=
{
"sigmoid"
,
"tanh"
,
"relu"
,
"identity"
};
for
(
int
d
:
TestSizes
())
{
...
...
@@ -424,9 +473,8 @@ void TestLSTMKernel() {
}
}
template
<
paddle
::
operators
::
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
template
<
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
void
TestGRUKernel
()
{
namespace
jit
=
paddle
::
operators
::
jit
;
VLOG
(
10
)
<<
"===== Test JITKernel "
<<
jit
::
to_string
(
KT
);
std
::
vector
<
std
::
string
>
all_acts
=
{
"sigmoid"
,
"tanh"
,
"relu"
,
"identity"
};
for
(
int
d
:
TestSizes
())
{
...
...
@@ -459,7 +507,7 @@ void TestGRUKernel() {
}
}
template
<
paddle
::
operators
::
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
template
<
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
void
TestSeqPoolKernel
()
{
VLOG
(
10
)
<<
"===== Test JITKernel "
<<
jit
::
to_string
(
KT
);
std
::
vector
<
jit
::
SeqPoolType
>
pool_types
=
{
...
...
@@ -484,7 +532,7 @@ void TestSeqPoolKernel() {
}
}
template
<
paddle
::
operators
::
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
template
<
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
void
TestMatMulKernel
()
{
VLOG
(
10
)
<<
"===== Test JITKernel "
<<
jit
::
to_string
(
KT
);
auto
last_acc
=
acc
;
...
...
@@ -510,7 +558,32 @@ void TestMatMulKernel() {
acc
=
last_acc
;
}
template
<
paddle
::
operators
::
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
template
<
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
void
TestSoftmaxKernel
()
{
VLOG
(
10
)
<<
"===== Test JITKernel "
<<
jit
::
to_string
(
KT
);
for
(
int
bs
:
{
1
,
2
,
10
})
{
for
(
int
n
:
TestSizes
())
{
auto
ref
=
jit
::
GetRefer
<
KT
,
jit
::
SoftmaxTuples
<
T
>>
();
EXPECT_TRUE
(
ref
!=
nullptr
);
std
::
vector
<
T
>
x
(
bs
*
n
),
y
(
bs
*
n
);
RandomVec
<
T
>
(
bs
*
n
,
x
.
data
(),
-
2.
f
,
2.
f
);
const
T
*
x_data
=
x
.
data
();
T
*
y_data
=
y
.
data
();
std
::
vector
<
T
>
xinp
(
x
.
size
());
// inplace test
std
::
copy
(
x
.
begin
(),
x
.
end
(),
xinp
.
begin
());
ref
(
x_data
,
y_data
,
n
,
bs
);
T
*
xinp_data
=
xinp
.
data
();
ref
(
xinp_data
,
xinp_data
,
n
,
bs
);
ExpectEQ
<
T
>
(
xinp_data
,
y_data
,
n
*
bs
);
TestAllImpls
<
KT
,
jit
::
SoftmaxTuples
<
T
>
,
PlaceType
,
std
::
vector
<
T
>
,
std
::
vector
<
T
>>
(
n
,
x
,
y
,
n
,
bs
);
}
}
}
template
<
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
void
TestNCHW16CMulNCKernel
()
{
VLOG
(
10
)
<<
"===== Test JITKernel "
<<
jit
::
to_string
(
KT
);
const
int
n
=
3
,
c
=
16
*
4
,
h
=
10
,
w
=
10
;
...
...
@@ -565,129 +638,123 @@ void TestNCHW16CMulNCKernel() {
// XYZNTuple
TEST
(
JITKernel
,
kVMul
)
{
namespace
jit
=
paddle
::
operators
::
jit
;
TestXYZNKernel
<
jit
::
kVMul
,
float
,
paddle
::
platform
::
CPUPlace
>
();
TestXYZNKernel
<
jit
::
kVMul
,
double
,
paddle
::
platform
::
CPUPlace
>
();
TestXYZNKernel
<
jit
::
kVMul
,
float
,
CPUPlace
>
();
TestXYZNKernel
<
jit
::
kVMul
,
double
,
CPUPlace
>
();
}
TEST
(
JITKernel
,
kVAdd
)
{
namespace
jit
=
paddle
::
operators
::
jit
;
TestXYZNKernel
<
jit
::
kVAdd
,
float
,
paddle
::
platform
::
CPUPlace
>
();
TestXYZNKernel
<
jit
::
kVAdd
,
double
,
paddle
::
platform
::
CPUPlace
>
();
TestXYZNKernel
<
jit
::
kVAdd
,
float
,
CPUPlace
>
();
TestXYZNKernel
<
jit
::
kVAdd
,
double
,
CPUPlace
>
();
}
TEST
(
JITKernel
,
kVAddRelu
)
{
namespace
jit
=
paddle
::
operators
::
jit
;
TestXYZNKernel
<
jit
::
kVAddRelu
,
float
,
paddle
::
platform
::
CPUPlace
>
();
TestXYZNKernel
<
jit
::
kVAddRelu
,
double
,
paddle
::
platform
::
CPUPlace
>
();
TestXYZNKernel
<
jit
::
kVAddRelu
,
float
,
CPUPlace
>
();
TestXYZNKernel
<
jit
::
kVAddRelu
,
double
,
CPUPlace
>
();
}
TEST
(
JITKernel
,
kVSub
)
{
namespace
jit
=
paddle
::
operators
::
jit
;
TestXYZNKernel
<
jit
::
kVSub
,
float
,
paddle
::
platform
::
CPUPlace
>
();
TestXYZNKernel
<
jit
::
kVSub
,
double
,
paddle
::
platform
::
CPUPlace
>
();
TestXYZNKernel
<
jit
::
kVSub
,
float
,
CPUPlace
>
();
TestXYZNKernel
<
jit
::
kVSub
,
double
,
CPUPlace
>
();
}
// AXYNTuples
TEST
(
JITKernel
,
kVScal
)
{
namespace
jit
=
paddle
::
operators
::
jit
;
TestAXYNKernel
<
jit
::
kVScal
,
float
,
paddle
::
platform
::
CPUPlace
>
();
TestAXYNKernel
<
jit
::
kVScal
,
double
,
paddle
::
platform
::
CPUPlace
>
();
TestAXYNKernel
<
jit
::
kVScal
,
float
,
CPUPlace
>
();
TestAXYNKernel
<
jit
::
kVScal
,
double
,
CPUPlace
>
();
}
TEST
(
JITKernel
,
kVAddBias
)
{
namespace
jit
=
paddle
::
operators
::
jit
;
TestAXYNKernel
<
jit
::
kVAddBias
,
float
,
paddle
::
platform
::
CPUPlace
>
();
TestAXYNKernel
<
jit
::
kVAddBias
,
double
,
paddle
::
platform
::
CPUPlace
>
();
TestAXYNKernel
<
jit
::
kVAddBias
,
float
,
CPUPlace
>
();
TestAXYNKernel
<
jit
::
kVAddBias
,
double
,
CPUPlace
>
();
}
// XRNTuples
TEST
(
JITKernel
,
kHMax
)
{
TestXRNKernel
<
jit
::
kHMax
,
float
,
CPUPlace
>
();
TestXRNKernel
<
jit
::
kHMax
,
double
,
CPUPlace
>
();
}
TEST
(
JITKernel
,
kHSum
)
{
TestXRNKernel
<
jit
::
kHSum
,
float
,
CPUPlace
>
();
TestXRNKernel
<
jit
::
kHSum
,
double
,
CPUPlace
>
();
}
// XYNTuples
TEST
(
JITKernel
,
kVRelu
)
{
namespace
jit
=
paddle
::
operators
::
jit
;
TestXYNKernel
<
jit
::
kVRelu
,
float
,
paddle
::
platform
::
CPUPlace
>
();
TestXYNKernel
<
jit
::
kVRelu
,
double
,
paddle
::
platform
::
CPUPlace
>
();
TestXYNKernel
<
jit
::
kVRelu
,
float
,
CPUPlace
>
();
TestXYNKernel
<
jit
::
kVRelu
,
double
,
CPUPlace
>
();
}
TEST
(
JITKernel
,
kVIdentity
)
{
namespace
jit
=
paddle
::
operators
::
jit
;
TestXYNKernel
<
jit
::
kVIdentity
,
float
,
paddle
::
platform
::
CPUPlace
>
();
TestXYNKernel
<
jit
::
kVIdentity
,
double
,
paddle
::
platform
::
CPUPlace
>
();
TestXYNKernel
<
jit
::
kVIdentity
,
float
,
CPUPlace
>
();
TestXYNKernel
<
jit
::
kVIdentity
,
double
,
CPUPlace
>
();
}
TEST
(
JITKernel
,
kVSquare
)
{
namespace
jit
=
paddle
::
operators
::
jit
;
TestXYNKernel
<
jit
::
kVSquare
,
float
,
paddle
::
platform
::
CPUPlace
>
();
TestXYNKernel
<
jit
::
kVSquare
,
double
,
paddle
::
platform
::
CPUPlace
>
();
TestXYNKernel
<
jit
::
kVSquare
,
float
,
CPUPlace
>
();
TestXYNKernel
<
jit
::
kVSquare
,
double
,
CPUPlace
>
();
}
TEST
(
JITKernel
,
kVExp
)
{
namespace
jit
=
paddle
::
operators
::
jit
;
TestXYNKernel
<
jit
::
kVExp
,
float
,
paddle
::
platform
::
CPUPlace
>
();
TestXYNKernel
<
jit
::
kVExp
,
double
,
paddle
::
platform
::
CPUPlace
>
();
TestXYNKernel
<
jit
::
kVExp
,
float
,
CPUPlace
>
();
TestXYNKernel
<
jit
::
kVExp
,
double
,
CPUPlace
>
();
}
TEST
(
JITKernel
,
kVSigmoid
)
{
namespace
jit
=
paddle
::
operators
::
jit
;
TestXYNKernel
<
jit
::
kVSigmoid
,
float
,
paddle
::
platform
::
CPUPlace
>
();
TestXYNKernel
<
jit
::
kVSigmoid
,
double
,
paddle
::
platform
::
CPUPlace
>
();
TestXYNKernel
<
jit
::
kVSigmoid
,
float
,
CPUPlace
>
();
TestXYNKernel
<
jit
::
kVSigmoid
,
double
,
CPUPlace
>
();
}
TEST
(
JITKernel
,
kVTanh
)
{
namespace
jit
=
paddle
::
operators
::
jit
;
TestXYNKernel
<
jit
::
kVTanh
,
float
,
paddle
::
platform
::
CPUPlace
>
();
TestXYNKernel
<
jit
::
kVTanh
,
double
,
paddle
::
platform
::
CPUPlace
>
();
TestXYNKernel
<
jit
::
kVTanh
,
float
,
CPUPlace
>
();
TestXYNKernel
<
jit
::
kVTanh
,
double
,
CPUPlace
>
();
}
// LSTM
TEST
(
JITKernel
,
kLSTMCtHt
)
{
namespace
jit
=
paddle
::
operators
::
jit
;
TestLSTMKernel
<
jit
::
kLSTMCtHt
,
float
,
paddle
::
platform
::
CPUPlace
>
();
TestLSTMKernel
<
jit
::
kLSTMCtHt
,
double
,
paddle
::
platform
::
CPUPlace
>
();
TestLSTMKernel
<
jit
::
kLSTMCtHt
,
float
,
CPUPlace
>
();
TestLSTMKernel
<
jit
::
kLSTMCtHt
,
double
,
CPUPlace
>
();
}
TEST
(
JITKernel
,
kLSTMC1H1
)
{
namespace
jit
=
paddle
::
operators
::
jit
;
TestLSTMKernel
<
jit
::
kLSTMC1H1
,
float
,
paddle
::
platform
::
CPUPlace
>
();
TestLSTMKernel
<
jit
::
kLSTMC1H1
,
double
,
paddle
::
platform
::
CPUPlace
>
();
TestLSTMKernel
<
jit
::
kLSTMC1H1
,
float
,
CPUPlace
>
();
TestLSTMKernel
<
jit
::
kLSTMC1H1
,
double
,
CPUPlace
>
();
}
// GRU
TEST
(
JITKernel
,
kGRUH1
)
{
namespace
jit
=
paddle
::
operators
::
jit
;
TestGRUKernel
<
jit
::
kGRUH1
,
float
,
paddle
::
platform
::
CPUPlace
>
();
TestGRUKernel
<
jit
::
kGRUH1
,
double
,
paddle
::
platform
::
CPUPlace
>
();
TestGRUKernel
<
jit
::
kGRUH1
,
float
,
CPUPlace
>
();
TestGRUKernel
<
jit
::
kGRUH1
,
double
,
CPUPlace
>
();
}
TEST
(
JITKernel
,
kGRUHtPart1
)
{
namespace
jit
=
paddle
::
operators
::
jit
;
TestGRUKernel
<
jit
::
kGRUHtPart1
,
float
,
paddle
::
platform
::
CPUPlace
>
();
TestGRUKernel
<
jit
::
kGRUHtPart1
,
double
,
paddle
::
platform
::
CPUPlace
>
();
TestGRUKernel
<
jit
::
kGRUHtPart1
,
float
,
CPUPlace
>
();
TestGRUKernel
<
jit
::
kGRUHtPart1
,
double
,
CPUPlace
>
();
}
TEST
(
JITKernel
,
kGRUHtPart2
)
{
namespace
jit
=
paddle
::
operators
::
jit
;
TestGRUKernel
<
jit
::
kGRUHtPart2
,
float
,
paddle
::
platform
::
CPUPlace
>
();
TestGRUKernel
<
jit
::
kGRUHtPart2
,
double
,
paddle
::
platform
::
CPUPlace
>
();
TestGRUKernel
<
jit
::
kGRUHtPart2
,
float
,
CPUPlace
>
();
TestGRUKernel
<
jit
::
kGRUHtPart2
,
double
,
CPUPlace
>
();
}
TEST
(
JITKernel
,
kSeqPool
)
{
namespace
jit
=
paddle
::
operators
::
jit
;
TestSeqPoolKernel
<
jit
::
kSeqPool
,
float
,
paddle
::
platform
::
CPUPlace
>
();
TestSeqPoolKernel
<
jit
::
kSeqPool
,
double
,
paddle
::
platform
::
CPUPlace
>
();
TestSeqPoolKernel
<
jit
::
kSeqPool
,
float
,
CPUPlace
>
();
TestSeqPoolKernel
<
jit
::
kSeqPool
,
double
,
CPUPlace
>
();
}
TEST
(
JITKernel
,
kMatMul
)
{
namespace
jit
=
paddle
::
operators
::
jit
;
TestMatMulKernel
<
jit
::
kMatMul
,
float
,
paddle
::
platform
::
CPUPlace
>
();
TestMatMulKernel
<
jit
::
kMatMul
,
double
,
paddle
::
platform
::
CPUPlace
>
();
TestMatMulKernel
<
jit
::
kMatMul
,
float
,
CPUPlace
>
();
TestMatMulKernel
<
jit
::
kMatMul
,
double
,
CPUPlace
>
();
}
TEST
(
JITKernel
,
kSoftmax
)
{
TestSoftmaxKernel
<
jit
::
kSoftmax
,
float
,
CPUPlace
>
();
TestSoftmaxKernel
<
jit
::
kSoftmax
,
double
,
CPUPlace
>
();
}
TEST
(
JITKernel
,
kNCHW16CMulNC
)
{
namespace
jit
=
paddle
::
operators
::
jit
;
TestNCHW16CMulNCKernel
<
jit
::
kNCHW16CMulNC
,
float
,
paddle
::
platform
::
CPUPlace
>
();
TestNCHW16CMulNCKernel
<
jit
::
kNCHW16CMulNC
,
double
,
paddle
::
platform
::
CPUPlace
>
();
TestNCHW16CMulNCKernel
<
jit
::
kNCHW16CMulNC
,
float
,
CPUPlace
>
();
TestNCHW16CMulNCKernel
<
jit
::
kNCHW16CMulNC
,
double
,
CPUPlace
>
();
}
// TODO(yihua/TJ): add crf decoding and layer norm unit tests
...
...
paddle/fluid/operators/math/CMakeLists.txt
浏览文件 @
c7449227
...
...
@@ -53,7 +53,7 @@ math_library(sequence2batch)
math_library
(
sequence_padding
)
math_library
(
sequence_pooling DEPS math_function jit_kernel_helper
)
math_library
(
sequence_scale
)
math_library
(
softmax DEPS math_function
)
math_library
(
softmax DEPS math_function
jit_kernel_helper
)
math_library
(
beam_search DEPS math_function
)
math_library
(
matrix_bit_code
)
...
...
paddle/fluid/operators/math/softmax_impl.h
浏览文件 @
c7449227
...
...
@@ -16,8 +16,8 @@ limitations under the License. */
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/operators/jit/kernels.h"
#include "paddle/fluid/operators/math/blas.h"
namespace
paddle
{
namespace
operators
{
namespace
math
{
...
...
@@ -81,28 +81,10 @@ class SoftmaxFunctor<DeviceContext, float, true, enable_if_CPU<DeviceContext>> {
const
int
kBatchDim
=
0
;
const
int
kClassDim
=
1
;
// 2D data. Batch x C
const
int
batch_size
=
in_dims
[
kBatchDim
];
const
int
num_classes
=
in_dims
[
kClassDim
];
std
::
vector
<
float
>
entities
(
batch_size
);
auto
blas
=
math
::
GetBlas
<
DeviceContext
,
float
>
(
context
);
for
(
int
n
=
0
;
n
<
batch_size
;
++
n
)
{
entities
[
n
]
=
in_data
[
n
*
num_classes
];
for
(
int
c
=
1
;
c
<
num_classes
;
++
c
)
{
entities
[
n
]
=
in_data
[
n
*
num_classes
+
c
]
>
entities
[
n
]
?
in_data
[
n
*
num_classes
+
c
]
:
entities
[
n
];
}
for
(
int
c
=
0
;
c
<
num_classes
;
++
c
)
{
out_data
[
n
*
num_classes
+
c
]
=
in_data
[
n
*
num_classes
+
c
]
-
entities
[
n
];
}
}
blas
.
VEXP
(
num_classes
*
batch_size
,
out_data
,
out_data
);
for
(
int
n
=
0
;
n
<
batch_size
;
++
n
)
{
auto
sum
=
blas
.
ASUM
(
num_classes
,
&
out_data
[
n
*
num_classes
],
1
);
blas
.
SCAL
(
num_classes
,
1.0
f
/
sum
,
&
out_data
[
n
*
num_classes
]);
}
auto
compute_softmax
=
jit
::
Get
<
jit
::
kSoftmax
,
jit
::
SoftmaxTuples
<
float
>
,
platform
::
CPUPlace
>
(
in_dims
[
kClassDim
]);
compute_softmax
(
in_data
,
out_data
,
in_dims
[
kClassDim
],
in_dims
[
kBatchDim
]);
}
};
...
...
paddle/fluid/platform/dynload/mklml.h
浏览文件 @
c7449227
...
...
@@ -70,6 +70,8 @@ extern void* mklml_dso_handle;
__macro(cblas_ddot); \
__macro(cblas_sasum); \
__macro(cblas_dasum); \
__macro(cblas_isamax); \
__macro(cblas_idamax); \
__macro(cblas_sscal); \
__macro(cblas_dscal); \
__macro(vsAdd); \
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录