Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
c659d037
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c659d037
编写于
6月 14, 2019
作者:
T
tensor-tang
浏览文件
操作
浏览文件
下载
差异文件
Merge remote-tracking branch 'gitlab/develop' into incubate/lite
fix conflicts
上级
a89c2bcf
70fbdf67
变更
27
隐藏空白更改
内联
并排
Showing
27 changed file
with
1193 addition
and
147 deletion
+1193
-147
paddle/fluid/lite/arm/math/scale.cc
paddle/fluid/lite/arm/math/scale.cc
+105
-0
paddle/fluid/lite/arm/math/scale.h
paddle/fluid/lite/arm/math/scale.h
+8
-0
paddle/fluid/lite/arm/math/split.cc
paddle/fluid/lite/arm/math/split.cc
+2
-2
paddle/fluid/lite/arm/math/split.h
paddle/fluid/lite/arm/math/split.h
+1
-1
paddle/fluid/lite/core/cpu_info.cc
paddle/fluid/lite/core/cpu_info.cc
+5
-5
paddle/fluid/lite/kernels/arm/CMakeLists.txt
paddle/fluid/lite/kernels/arm/CMakeLists.txt
+5
-1
paddle/fluid/lite/kernels/arm/batch_norm_compute.cc
paddle/fluid/lite/kernels/arm/batch_norm_compute.cc
+114
-0
paddle/fluid/lite/kernels/arm/batch_norm_compute.h
paddle/fluid/lite/kernels/arm/batch_norm_compute.h
+42
-0
paddle/fluid/lite/kernels/arm/batch_norm_compute_test.cc
paddle/fluid/lite/kernels/arm/batch_norm_compute_test.cc
+221
-0
paddle/fluid/lite/kernels/arm/conv_compute_test.cc
paddle/fluid/lite/kernels/arm/conv_compute_test.cc
+14
-14
paddle/fluid/lite/kernels/arm/fc_compute.cc
paddle/fluid/lite/kernels/arm/fc_compute.cc
+6
-8
paddle/fluid/lite/kernels/arm/fc_compute.h
paddle/fluid/lite/kernels/arm/fc_compute.h
+2
-3
paddle/fluid/lite/kernels/arm/mul_compute.cc
paddle/fluid/lite/kernels/arm/mul_compute.cc
+38
-38
paddle/fluid/lite/kernels/arm/mul_compute.h
paddle/fluid/lite/kernels/arm/mul_compute.h
+39
-0
paddle/fluid/lite/kernels/arm/mul_compute_test.cc
paddle/fluid/lite/kernels/arm/mul_compute_test.cc
+152
-0
paddle/fluid/lite/kernels/arm/pool_compute_test.cc
paddle/fluid/lite/kernels/arm/pool_compute_test.cc
+1
-1
paddle/fluid/lite/kernels/arm/scale_compute_test.cc
paddle/fluid/lite/kernels/arm/scale_compute_test.cc
+11
-0
paddle/fluid/lite/kernels/arm/split_compute.cc
paddle/fluid/lite/kernels/arm/split_compute.cc
+1
-1
paddle/fluid/lite/kernels/arm/split_compute_test.cc
paddle/fluid/lite/kernels/arm/split_compute_test.cc
+25
-20
paddle/fluid/lite/operators/CMakeLists.txt
paddle/fluid/lite/operators/CMakeLists.txt
+3
-0
paddle/fluid/lite/operators/batch_norm_op.cc
paddle/fluid/lite/operators/batch_norm_op.cc
+110
-0
paddle/fluid/lite/operators/batch_norm_op.h
paddle/fluid/lite/operators/batch_norm_op.h
+46
-0
paddle/fluid/lite/operators/batch_norm_op_test.cc
paddle/fluid/lite/operators/batch_norm_op_test.cc
+139
-0
paddle/fluid/lite/operators/op_params.h
paddle/fluid/lite/operators/op_params.h
+22
-2
paddle/fluid/lite/operators/split_op.cc
paddle/fluid/lite/operators/split_op.cc
+4
-4
paddle/fluid/lite/operators/split_op.h
paddle/fluid/lite/operators/split_op.h
+1
-1
paddle/fluid/lite/tools/build.sh
paddle/fluid/lite/tools/build.sh
+76
-46
未找到文件。
paddle/fluid/lite/arm/math/scale.cc
浏览文件 @
c659d037
...
@@ -58,6 +58,111 @@ void scale<float>(const float* din, float* dout, int num, float scale,
...
@@ -58,6 +58,111 @@ void scale<float>(const float* din, float* dout, int num, float scale,
}
}
}
}
template
<
>
void
scale
<
float
>
(
const
float
*
din
,
float
*
dout
,
int
outer_dim
,
int
scale_dim
,
int
inner_dim
,
const
float
*
scale_data
,
const
float
*
bias_data
)
{
int
cnt
=
inner_dim
>>
4
;
int
remain
=
inner_dim
%
16
;
int
size
=
inner_dim
*
scale_dim
;
for
(
int
n
=
0
;
n
<
outer_dim
;
n
++
)
{
const
float
*
din_ptr_n
=
din
+
n
*
size
;
float
*
dout_ptr_n
=
dout
+
n
*
size
;
#pragma omp parallel for
for
(
int
i
=
0
;
i
<
scale_dim
;
i
++
)
{
const
float
*
din_ptr
=
din_ptr_n
+
i
*
inner_dim
;
float
*
dout_ptr
=
dout_ptr_n
+
i
*
inner_dim
;
float
scale
=
scale_data
[
i
];
float32x4_t
vscale
=
vdupq_n_f32
(
scale
);
float
bias
=
bias_data
[
i
];
float32x4_t
vbias
=
vdupq_n_f32
(
bias
);
for
(
int
j
=
0
;
j
<
cnt
;
j
++
)
{
float32x4_t
din0
=
vld1q_f32
(
din_ptr
);
float32x4_t
din1
=
vld1q_f32
(
din_ptr
+
4
);
float32x4_t
din2
=
vld1q_f32
(
din_ptr
+
8
);
float32x4_t
din3
=
vld1q_f32
(
din_ptr
+
12
);
float32x4_t
vsum1
=
vmlaq_f32
(
vbias
,
din0
,
vscale
);
float32x4_t
vsum2
=
vmlaq_f32
(
vbias
,
din1
,
vscale
);
float32x4_t
vsum3
=
vmlaq_f32
(
vbias
,
din2
,
vscale
);
float32x4_t
vsum4
=
vmlaq_f32
(
vbias
,
din3
,
vscale
);
din_ptr
+=
16
;
vst1q_f32
(
dout_ptr
,
vsum1
);
vst1q_f32
(
dout_ptr
+
4
,
vsum2
);
vst1q_f32
(
dout_ptr
+
8
,
vsum3
);
vst1q_f32
(
dout_ptr
+
12
,
vsum4
);
dout_ptr
+=
16
;
}
for
(
int
j
=
0
;
j
<
remain
;
j
++
)
{
*
dout_ptr
=
*
din_ptr
*
scale
+
bias
;
dout_ptr
++
;
din_ptr
++
;
}
}
}
}
template
<
>
void
scale
<
float
>
(
const
float
*
din
,
float
*
dout
,
int
outer_dim
,
int
scale_dim
,
const
float
*
scale_data
,
const
float
*
bias_data
)
{
int
cnt
=
scale_dim
>>
4
;
int
remain
=
scale_dim
%
16
;
for
(
int
n
=
0
;
n
<
outer_dim
;
n
++
)
{
const
float
*
din_ptr_n
=
din
+
n
*
scale_dim
;
float
*
dout_ptr_n
=
dout
+
n
*
scale_dim
;
#pragma omp parallel for
for
(
int
i
=
0
;
i
<
cnt
;
i
++
)
{
int
idx
=
i
<<
4
;
const
float
*
din_ptr
=
din_ptr_n
+
idx
;
const
float
*
scale_ptr
=
scale_data
+
idx
;
const
float
*
bias_ptr
=
bias_data
+
idx
;
float
*
dout_ptr
=
dout_ptr_n
+
idx
;
float32x4_t
din0
=
vld1q_f32
(
din_ptr
);
float32x4_t
vscale0
=
vld1q_f32
(
scale_ptr
);
float32x4_t
vbias0
=
vld1q_f32
(
bias_ptr
);
float32x4_t
din1
=
vld1q_f32
(
din_ptr
+
4
);
float32x4_t
vscale1
=
vld1q_f32
(
scale_ptr
+
4
);
float32x4_t
vbias1
=
vld1q_f32
(
bias_ptr
+
4
);
float32x4_t
din2
=
vld1q_f32
(
din_ptr
+
8
);
float32x4_t
vscale2
=
vld1q_f32
(
scale_ptr
+
8
);
float32x4_t
vbias2
=
vld1q_f32
(
bias_ptr
+
8
);
float32x4_t
vsum1
=
vmlaq_f32
(
vbias0
,
din0
,
vscale0
);
float32x4_t
vsum2
=
vmlaq_f32
(
vbias1
,
din1
,
vscale1
);
float32x4_t
din3
=
vld1q_f32
(
din_ptr
+
12
);
float32x4_t
vscale3
=
vld1q_f32
(
scale_ptr
+
12
);
float32x4_t
vbias3
=
vld1q_f32
(
bias_ptr
+
12
);
vst1q_f32
(
dout_ptr
,
vsum1
);
vst1q_f32
(
dout_ptr
+
4
,
vsum2
);
float32x4_t
vsum3
=
vmlaq_f32
(
vbias2
,
din2
,
vscale2
);
float32x4_t
vsum4
=
vmlaq_f32
(
vbias3
,
din3
,
vscale3
);
vst1q_f32
(
dout_ptr
+
8
,
vsum3
);
vst1q_f32
(
dout_ptr
+
12
,
vsum4
);
}
int
idx
=
cnt
<<
4
;
const
float
*
din_ptr
=
din_ptr_n
+
idx
;
float
*
dout_ptr
=
dout_ptr_n
+
idx
;
const
float
*
scale_ptr
=
scale_data
+
idx
;
const
float
*
bias_ptr
=
bias_data
+
idx
;
for
(
int
j
=
0
;
j
<
remain
;
j
++
)
{
*
dout_ptr
=
*
din_ptr
*
(
*
scale_ptr
)
+
(
*
bias_ptr
);
dout_ptr
++
;
din_ptr
++
;
scale_ptr
++
;
bias_ptr
++
;
}
}
}
}
// namespace math
}
// namespace math
}
// namespace arm
}
// namespace arm
}
// namespace lite
}
// namespace lite
...
...
paddle/fluid/lite/arm/math/scale.h
浏览文件 @
c659d037
...
@@ -22,6 +22,14 @@ namespace math {
...
@@ -22,6 +22,14 @@ namespace math {
template
<
typename
T
>
template
<
typename
T
>
void
scale
(
const
T
*
din
,
T
*
dout
,
int
num
,
float
scale
,
float
bias
);
void
scale
(
const
T
*
din
,
T
*
dout
,
int
num
,
float
scale
,
float
bias
);
template
<
typename
T
>
void
scale
(
const
T
*
din
,
T
*
dout
,
int
outer_dim
,
int
scale_dim
,
int
inner_dim
,
const
float
*
scale_data
,
const
float
*
bias_data
);
template
<
typename
T
>
void
scale
(
const
T
*
din
,
T
*
dout
,
int
outer_dim
,
int
scale_dim
,
const
float
*
scale_data
,
const
float
*
bias_data
);
}
// namespace math
}
// namespace math
}
// namespace arm
}
// namespace arm
}
// namespace lite
}
// namespace lite
...
...
paddle/fluid/lite/arm/math/split.cc
浏览文件 @
c659d037
...
@@ -52,10 +52,10 @@ void split_cpy<float>(const float* din, float* dout, int num) {
...
@@ -52,10 +52,10 @@ void split_cpy<float>(const float* din, float* dout, int num) {
}
}
template
<
>
template
<
>
void
split
<
float
>
(
const
float
*
din
,
std
::
vector
<
lite
::
Tensor
*>*
dout
,
void
split
<
float
>
(
const
float
*
din
,
const
std
::
vector
<
lite
::
Tensor
*>&
dout
,
const
int
axis
,
const
std
::
vector
<
int
>&
in_strides
)
{
const
int
axis
,
const
std
::
vector
<
int
>&
in_strides
)
{
int
input_offset
=
0
;
int
input_offset
=
0
;
for
(
auto
out
:
*
dout
)
{
for
(
auto
out
:
dout
)
{
auto
out_dim
=
out
->
dims
();
auto
out_dim
=
out
->
dims
();
std
::
vector
<
int
>
out_strides
(
out_dim
.
size
());
std
::
vector
<
int
>
out_strides
(
out_dim
.
size
());
out_strides
[
out_dim
.
size
()
-
1
]
=
out_dim
[
out_dim
.
size
()
-
1
];
out_strides
[
out_dim
.
size
()
-
1
]
=
out_dim
[
out_dim
.
size
()
-
1
];
...
...
paddle/fluid/lite/arm/math/split.h
浏览文件 @
c659d037
...
@@ -26,7 +26,7 @@ template <typename T>
...
@@ -26,7 +26,7 @@ template <typename T>
void
split_cpy
(
const
T
*
din
,
T
*
dout
,
int
num
);
void
split_cpy
(
const
T
*
din
,
T
*
dout
,
int
num
);
template
<
typename
T
>
template
<
typename
T
>
void
split
(
const
T
*
din
,
std
::
vector
<
lite
::
Tensor
*>*
dout
,
const
int
axis
,
void
split
(
const
T
*
din
,
const
std
::
vector
<
lite
::
Tensor
*>&
dout
,
const
int
axis
,
const
std
::
vector
<
int
>&
in_strides
);
const
std
::
vector
<
int
>&
in_strides
);
}
// namespace math
}
// namespace math
...
...
paddle/fluid/lite/core/cpu_info.cc
浏览文件 @
c659d037
...
@@ -54,15 +54,15 @@ void DeviceInfo::InitInternal(DeviceInfo* dev) {
...
@@ -54,15 +54,15 @@ void DeviceInfo::InitInternal(DeviceInfo* dev) {
<<
", cluster ID: "
<<
dev
->
cluster_ids_
[
dev
->
core_ids_
[
i
]]
<<
", cluster ID: "
<<
dev
->
cluster_ids_
[
dev
->
core_ids_
[
i
]]
<<
", CPU ARCH: A"
<<
dev
->
archs_
[
i
];
<<
", CPU ARCH: A"
<<
dev
->
archs_
[
i
];
}
}
LOG
(
INFO
)
<<
"L1 DataCache size is: "
;
VLOG
(
1
)
<<
"L1 DataCache size is: "
;
for
(
int
i
=
0
;
i
<
dev
->
compute_core_num_
;
++
i
)
{
for
(
int
i
=
0
;
i
<
dev
->
compute_core_num_
;
++
i
)
{
LOG
(
INFO
)
<<
dev
->
L1_cache_
[
i
]
/
1024
<<
" KB"
;
VLOG
(
1
)
<<
dev
->
L1_cache_
[
i
]
/
1024
<<
" KB"
;
}
}
LOG
(
INFO
)
<<
"L2 Cache size is: "
;
VLOG
(
1
)
<<
"L2 Cache size is: "
;
for
(
int
i
=
0
;
i
<
dev
->
compute_core_num_
;
++
i
)
{
for
(
int
i
=
0
;
i
<
dev
->
compute_core_num_
;
++
i
)
{
LOG
(
INFO
)
<<
dev
->
L2_cache_
[
i
]
/
1024
<<
" KB"
;
VLOG
(
1
)
<<
dev
->
L2_cache_
[
i
]
/
1024
<<
" KB"
;
}
}
LOG
(
INFO
)
<<
"Total memory: "
<<
dev
->
max_memory_
<<
"KB"
;
VLOG
(
1
)
<<
"Total memory: "
<<
dev
->
max_memory_
<<
"KB"
;
dev
->
max_freq_
=
max_freq
[
0
];
dev
->
max_freq_
=
max_freq
[
0
];
for
(
int
j
=
1
;
j
<
dev
->
compute_core_num_
;
++
j
)
{
for
(
int
j
=
1
;
j
<
dev
->
compute_core_num_
;
++
j
)
{
...
...
paddle/fluid/lite/kernels/arm/CMakeLists.txt
浏览文件 @
c659d037
...
@@ -6,10 +6,11 @@ message(STATUS "compile with lite ARM kernels")
...
@@ -6,10 +6,11 @@ message(STATUS "compile with lite ARM kernels")
cc_library
(
fc_compute_arm SRCS fc_compute.cc DEPS
${
lite_kernel_deps
}
math_arm
)
cc_library
(
fc_compute_arm SRCS fc_compute.cc DEPS
${
lite_kernel_deps
}
math_arm
)
cc_library
(
relu_compute_arm SRCS relu_compute.cc DEPS
${
lite_kernel_deps
}
)
cc_library
(
relu_compute_arm SRCS relu_compute.cc DEPS
${
lite_kernel_deps
}
)
cc_library
(
mul_compute_arm SRCS mul_compute.cc DEPS
${
lite_kernel_deps
}
eigen3
)
cc_library
(
mul_compute_arm SRCS mul_compute.cc DEPS
${
lite_kernel_deps
}
math_arm
)
cc_library
(
scale_compute_arm SRCS scale_compute.cc DEPS
${
lite_kernel_deps
}
math_arm
)
cc_library
(
scale_compute_arm SRCS scale_compute.cc DEPS
${
lite_kernel_deps
}
math_arm
)
cc_library
(
softmax_compute_arm SRCS softmax_compute.cc DEPS
${
lite_kernel_deps
}
math_arm
)
cc_library
(
softmax_compute_arm SRCS softmax_compute.cc DEPS
${
lite_kernel_deps
}
math_arm
)
cc_library
(
conv_compute_arm SRCS conv_compute.cc DEPS
${
lite_kernel_deps
}
math_arm
)
cc_library
(
conv_compute_arm SRCS conv_compute.cc DEPS
${
lite_kernel_deps
}
math_arm
)
cc_library
(
batch_norm_compute_arm SRCS batch_norm_compute.cc DEPS
${
lite_kernel_deps
}
math_arm
)
cc_library
(
elementwise_add_compute_arm SRCS elementwise_add_compute.cc DEPS
${
lite_kernel_deps
}
math_arm
)
cc_library
(
elementwise_add_compute_arm SRCS elementwise_add_compute.cc DEPS
${
lite_kernel_deps
}
math_arm
)
cc_library
(
pool_compute_arm SRCS pool_compute.cc DEPS
${
lite_kernel_deps
}
math_arm
)
cc_library
(
pool_compute_arm SRCS pool_compute.cc DEPS
${
lite_kernel_deps
}
math_arm
)
cc_library
(
split_compute_arm SRCS split_compute.cc DEPS
${
lite_kernel_deps
}
math_arm
)
cc_library
(
split_compute_arm SRCS split_compute.cc DEPS
${
lite_kernel_deps
}
math_arm
)
...
@@ -18,8 +19,10 @@ lite_cc_test(test_fc_compute_arm SRCS fc_compute_test.cc DEPS fc_compute_arm mat
...
@@ -18,8 +19,10 @@ lite_cc_test(test_fc_compute_arm SRCS fc_compute_test.cc DEPS fc_compute_arm mat
lite_cc_test
(
test_scale_compute_arm SRCS scale_compute_test.cc DEPS scale_compute_arm
)
lite_cc_test
(
test_scale_compute_arm SRCS scale_compute_test.cc DEPS scale_compute_arm
)
lite_cc_test
(
test_softmax_compute_arm SRCS softmax_compute_test.cc DEPS softmax_compute_arm
)
lite_cc_test
(
test_softmax_compute_arm SRCS softmax_compute_test.cc DEPS softmax_compute_arm
)
lite_cc_test
(
test_conv_compute_arm SRCS conv_compute_test.cc DEPS conv_compute_arm
)
lite_cc_test
(
test_conv_compute_arm SRCS conv_compute_test.cc DEPS conv_compute_arm
)
lite_cc_test
(
test_batch_norm_compute_arm SRCS batch_norm_compute_test.cc DEPS batch_norm_compute_arm
)
lite_cc_test
(
test_elementwise_add_compute_arm SRCS elementwise_add_compute_test.cc DEPS elementwise_add_compute_arm
)
lite_cc_test
(
test_elementwise_add_compute_arm SRCS elementwise_add_compute_test.cc DEPS elementwise_add_compute_arm
)
lite_cc_test
(
test_pool_compute_arm SRCS pool_compute_test.cc DEPS pool_compute_arm
)
lite_cc_test
(
test_pool_compute_arm SRCS pool_compute_test.cc DEPS pool_compute_arm
)
lite_cc_test
(
test_mul_compute_arm SRCS mul_compute_test.cc DEPS mul_compute_arm
)
lite_cc_test
(
test_split_compute_arm SRCS split_compute_test.cc DEPS split_compute_arm
)
lite_cc_test
(
test_split_compute_arm SRCS split_compute_test.cc DEPS split_compute_arm
)
set
(
arm_kernels
set
(
arm_kernels
...
@@ -29,6 +32,7 @@ set(arm_kernels
...
@@ -29,6 +32,7 @@ set(arm_kernels
scale_compute_arm
scale_compute_arm
softmax_compute_arm
softmax_compute_arm
conv_compute_arm
conv_compute_arm
batch_norm_compute_arm
elementwise_add_compute_arm
elementwise_add_compute_arm
pool_compute_arm
pool_compute_arm
split_compute_arm
split_compute_arm
...
...
paddle/fluid/lite/kernels/arm/batch_norm_compute.cc
0 → 100644
浏览文件 @
c659d037
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/lite/kernels/arm/batch_norm_compute.h"
#include "paddle/fluid/lite/arm/math/funcs.h"
#include "paddle/fluid/lite/core/op_registry.h"
#include "paddle/fluid/lite/core/type_system.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
arm
{
void
BatchNormCompute
::
PrepareForRun
()
{
auto
&
param
=
this
->
Param
<
param_t
>
();
auto
x_dims
=
param
.
x
->
dims
();
bool
global_stats
=
param
.
is_test
||
param
.
use_global_stats
;
if
(
global_stats
)
{
int64_t
channel_size
=
0
;
switch
(
param
.
data_layout
)
{
case
DATALAYOUT
(
kNCHW
):
channel_size
=
x_dims
[
1
];
break
;
// case DATALAYOUT(kNHWC):
// channel_size = x_dims[x_dims.size() - 1];
// break;
default:
LOG
(
FATAL
)
<<
"Unknown storage order: "
<<
DataLayoutToStr
(
param
.
data_layout
);
break
;
}
new_scale
.
Resize
({
channel_size
});
new_bias
.
Resize
({
channel_size
});
auto
*
scale_data
=
param
.
scale
->
mutable_data
<
float
>
();
auto
*
bias_data
=
param
.
bias
->
mutable_data
<
float
>
();
auto
*
mean_data
=
param
.
mean
->
mutable_data
<
float
>
();
auto
*
variance_data
=
param
.
variance
->
mutable_data
<
float
>
();
auto
*
new_scale_data
=
new_scale
.
mutable_data
<
float
>
();
auto
*
new_bias_data
=
new_bias
.
mutable_data
<
float
>
();
for
(
int
c
=
0
;
c
<
channel_size
;
c
++
)
{
float
inv_scale
=
1.
f
/
(
std
::
sqrt
(
variance_data
[
c
]
+
param
.
epsilon
));
new_bias_data
[
c
]
=
bias_data
[
c
]
-
inv_scale
*
scale_data
[
c
]
*
mean_data
[
c
];
new_scale_data
[
c
]
=
inv_scale
*
scale_data
[
c
];
}
}
}
void
BatchNormCompute
::
Run
()
{
auto
&
param
=
this
->
Param
<
param_t
>
();
auto
x_dims
=
param
.
x
->
dims
();
auto
x_data
=
param
.
x
->
mutable_data
<
float
>
();
auto
y_data
=
param
.
y
->
mutable_data
<
float
>
();
bool
global_stats
=
param
.
is_test
||
param
.
use_global_stats
;
if
(
global_stats
)
{
auto
*
new_scale_data
=
new_scale
.
mutable_data
<
float
>
();
auto
*
new_bias_data
=
new_bias
.
mutable_data
<
float
>
();
int64_t
outer_size
=
0
;
int64_t
channel_size
=
0
;
int64_t
inner_size
=
0
;
switch
(
param
.
data_layout
)
{
case
DATALAYOUT
(
kNCHW
):
outer_size
=
x_dims
[
0
];
channel_size
=
x_dims
[
1
];
inner_size
=
x_dims
.
Slice
(
2
,
x_dims
.
size
()).
production
();
lite
::
arm
::
math
::
scale
(
x_data
,
y_data
,
outer_size
,
channel_size
,
inner_size
,
new_scale_data
,
new_bias_data
);
break
;
// case DATALAYOUT(kNHWC):
// outer_size = x_dims.Slice(0, x_dims.size() - 1).production();
// channel_size = x_dims[x_dims.size() - 1];
// lite::arm::math::scale(x_data, y_data, outer_size, channel_size,
// new_scale_data, new_bias_data);
// break;
default:
LOG
(
FATAL
)
<<
"Unknown storage order: "
<<
DataLayoutToStr
(
param
.
data_layout
);
break
;
}
}
else
{
// TODO(hong19860320) calculate mean_out, variance_out, saved_mean and
// saved_variance
}
}
}
// namespace arm
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
REGISTER_LITE_KERNEL
(
batch_norm
,
kARM
,
kFloat
,
kNCHW
,
paddle
::
lite
::
kernels
::
arm
::
BatchNormCompute
,
def
)
.
BindInput
(
"X"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
BindInput
(
"Scale"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
BindInput
(
"Bias"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
BindInput
(
"Mean"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
BindInput
(
"Variance"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
BindOutput
(
"Y"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
BindOutput
(
"MeanOut"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
BindOutput
(
"VarianceOut"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
BindOutput
(
"SavedMean"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
BindOutput
(
"SavedVariance"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
Finalize
();
paddle/fluid/lite/kernels/arm/batch_norm_compute.h
0 → 100644
浏览文件 @
c659d037
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/lite/core/kernel.h"
#include "paddle/fluid/lite/core/op_registry.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
arm
{
class
BatchNormCompute
:
public
KernelLite
<
TARGET
(
kARM
),
PRECISION
(
kFloat
)
>
{
public:
using
param_t
=
operators
::
BatchNormParam
;
void
PrepareForRun
()
override
;
void
Run
()
override
;
virtual
~
BatchNormCompute
()
=
default
;
private:
Tensor
new_scale
;
Tensor
new_bias
;
};
}
// namespace arm
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
paddle/fluid/lite/kernels/arm/batch_norm_compute_test.cc
0 → 100644
浏览文件 @
c659d037
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/lite/kernels/arm/batch_norm_compute.h"
#include <gtest/gtest.h>
#include <memory>
#include <utility>
#include <vector>
#include "paddle/fluid/lite/core/op_registry.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
arm
{
template
<
typename
dtype
>
void
batch_norm_compute_ref
(
const
operators
::
BatchNormParam
&
param
)
{
DDim
x_dims
=
param
.
x
->
dims
();
auto
x_data
=
param
.
x
->
mutable_data
<
dtype
>
();
auto
scale_data
=
param
.
scale
->
mutable_data
<
dtype
>
();
auto
bias_data
=
param
.
bias
->
mutable_data
<
dtype
>
();
auto
mean_data
=
param
.
mean
->
mutable_data
<
dtype
>
();
auto
variance_data
=
param
.
variance
->
mutable_data
<
dtype
>
();
auto
y_data
=
param
.
y
->
mutable_data
<
dtype
>
();
float
epsilon
=
param
.
epsilon
;
float
momentum
=
param
.
momentum
;
DataLayoutType
data_layout
=
param
.
data_layout
;
bool
global_stats
=
param
.
is_test
||
param
.
use_global_stats
;
if
(
global_stats
)
{
int64_t
outer_size
=
0
;
int64_t
channel_size
=
0
;
int64_t
inner_size
=
0
;
switch
(
data_layout
)
{
case
DATALAYOUT
(
kNCHW
):
outer_size
=
x_dims
[
0
];
channel_size
=
x_dims
[
1
];
inner_size
=
x_dims
.
Slice
(
2
,
x_dims
.
size
()).
production
();
break
;
// case DATALAYOUT(kNHWC):
// outer_size = x_dims.Slice(0, x_dims.size() - 1).production();
// channel_size = x_dims[x_dims.size() - 1];
// inner_size = 1;
// break;
default:
LOG
(
FATAL
)
<<
"Unknown storage order: "
<<
DataLayoutToStr
(
data_layout
);
break
;
}
auto
x_ptr
=
x_data
;
auto
y_ptr
=
y_data
;
for
(
int
o
=
0
;
o
<
outer_size
;
o
++
)
{
for
(
int
c
=
0
;
c
<
channel_size
;
c
++
)
{
for
(
int
i
=
0
;
i
<
inner_size
;
i
++
)
{
dtype
norm_x
=
(
*
x_ptr
-
mean_data
[
c
])
/
std
::
sqrt
(
variance_data
[
c
]
+
epsilon
);
*
y_ptr
=
norm_x
*
scale_data
[
c
]
+
bias_data
[
c
];
x_ptr
++
;
y_ptr
++
;
}
}
}
}
else
{
// TODO(hong19860320) calculate mean_out, variance_out, saved_mean and
// saved_variance
}
}
TEST
(
batch_norm_arm
,
retrive_op
)
{
auto
batch_norm
=
KernelRegistry
::
Global
().
Create
<
TARGET
(
kARM
),
PRECISION
(
kFloat
)
>
(
"batch_norm"
);
ASSERT_FALSE
(
batch_norm
.
empty
());
ASSERT_TRUE
(
batch_norm
.
front
());
}
TEST
(
batch_norm_arm
,
init
)
{
BatchNormCompute
batch_norm
;
ASSERT_EQ
(
batch_norm
.
precision
(),
PRECISION
(
kFloat
));
ASSERT_EQ
(
batch_norm
.
target
(),
TARGET
(
kARM
));
}
TEST
(
batch_norm_arm
,
compute
)
{
DeviceInfo
::
Init
();
for
(
auto
n
:
{
1
,
2
})
{
for
(
auto
c
:
{
6
,
32
/*, 128*/
})
{
for
(
auto
h
:
{
9
,
18
/*, 56 , 112, 224, 512*/
})
{
for
(
auto
w
:
{
9
,
18
/*, 56, 112, 224, 512*/
})
{
for
(
auto
is_test
:
{
/*false, */
true
})
{
for
(
auto
use_global_stats
:
{
false
,
true
})
{
for
(
auto
epsilon
:
{
1e-4
f
,
1e-5
f
})
{
for
(
auto
momentum
:
{
0.9
f
,
0.99
f
})
{
for
(
auto
data_layout
:
{
DATALAYOUT
(
kNCHW
)
/*, DATALAYOUT(kNHWC)*/
})
{
Tensor
x
;
Tensor
scale
;
Tensor
bias
;
Tensor
mean
;
Tensor
variance
;
Tensor
y
;
Tensor
mean_out
;
Tensor
variance_out
;
Tensor
saved_mean
;
Tensor
saved_variance
;
Tensor
y_ref
;
Tensor
mean_out_ref
;
Tensor
variance_out_ref
;
Tensor
saved_mean_ref
;
Tensor
saved_variance_ref
;
// set the dims of input, output, ref output tensors
std
::
vector
<
int64_t
>
in_out_shape
;
switch
(
data_layout
)
{
case
DATALAYOUT
(
kNCHW
):
in_out_shape
=
{
n
,
c
,
h
,
w
};
break
;
// case DATALAYOUT(kNHWC):
// in_out_shape = {n, h, w, c};
// break;
default:
LOG
(
FATAL
)
<<
"Unknown storage order: "
<<
DataLayoutToStr
(
data_layout
);
break
;
}
x
.
Resize
(
in_out_shape
);
scale
.
Resize
({
c
});
bias
.
Resize
({
c
});
mean
.
Resize
({
c
});
variance
.
Resize
({
c
});
y
.
Resize
(
in_out_shape
);
mean_out
.
Resize
({
c
});
variance_out
.
Resize
({
c
});
saved_mean
.
Resize
({
c
});
saved_variance
.
Resize
({
c
});
y_ref
.
Resize
(
in_out_shape
);
mean_out_ref
.
Resize
({
c
});
variance_out_ref
.
Resize
({
c
});
saved_mean_ref
.
Resize
({
c
});
saved_variance_ref
.
Resize
({
c
});
// initialize the data of input tensors
auto
*
x_data
=
x
.
mutable_data
<
float
>
();
auto
*
scale_data
=
scale
.
mutable_data
<
float
>
();
auto
*
bias_data
=
bias
.
mutable_data
<
float
>
();
auto
*
mean_data
=
mean
.
mutable_data
<
float
>
();
auto
*
variance_data
=
variance
.
mutable_data
<
float
>
();
auto
*
y_data
=
y
.
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
x
.
dims
().
production
();
i
++
)
{
x_data
[
i
]
=
static_cast
<
float
>
(
i
%
64
);
}
for
(
int
i
=
0
;
i
<
scale
.
dims
().
production
();
i
++
)
{
scale_data
[
i
]
=
static_cast
<
float
>
(
i
)
*
0.01
f
+
0.03
f
;
}
for
(
int
i
=
0
;
i
<
bias
.
dims
().
production
();
i
++
)
{
bias_data
[
i
]
=
static_cast
<
float
>
(
i
)
*
0.065
f
+
0.1
f
;
}
for
(
int
i
=
0
;
i
<
mean
.
dims
().
production
();
i
++
)
{
mean_data
[
i
]
=
static_cast
<
float
>
(
i
)
*
0.0565
f
;
}
for
(
int
i
=
0
;
i
<
variance
.
dims
().
production
();
i
++
)
{
variance_data
[
i
]
=
static_cast
<
float
>
(
i
)
*
2.08
f
+
1.5
f
;
}
// prepare kernel params and run
BatchNormCompute
batch_norm
;
std
::
unique_ptr
<
KernelContext
>
ctx
(
new
KernelContext
);
ctx
->
As
<
ARMContext
>
();
batch_norm
.
SetContext
(
std
::
move
(
ctx
));
operators
::
BatchNormParam
param
;
param
.
x
=
&
x
;
param
.
scale
=
&
scale
;
param
.
bias
=
&
bias
;
param
.
mean
=
&
mean
;
param
.
variance
=
&
variance
;
param
.
is_test
=
is_test
;
param
.
use_global_stats
=
use_global_stats
;
param
.
epsilon
=
epsilon
;
param
.
momentum
=
momentum
;
param
.
data_layout
=
data_layout
;
param
.
y
=
&
y
;
param
.
mean_out
=
&
mean_out
;
param
.
variance_out
=
&
variance_out
;
param
.
saved_mean
=
&
saved_mean
;
param
.
saved_variance
=
&
saved_variance
;
batch_norm
.
SetParam
(
param
);
batch_norm
.
Launch
();
// invoking ref implementation and compare results
param
.
y
=
&
y_ref
;
param
.
mean_out
=
&
mean_out_ref
;
param
.
variance_out
=
&
variance_out_ref
;
param
.
saved_mean
=
&
saved_mean_ref
;
param
.
saved_variance
=
&
saved_variance_ref
;
batch_norm_compute_ref
<
float
>
(
param
);
auto
*
y_ref_data
=
y_ref
.
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
y
.
dims
().
production
();
i
++
)
{
EXPECT_NEAR
(
y_data
[
i
],
y_ref_data
[
i
],
1e-5
);
}
}
}
}
}
}
}
}
}
}
}
}
// namespace arm
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
USE_LITE_KERNEL
(
batch_norm
,
kARM
,
kFloat
,
kNCHW
,
def
);
paddle/fluid/lite/kernels/arm/conv_compute_test.cc
浏览文件 @
c659d037
...
@@ -124,7 +124,20 @@ TEST(conv_arm, init) {
...
@@ -124,7 +124,20 @@ TEST(conv_arm, init) {
TEST
(
conv_arm
,
compute
)
{
TEST
(
conv_arm
,
compute
)
{
DeviceInfo
::
Init
();
DeviceInfo
::
Init
();
#if 0
#if 1
for
(
auto
n
:
{
2
})
{
for
(
auto
ic
:
{
6
})
{
for
(
auto
oc
:
{
6
})
{
for
(
auto
ih
:
{
9
})
{
for
(
auto
iw
:
{
9
})
{
for
(
auto
flag_bias
:
{
false
,
true
})
{
for
(
auto
flag_relu
:
{
false
,
true
})
{
for
(
auto
depthwise
:
{
false
,
true
})
{
for
(
auto
dilation
:
{
1
})
{
for
(
auto
stride
:
{
1
,
2
})
{
for
(
auto
padding
:
{
0
,
1
,
2
})
{
for
(
auto
ks
:
{
1
,
3
,
5
})
{
#else
for
(
auto
n
:
{
1
,
2
})
{
for
(
auto
n
:
{
1
,
2
})
{
for
(
auto
ic
:
{
6
,
32
/*, 128*/
})
{
for
(
auto
ic
:
{
6
,
32
/*, 128*/
})
{
for
(
auto
oc
:
{
6
,
32
/*, 128*/
})
{
for
(
auto
oc
:
{
6
,
32
/*, 128*/
})
{
...
@@ -137,19 +150,6 @@ TEST(conv_arm, compute) {
...
@@ -137,19 +150,6 @@ TEST(conv_arm, compute) {
for
(
auto
stride
:
{
1
,
2
})
{
for
(
auto
stride
:
{
1
,
2
})
{
for
(
auto
padding
:
{
0
,
1
,
2
})
{
for
(
auto
padding
:
{
0
,
1
,
2
})
{
for
(
auto
ks
:
{
1
,
3
,
5
})
{
for
(
auto
ks
:
{
1
,
3
,
5
})
{
#else
for
(
auto
n
:
{
1
})
{
for
(
auto
ic
:
{
6
})
{
for
(
auto
oc
:
{
6
})
{
for
(
auto
ih
:
{
9
})
{
for
(
auto
iw
:
{
9
})
{
for
(
auto
flag_bias
:
{
false
,
true
})
{
for
(
auto
flag_relu
:
{
false
,
true
})
{
for
(
auto
depthwise
:
{
false
,
true
})
{
for
(
auto
dilation
:
{
1
})
{
for
(
auto
stride
:
{
1
})
{
for
(
auto
padding
:
{
0
,
1
})
{
for
(
auto
ks
:
{
1
,
3
,
5
})
{
#endif
#endif
int
group
=
1
;
int
group
=
1
;
if
(
depthwise
)
{
// depthwise convolution ?
if
(
depthwise
)
{
// depthwise convolution ?
...
...
paddle/fluid/lite/kernels/arm/fc_compute.cc
浏览文件 @
c659d037
...
@@ -22,6 +22,10 @@ namespace lite {
...
@@ -22,6 +22,10 @@ namespace lite {
namespace
kernels
{
namespace
kernels
{
namespace
arm
{
namespace
arm
{
void
FcCompute
::
PrepareForRun
()
{
// TODO(TJ): transpose weight
}
void
FcCompute
::
Run
()
{
void
FcCompute
::
Run
()
{
auto
&
param
=
this
->
Param
<
operators
::
FcParam
>
();
auto
&
param
=
this
->
Param
<
operators
::
FcParam
>
();
auto
x_dims
=
param
.
input
->
dims
();
auto
x_dims
=
param
.
input
->
dims
();
...
@@ -48,22 +52,16 @@ void FcCompute::Run() {
...
@@ -48,22 +52,16 @@ void FcCompute::Run() {
&
ctx
);
&
ctx
);
lite
::
arm
::
math
::
sgemm_prepack
(
packed_in
,
w_data
,
b_data
,
o_data
,
x_h
,
n
,
lite
::
arm
::
math
::
sgemm_prepack
(
packed_in
,
w_data
,
b_data
,
o_data
,
x_h
,
n
,
x_w
,
false
,
false
,
false
,
&
ctx
);
x_w
,
false
,
false
,
false
,
&
ctx
);
if
(
param
.
bias
)
{
if
(
param
.
bias
)
{
CHECK_EQ
(
param
.
bias
->
numel
(),
n
);
CHECK_EQ
(
param
.
bias
->
numel
(),
n
);
lite
::
arm
::
math
::
fill_bias_fc
(
o_data
,
b_data
,
x_h
,
n
);
lite
::
arm
::
math
::
fill_bias_fc
(
o_data
,
b_data
,
x_h
,
n
);
}
}
}
else
{
}
else
{
// use sgemmv
lite
::
arm
::
math
::
sgemv
(
w_data
,
i_data
,
o_data
,
false
,
n
,
x_w
,
// sgemv((const float*)weights, (const float*)din, (float*)dout,
b_data
!=
nullptr
,
b_data
,
false
);
// false, n, x_w, _param->_flag_bias, (float*)bias, false);
}
}
}
}
TargetType
FcCompute
::
target
()
const
{
return
TARGET
(
kARM
);
}
PrecisionType
FcCompute
::
precision
()
const
{
return
PRECISION
(
kFloat
);
}
}
// namespace arm
}
// namespace arm
}
// namespace kernels
}
// namespace kernels
}
// namespace lite
}
// namespace lite
...
...
paddle/fluid/lite/kernels/arm/fc_compute.h
浏览文件 @
c659d037
...
@@ -25,10 +25,9 @@ class FcCompute : public KernelLite<TARGET(kARM), PRECISION(kFloat)> {
...
@@ -25,10 +25,9 @@ class FcCompute : public KernelLite<TARGET(kARM), PRECISION(kFloat)> {
public:
public:
using
param_t
=
operators
::
FcParam
;
using
param_t
=
operators
::
FcParam
;
void
Run
()
override
;
void
PrepareFor
Run
()
override
;
TargetType
target
()
const
override
;
void
Run
()
override
;
PrecisionType
precision
()
const
override
;
virtual
~
FcCompute
()
=
default
;
virtual
~
FcCompute
()
=
default
;
};
};
...
...
paddle/fluid/lite/kernels/arm/mul_compute.cc
浏览文件 @
c659d037
...
@@ -12,57 +12,57 @@
...
@@ -12,57 +12,57 @@
// See the License for the specific language governing permissions and
// See the License for the specific language governing permissions and
// limitations under the License.
// limitations under the License.
#include
<Eigen/Core>
#include
"paddle/fluid/lite/kernels/arm/mul_compute.h"
#include "paddle/fluid/lite/
core/kernel
.h"
#include "paddle/fluid/lite/
arm/math/funcs
.h"
#include "paddle/fluid/lite/core/op_registry.h"
#include "paddle/fluid/lite/core/op_registry.h"
#include "paddle/fluid/lite/core/type
s
.h"
#include "paddle/fluid/lite/core/type
_system
.h"
namespace
paddle
{
namespace
paddle
{
namespace
lite
{
namespace
lite
{
namespace
kernels
{
namespace
kernels
{
namespace
arm
{
namespace
arm
{
template
<
typename
T
>
void
MulCompute
::
PrepareForRun
()
{
void
mul_compute_eigen
(
const
T
*
x
,
int
x_h
,
int
x_w
,
const
T
*
y
,
int
y_h
,
// TODO(TJ): transpose x or y if necessary
int
y_w
,
T
*
out
)
{
}
using
matrix_t
=
Eigen
::
Matrix
<
T
,
Eigen
::
Dynamic
,
Eigen
::
Dynamic
,
Eigen
::
RowMajor
>
;
Eigen
::
Map
<
const
matrix_t
>
X
(
x
,
x_h
,
x_w
);
void
MulCompute
::
Run
()
{
Eigen
::
Map
<
const
matrix_t
>
Y
(
y
,
y_h
,
y_w
);
auto
&
param
=
Param
<
param_t
>
();
Eigen
::
Map
<
matrix_t
>
Out
(
out
,
x_h
,
y_w
);
Out
=
X
*
Y
;
const
auto
*
x_data
=
param
.
x
->
data
<
float
>
();
}
const
auto
*
y_data
=
param
.
y
->
data
<
float
>
();
auto
*
o_data
=
param
.
output
->
mutable_data
<
float
>
();
class
MulCompute
:
public
KernelLite
<
TARGET
(
kARM
),
PRECISION
(
kFloat
)
>
{
int
m
=
static_cast
<
int
>
(
public:
param
.
x
->
dims
().
Slice
(
0
,
param
.
x_num_col_dims
).
production
());
using
param_t
=
operators
::
MulParam
;
int
x_w
=
static_cast
<
int
>
(
param
.
x
->
dims
()
.
Slice
(
param
.
x_num_col_dims
,
param
.
x
->
dims
().
size
())
.
production
());
int
y_h
=
static_cast
<
int
>
(
param
.
y
->
dims
().
Slice
(
0
,
param
.
y_num_col_dims
).
production
());
int
n
=
static_cast
<
int
>
(
param
.
y
->
dims
()
.
Slice
(
param
.
y_num_col_dims
,
param
.
y
->
dims
().
size
())
.
production
());
void
Run
()
override
{
CHECK_EQ
(
x_w
,
y_h
)
<<
"x_w must be equal with y_h"
;
auto
&
param
=
Param
<
operators
::
MulParam
>
();
auto
k
=
x_w
;
core
::
dim2
x_shape
(
if
(
n
==
1
)
{
{
static_cast
<
int
>
(
lite
::
arm
::
math
::
sgemv
(
x_data
,
y_data
,
o_data
,
false
,
m
,
k
,
false
,
nullptr
,
param
.
x
->
dims
().
Slice
(
0
,
param
.
x_num_col_dims
).
production
()),
false
);
static_cast
<
int
>
(
param
.
x
->
dims
()
.
Slice
(
param
.
x_num_col_dims
,
param
.
x
->
dims
().
size
())
.
production
())});
core
::
dim2
y_shape
(
{
static_cast
<
int
>
(
param
.
y
->
dims
().
Slice
(
0
,
param
.
y_num_col_dims
).
production
()),
static_cast
<
int
>
(
param
.
y
->
dims
()
.
Slice
(
param
.
y_num_col_dims
,
param
.
y
->
dims
().
size
())
.
production
())});
mul_compute_eigen
(
param
.
x
->
data
<
float
>
(),
x_shape
.
x
,
x_shape
.
y
,
//
}
else
{
param
.
y
->
data
<
float
>
(),
y_shape
.
x
,
y_shape
.
y
,
//
constexpr
bool
is_tranposed_y
=
false
;
param
.
output
->
mutable_data
<
float
>
());
auto
&
ctx
=
this
->
ctx_
->
template
As
<
ARMContext
>();
}
virtual
~
MulCompute
()
=
default
;
float
*
packed_x
=
static_cast
<
float
*>
(
ctx
.
workspace_data
<
float
>
())
+
};
ctx
.
l2_cache_size
()
/
sizeof
(
float
);
lite
::
arm
::
math
::
prepackA
(
packed_x
,
x_data
,
k
,
0
,
m
,
0
,
k
,
false
,
&
ctx
);
lite
::
arm
::
math
::
sgemm_prepack
(
packed_x
,
y_data
,
nullptr
,
o_data
,
m
,
n
,
k
,
false
,
false
,
is_tranposed_y
,
&
ctx
);
}
}
}
// namespace arm
}
// namespace arm
}
// namespace kernels
}
// namespace kernels
...
...
paddle/fluid/lite/kernels/arm/mul_compute.h
0 → 100644
浏览文件 @
c659d037
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/lite/core/kernel.h"
#include "paddle/fluid/lite/core/op_registry.h"
#include "paddle/fluid/lite/core/types.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
arm
{
class
MulCompute
:
public
KernelLite
<
TARGET
(
kARM
),
PRECISION
(
kFloat
)
>
{
public:
using
param_t
=
operators
::
MulParam
;
void
PrepareForRun
()
override
;
void
Run
()
override
;
virtual
~
MulCompute
()
=
default
;
};
}
// namespace arm
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
paddle/fluid/lite/kernels/arm/mul_compute_test.cc
0 → 100644
浏览文件 @
c659d037
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/lite/kernels/arm/mul_compute.h"
#include <gtest/gtest.h>
#include <algorithm>
#include <iostream>
#include <memory>
#include <random>
#include <utility>
#include <vector>
#include "paddle/fluid/lite/arm/math/funcs.h"
#include "paddle/fluid/lite/core/op_registry.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
arm
{
template
<
typename
T
>
void
FillData
(
T
*
a
,
const
int
n
,
const
T
lower
=
static_cast
<
T
>
(
-
2.
f
),
const
T
upper
=
static_cast
<
T
>
(
2.
f
))
{
static
unsigned
int
seed
=
100
;
std
::
mt19937
rng
(
seed
++
);
std
::
uniform_real_distribution
<
double
>
uniform_dist
(
0
,
1
);
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
a
[
i
]
=
static_cast
<
T
>
(
uniform_dist
(
rng
)
*
(
upper
-
lower
)
+
lower
);
}
}
TEST
(
mul_arm
,
retrive_op
)
{
auto
mul
=
KernelRegistry
::
Global
().
Create
<
TARGET
(
kARM
),
PRECISION
(
kFloat
)
>
(
"mul"
);
ASSERT_FALSE
(
mul
.
empty
());
ASSERT_TRUE
(
mul
.
front
());
}
TEST
(
mul_arm
,
init
)
{
MulCompute
mul
;
ASSERT_EQ
(
mul
.
precision
(),
PRECISION
(
kFloat
));
ASSERT_EQ
(
mul
.
target
(),
TARGET
(
kARM
));
}
TEST
(
mul_arm
,
compare_test
)
{
using
T
=
float
;
for
(
int
m
:
{
1
,
2
,
3
,
4
})
{
for
(
int
n
:
{
1
,
2
,
3
,
4
})
{
for
(
int
k
:
{
1
,
2
,
3
,
4
})
{
VLOG
(
3
)
<<
"m: "
<<
m
<<
", n: "
<<
n
<<
", k: "
<<
k
;
lite
::
Tensor
x
,
y
,
out
,
ref
;
x
.
Resize
({
m
,
k
});
y
.
Resize
({
k
,
n
});
out
.
Resize
({
m
,
n
});
ref
.
Resize
({
m
,
n
});
auto
*
x_data
=
x
.
mutable_data
<
T
>
();
auto
*
y_data
=
y
.
mutable_data
<
T
>
();
auto
*
out_data
=
out
.
mutable_data
<
T
>
();
auto
*
ref_data
=
ref
.
mutable_data
<
T
>
();
FillData
<
T
>
(
x_data
,
x
.
dims
().
production
());
FillData
<
T
>
(
y_data
,
y
.
dims
().
production
());
FillData
<
T
>
(
out_data
,
out
.
dims
().
production
(),
0
,
0
);
FillData
<
T
>
(
ref_data
,
ref
.
dims
().
production
(),
0
,
0
);
MulCompute
mul
;
operators
::
MulParam
param
;
param
.
x
=
&
x
;
param
.
y
=
&
y
;
param
.
output
=
&
out
;
DeviceInfo
::
Init
();
std
::
unique_ptr
<
KernelContext
>
ctx
(
new
KernelContext
);
ctx
->
As
<
ARMContext
>
();
mul
.
SetParam
(
param
);
mul
.
SetContext
(
std
::
move
(
ctx
));
mul
.
PrepareForRun
();
mul
.
Run
();
lite
::
arm
::
math
::
mul_compute_eigen
(
x_data
,
m
,
k
,
y_data
,
k
,
n
,
ref_data
);
for
(
int
i
=
0
;
i
<
out
.
dims
().
production
();
i
++
)
{
EXPECT_NEAR
(
out_data
[
i
],
ref_data
[
i
],
1e-3
);
}
}
}
}
}
TEST
(
mul_arm
,
num_col_dims
)
{
using
T
=
float
;
lite
::
Tensor
x
,
y
,
out
,
ref
;
x
.
Resize
({
2
,
3
,
4
});
y
.
Resize
({
3
,
4
,
5
});
out
.
Resize
({
2
,
5
});
ref
.
Resize
({
2
,
5
});
auto
*
x_data
=
x
.
mutable_data
<
T
>
();
auto
*
y_data
=
y
.
mutable_data
<
T
>
();
auto
*
out_data
=
out
.
mutable_data
<
T
>
();
auto
*
ref_data
=
ref
.
mutable_data
<
T
>
();
FillData
<
T
>
(
x_data
,
x
.
dims
().
production
());
FillData
<
T
>
(
y_data
,
y
.
dims
().
production
());
FillData
<
T
>
(
out_data
,
out
.
dims
().
production
());
FillData
<
T
>
(
ref_data
,
out
.
dims
().
production
());
MulCompute
mul
;
operators
::
MulParam
param
;
param
.
x
=
&
x
;
param
.
y
=
&
y
;
param
.
output
=
&
out
;
param
.
x_num_col_dims
=
1
;
param
.
y_num_col_dims
=
2
;
DeviceInfo
::
Init
();
std
::
unique_ptr
<
KernelContext
>
ctx
(
new
KernelContext
);
ctx
->
As
<
ARMContext
>
();
mul
.
SetParam
(
param
);
mul
.
SetContext
(
std
::
move
(
ctx
));
mul
.
PrepareForRun
();
mul
.
Run
();
lite
::
arm
::
math
::
mul_compute_eigen
(
x_data
,
2
,
12
,
y_data
,
12
,
5
,
ref_data
);
for
(
int
i
=
0
;
i
<
out
.
dims
().
production
();
i
++
)
{
EXPECT_NEAR
(
out_data
[
i
],
ref_data
[
i
],
1e-3
);
}
}
}
// namespace arm
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
USE_LITE_KERNEL
(
mul
,
kARM
,
kFloat
,
kNCHW
,
def
);
paddle/fluid/lite/kernels/arm/pool_compute_test.cc
浏览文件 @
c659d037
...
@@ -182,7 +182,7 @@ TEST(pool_arm, compute) {
...
@@ -182,7 +182,7 @@ TEST(pool_arm, compute) {
for
(
auto
stride
:
{
2
})
{
for
(
auto
stride
:
{
2
})
{
for
(
auto
pad
:
{
0
})
{
for
(
auto
pad
:
{
0
})
{
for
(
auto
n
:
{
1
,
3
,
4
,
11
})
{
for
(
auto
n
:
{
1
,
3
,
4
,
11
})
{
for
(
auto
c
:
{
1
,
3
,
11
,
4
,
1024
})
{
for
(
auto
c
:
{
1
,
3
,
11
/* ,1024 */
})
{
// speedup for ci
for
(
auto
h
:
{
3
,
1
,
11
,
4
,
1
})
{
for
(
auto
h
:
{
3
,
1
,
11
,
4
,
1
})
{
for
(
auto
w
:
{
1
,
3
,
4
,
12
,
1
})
{
for
(
auto
w
:
{
1
,
3
,
4
,
12
,
1
})
{
VLOG
(
3
)
<<
"n:"
<<
n
<<
" c:"
<<
c
<<
" h:"
<<
h
<<
" w:"
<<
w
VLOG
(
3
)
<<
"n:"
<<
n
<<
" c:"
<<
c
<<
" h:"
<<
h
<<
" w:"
<<
w
...
...
paddle/fluid/lite/kernels/arm/scale_compute_test.cc
浏览文件 @
c659d037
...
@@ -54,6 +54,15 @@ TEST(scale_arm, compute) {
...
@@ -54,6 +54,15 @@ TEST(scale_arm, compute) {
lite
::
Tensor
output
;
lite
::
Tensor
output
;
lite
::
Tensor
output_ref
;
lite
::
Tensor
output_ref
;
#if 1 // for ci speedup
for
(
auto
n
:
{
1
,
3
})
{
for
(
auto
c
:
{
1
,
3
})
{
for
(
auto
h
:
{
3
,
4
})
{
for
(
auto
w
:
{
4
,
3
})
{
for
(
auto
bias_after_scale
:
{
true
,
false
})
{
for
(
auto
s
:
{
-
1.0
f
,
0.13
f
})
{
for
(
auto
b
:
{
-
15.
f
,
0.11234
f
})
{
#else
for
(
auto
n
:
{
1
,
3
,
4
,
11
})
{
for
(
auto
n
:
{
1
,
3
,
4
,
11
})
{
for
(
auto
c
:
{
1
,
3
,
11
,
4
})
{
for
(
auto
c
:
{
1
,
3
,
11
,
4
})
{
for
(
auto
h
:
{
3
,
1
,
11
,
4
})
{
for
(
auto
h
:
{
3
,
1
,
11
,
4
})
{
...
@@ -61,6 +70,8 @@ TEST(scale_arm, compute) {
...
@@ -61,6 +70,8 @@ TEST(scale_arm, compute) {
for
(
auto
bias_after_scale
:
{
true
,
false
})
{
for
(
auto
bias_after_scale
:
{
true
,
false
})
{
for
(
auto
s
:
{
-
100.25
f
,
-
1.0
f
,
0.13
f
,
3840.975
f
})
{
for
(
auto
s
:
{
-
100.25
f
,
-
1.0
f
,
0.13
f
,
3840.975
f
})
{
for
(
auto
b
:
{
-
3075.495
f
,
-
15.
f
,
0.11234
f
,
128.15
f
})
{
for
(
auto
b
:
{
-
3075.495
f
,
-
15.
f
,
0.11234
f
,
128.15
f
})
{
#endif
x
.
Resize
(
DDim
(
std
::
vector
<
int64_t
>
({
n
,
c
,
h
,
w
})));
x
.
Resize
(
DDim
(
std
::
vector
<
int64_t
>
({
n
,
c
,
h
,
w
})));
output
.
Resize
(
DDim
(
std
::
vector
<
int64_t
>
({
n
,
c
,
h
,
w
})));
output
.
Resize
(
DDim
(
std
::
vector
<
int64_t
>
({
n
,
c
,
h
,
w
})));
output_ref
.
Resize
(
DDim
(
std
::
vector
<
int64_t
>
({
n
,
c
,
h
,
w
})));
output_ref
.
Resize
(
DDim
(
std
::
vector
<
int64_t
>
({
n
,
c
,
h
,
w
})));
...
...
paddle/fluid/lite/kernels/arm/split_compute.cc
浏览文件 @
c659d037
...
@@ -24,7 +24,7 @@ namespace arm {
...
@@ -24,7 +24,7 @@ namespace arm {
void
SplitCompute
::
Run
()
{
void
SplitCompute
::
Run
()
{
auto
&
param
=
Param
<
operators
::
SplitParam
>
();
auto
&
param
=
Param
<
operators
::
SplitParam
>
();
const
float
*
din
=
param
.
x
->
data
<
float
>
();
const
float
*
din
=
param
.
x
->
data
<
float
>
();
auto
*
dout
=
param
.
output
;
auto
&
dout
=
param
.
output
;
auto
in_dim
=
param
.
x
->
dims
();
auto
in_dim
=
param
.
x
->
dims
();
std
::
vector
<
int
>
in_strides
(
in_dim
.
size
());
std
::
vector
<
int
>
in_strides
(
in_dim
.
size
());
in_strides
[
in_dim
.
size
()
-
1
]
=
in_dim
[
in_dim
.
size
()
-
1
];
in_strides
[
in_dim
.
size
()
-
1
]
=
in_dim
[
in_dim
.
size
()
-
1
];
...
...
paddle/fluid/lite/kernels/arm/split_compute_test.cc
浏览文件 @
c659d037
...
@@ -24,20 +24,10 @@ namespace kernels {
...
@@ -24,20 +24,10 @@ namespace kernels {
namespace
arm
{
namespace
arm
{
void
splite_resize_out
(
const
lite
::
Tensor
*
din
,
void
splite_resize_out
(
const
lite
::
Tensor
*
din
,
std
::
vector
<
lite
::
Tensor
*>*
dout
,
int
axis
,
int
num
,
const
std
::
vector
<
lite
::
Tensor
*>&
dout
,
int
axis
,
const
std
::
vector
<
int
>&
sections
)
{
int
num
,
const
std
::
vector
<
int
>&
sections
)
{
for
(
auto
out
:
*
dout
)
delete
out
;
dout
->
clear
();
auto
in_dims
=
din
->
dims
();
auto
in_dims
=
din
->
dims
();
int
outs_number
;
int
outs_number
=
dout
.
size
();
if
(
num
>
0
)
{
outs_number
=
num
;
}
else
{
outs_number
=
sections
.
size
();
}
for
(
int
i
=
0
;
i
<
outs_number
;
i
++
)
{
dout
->
push_back
(
new
lite
::
Tensor
);
}
std
::
vector
<
lite
::
DDimLite
>
outs_dims
;
std
::
vector
<
lite
::
DDimLite
>
outs_dims
;
outs_dims
.
reserve
(
outs_number
);
outs_dims
.
reserve
(
outs_number
);
...
@@ -58,7 +48,7 @@ void splite_resize_out(const lite::Tensor* din,
...
@@ -58,7 +48,7 @@ void splite_resize_out(const lite::Tensor* din,
}
}
for
(
int
j
=
0
;
j
<
outs_dims
.
size
();
++
j
)
{
for
(
int
j
=
0
;
j
<
outs_dims
.
size
();
++
j
)
{
(
*
dout
)
[
j
]
->
Resize
(
outs_dims
[
j
]);
dout
[
j
]
->
Resize
(
outs_dims
[
j
]);
}
}
}
}
...
@@ -75,7 +65,7 @@ void split_compute_ref(const operators::SplitParam& param) {
...
@@ -75,7 +65,7 @@ void split_compute_ref(const operators::SplitParam& param) {
}
}
int
input_offset
=
0
;
int
input_offset
=
0
;
for
(
auto
out
:
*
dout
)
{
for
(
auto
out
:
dout
)
{
auto
out_dim
=
out
->
dims
();
auto
out_dim
=
out
->
dims
();
std
::
vector
<
int
>
out_strides
(
out_dim
.
size
());
std
::
vector
<
int
>
out_strides
(
out_dim
.
size
());
out_strides
[
out_dim
.
size
()
-
1
]
=
out_dim
[
out_dim
.
size
()
-
1
];
out_strides
[
out_dim
.
size
()
-
1
]
=
out_dim
[
out_dim
.
size
()
-
1
];
...
@@ -128,16 +118,31 @@ TEST(split_arm, compute) {
...
@@ -128,16 +118,31 @@ TEST(split_arm, compute) {
for
(
int
i
=
0
;
i
<
x
.
dims
().
production
();
i
++
)
{
for
(
int
i
=
0
;
i
<
x
.
dims
().
production
();
i
++
)
{
x_data
[
i
]
=
i
;
x_data
[
i
]
=
i
;
}
}
splite_resize_out
(
&
x
,
&
output
,
axis
,
num
,
sections
);
for
(
auto
out
:
output
)
delete
out
;
splite_resize_out
(
&
x
,
&
output_ref
,
axis
,
num
,
sections
);
for
(
auto
out
:
output_ref
)
delete
out
;
output
.
clear
();
output_ref
.
clear
();
int
outs_number
;
if
(
num
>
0
)
{
outs_number
=
num
;
}
else
{
outs_number
=
sections
.
size
();
}
for
(
int
i
=
0
;
i
<
outs_number
;
i
++
)
{
output
.
push_back
(
new
lite
::
Tensor
);
output_ref
.
push_back
(
new
lite
::
Tensor
);
}
splite_resize_out
(
&
x
,
output
,
axis
,
num
,
sections
);
splite_resize_out
(
&
x
,
output_ref
,
axis
,
num
,
sections
);
param
.
x
=
&
x
;
param
.
x
=
&
x
;
param
.
axis
=
axis
;
param
.
axis
=
axis
;
param
.
num
=
num
;
param
.
num
=
num
;
param
.
sections
=
&
sections
;
param
.
sections
=
sections
;
param
.
output
=
&
output
;
param
.
output
=
output
;
split
.
SetParam
(
param
);
split
.
SetParam
(
param
);
split
.
Run
();
split
.
Run
();
param
.
output
=
&
output_ref
;
param
.
output
=
output_ref
;
split_compute_ref
<
float
>
(
param
);
split_compute_ref
<
float
>
(
param
);
for
(
int
i
=
0
;
i
<
output
.
size
();
i
++
)
{
for
(
int
i
=
0
;
i
<
output
.
size
();
i
++
)
{
float
*
output_data
=
output
[
i
]
->
mutable_data
<
float
>
();
float
*
output_data
=
output
[
i
]
->
mutable_data
<
float
>
();
...
...
paddle/fluid/lite/operators/CMakeLists.txt
浏览文件 @
c659d037
...
@@ -8,6 +8,7 @@ cc_library(mul_op_lite SRCS mul_op.cc DEPS ${op_DEPS})
...
@@ -8,6 +8,7 @@ cc_library(mul_op_lite SRCS mul_op.cc DEPS ${op_DEPS})
cc_library
(
scale_op_lite SRCS scale_op.cc DEPS
${
op_DEPS
}
)
cc_library
(
scale_op_lite SRCS scale_op.cc DEPS
${
op_DEPS
}
)
cc_library
(
softmax_op_lite SRCS softmax_op.cc DEPS
${
op_DEPS
}
)
cc_library
(
softmax_op_lite SRCS softmax_op.cc DEPS
${
op_DEPS
}
)
cc_library
(
reshape_op_lite SRCS reshape_op.cc DEPS
${
op_DEPS
}
)
cc_library
(
reshape_op_lite SRCS reshape_op.cc DEPS
${
op_DEPS
}
)
cc_library
(
batch_norm_op_lite SRCS batch_norm_op.cc DEPS
${
op_DEPS
}
)
cc_library
(
feed_op_lite SRCS feed_op.cc DEPS
${
op_DEPS
}
)
cc_library
(
feed_op_lite SRCS feed_op.cc DEPS
${
op_DEPS
}
)
cc_library
(
fetch_op_lite SRCS fetch_op.cc DEPS
${
op_DEPS
}
)
cc_library
(
fetch_op_lite SRCS fetch_op.cc DEPS
${
op_DEPS
}
)
cc_library
(
io_copy_op_lite SRCS io_copy_op.cc DEPS
${
op_DEPS
}
)
cc_library
(
io_copy_op_lite SRCS io_copy_op.cc DEPS
${
op_DEPS
}
)
...
@@ -30,6 +31,7 @@ set(ops_lite
...
@@ -30,6 +31,7 @@ set(ops_lite
scale_op_lite
scale_op_lite
softmax_op_lite
softmax_op_lite
reshape_op_lite
reshape_op_lite
batch_norm_op_lite
feed_op_lite
feed_op_lite
fetch_op_lite
fetch_op_lite
io_copy_op_lite
io_copy_op_lite
...
@@ -52,4 +54,5 @@ lite_cc_test(test_pool_op_lite SRCS pool_op_test.cc
...
@@ -52,4 +54,5 @@ lite_cc_test(test_pool_op_lite SRCS pool_op_test.cc
lite_cc_test
(
test_scale_op_lite SRCS scale_op_test.cc DEPS scale_op_lite memory_lite
)
lite_cc_test
(
test_scale_op_lite SRCS scale_op_test.cc DEPS scale_op_lite memory_lite
)
lite_cc_test
(
test_softmax_op_lite SRCS softmax_op_test.cc DEPS softmax_op_lite memory_lite
)
lite_cc_test
(
test_softmax_op_lite SRCS softmax_op_test.cc DEPS softmax_op_lite memory_lite
)
lite_cc_test
(
test_reshape_op_lite SRCS reshape_op_test.cc DEPS reshape_op_lite memory_lite
)
lite_cc_test
(
test_reshape_op_lite SRCS reshape_op_test.cc DEPS reshape_op_lite memory_lite
)
lite_cc_test
(
test_batch_norm_op_lite SRCS batch_norm_op_test.cc DEPS batch_norm_op_lite memory_lite
)
lite_cc_test
(
test_concat_op_lite SRCS concat_op_test.cc DEPS concat_op_lite memory_lite
)
lite_cc_test
(
test_concat_op_lite SRCS concat_op_test.cc DEPS concat_op_lite memory_lite
)
paddle/fluid/lite/operators/batch_norm_op.cc
0 → 100644
浏览文件 @
c659d037
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/lite/operators/batch_norm_op.h"
#include "paddle/fluid/lite/core/op_registry.h"
namespace
paddle
{
namespace
lite
{
namespace
operators
{
bool
BatchNormOp
::
CheckShape
()
const
{
CHECK_OR_FALSE
(
param_
.
x
);
CHECK_OR_FALSE
(
param_
.
bias
);
CHECK_OR_FALSE
(
param_
.
scale
);
CHECK_OR_FALSE
(
param_
.
mean
);
CHECK_OR_FALSE
(
param_
.
variance
);
CHECK_OR_FALSE
(
param_
.
y
);
if
(
!
param_
.
is_test
)
{
CHECK_OR_FALSE
(
param_
.
mean_out
);
CHECK_OR_FALSE
(
param_
.
variance_out
);
CHECK_OR_FALSE
(
param_
.
saved_mean
);
CHECK_OR_FALSE
(
param_
.
saved_variance
);
}
auto
x_dims
=
param_
.
x
->
dims
();
auto
scale_dims
=
param_
.
scale
->
dims
();
auto
bias_dims
=
param_
.
bias
->
dims
();
auto
mean_dims
=
param_
.
mean
->
dims
();
auto
variance_dims
=
param_
.
variance
->
dims
();
CHECK
(
x_dims
.
size
()
>=
2
&&
x_dims
.
size
()
<=
5
)
<<
"Input X must have 2 to 5 dimensions."
;
CHECK_EQ
(
scale_dims
.
size
(),
1UL
)
<<
"Input Scale must have 1 dimensions."
;
CHECK_EQ
(
bias_dims
.
size
(),
1UL
)
<<
"Input Bias must have 1 dimensions."
;
CHECK_EQ
(
mean_dims
.
size
(),
1UL
)
<<
"Input Mean must have 1 dimensions."
;
CHECK_EQ
(
variance_dims
.
size
(),
1UL
)
<<
"Input Variance must have 1 dimensions."
;
return
true
;
}
bool
BatchNormOp
::
InferShape
()
const
{
auto
x_dims
=
param_
.
x
->
dims
();
int64_t
channel_size
=
0
;
switch
(
param_
.
data_layout
)
{
case
DATALAYOUT
(
kNCHW
):
channel_size
=
x_dims
[
1
];
break
;
// case DATALAYOUT(kNHWC):
// channel_size = x_dims[x_dims.size() - 1];
// break;
default:
LOG
(
FATAL
)
<<
"Unknown storage order: "
<<
DataLayoutToStr
(
param_
.
data_layout
);
break
;
}
if
(
!
param_
.
is_test
)
{
param_
.
mean_out
->
Resize
({
channel_size
});
param_
.
variance_out
->
Resize
({
channel_size
});
param_
.
saved_mean
->
Resize
({
channel_size
});
param_
.
saved_variance
->
Resize
({
channel_size
});
}
param_
.
y
->
Resize
(
x_dims
);
return
true
;
}
bool
BatchNormOp
::
AttachImpl
(
const
cpp
::
OpDesc
&
op_desc
,
lite
::
Scope
*
scope
)
{
param_
.
x
=
scope
->
FindVar
(
op_desc
.
Input
(
"X"
).
front
())
->
GetMutable
<
Tensor
>
();
param_
.
bias
=
scope
->
FindVar
(
op_desc
.
Input
(
"Bias"
).
front
())
->
GetMutable
<
Tensor
>
();
param_
.
scale
=
scope
->
FindVar
(
op_desc
.
Input
(
"Scale"
).
front
())
->
GetMutable
<
Tensor
>
();
param_
.
mean
=
scope
->
FindVar
(
op_desc
.
Input
(
"Mean"
).
front
())
->
GetMutable
<
Tensor
>
();
param_
.
variance
=
scope
->
FindVar
(
op_desc
.
Input
(
"Variance"
).
front
())
->
GetMutable
<
Tensor
>
();
param_
.
y
=
scope
->
FindVar
(
op_desc
.
Output
(
"Y"
).
front
())
->
GetMutable
<
Tensor
>
();
param_
.
is_test
=
op_desc
.
GetAttr
<
bool
>
(
"is_test"
);
param_
.
use_global_stats
=
op_desc
.
GetAttr
<
bool
>
(
"use_global_stats"
);
if
(
!
param_
.
is_test
)
{
param_
.
mean_out
=
scope
->
FindVar
(
op_desc
.
Output
(
"MeanOut"
).
front
())
->
GetMutable
<
Tensor
>
();
param_
.
variance_out
=
scope
->
FindVar
(
op_desc
.
Output
(
"VarianceOut"
).
front
())
->
GetMutable
<
Tensor
>
();
param_
.
saved_mean
=
scope
->
FindVar
(
op_desc
.
Output
(
"SavedMean"
).
front
())
->
GetMutable
<
Tensor
>
();
param_
.
saved_variance
=
scope
->
FindVar
(
op_desc
.
Output
(
"SavedVariance"
).
front
())
->
GetMutable
<
Tensor
>
();
}
param_
.
epsilon
=
op_desc
.
GetAttr
<
float
>
(
"epsilon"
);
param_
.
momentum
=
op_desc
.
GetAttr
<
float
>
(
"momentum"
);
std
::
string
data_layout
=
op_desc
.
GetAttr
<
std
::
string
>
(
"data_layout"
);
CHECK_EQ
(
data_layout
,
"NCHW"
)
<<
"TODO(hong19860320): Only support NCHW."
;
// param_.data_layout = StringToDataLayout(data_layout);
return
true
;
}
}
// namespace operators
}
// namespace lite
}
// namespace paddle
REGISTER_LITE_OP
(
batch_norm
,
paddle
::
lite
::
operators
::
BatchNormOp
);
paddle/fluid/lite/operators/batch_norm_op.h
0 → 100644
浏览文件 @
c659d037
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include <vector>
#include "paddle/fluid/lite/core/op_lite.h"
#include "paddle/fluid/lite/core/scope.h"
#include "paddle/fluid/lite/utils/all.h"
namespace
paddle
{
namespace
lite
{
namespace
operators
{
class
BatchNormOp
:
public
OpLite
{
public:
BatchNormOp
()
{}
explicit
BatchNormOp
(
const
std
::
string
&
op_type
)
:
OpLite
(
op_type
)
{}
bool
CheckShape
()
const
override
;
bool
InferShape
()
const
override
;
bool
AttachImpl
(
const
cpp
::
OpDesc
&
opdesc
,
lite
::
Scope
*
scope
)
override
;
void
AttachKernel
(
KernelBase
*
kernel
)
override
{
kernel
->
SetParam
(
param_
);
}
std
::
string
DebugString
()
const
override
{
return
"batch_norm"
;
}
private:
mutable
BatchNormParam
param_
;
};
}
// namespace operators
}
// namespace lite
}
// namespace paddle
paddle/fluid/lite/operators/batch_norm_op_test.cc
0 → 100644
浏览文件 @
c659d037
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/lite/operators/batch_norm_op.h"
#include <gtest/gtest.h>
#include "paddle/fluid/lite/core/op_registry.h"
namespace
paddle
{
namespace
lite
{
namespace
operators
{
TEST
(
batch_norm_op_lite
,
test
)
{
// prepare variables
Scope
scope
;
auto
*
x
=
scope
.
Var
(
"x"
)
->
GetMutable
<
Tensor
>
();
auto
*
scale
=
scope
.
Var
(
"scale"
)
->
GetMutable
<
Tensor
>
();
auto
*
bias
=
scope
.
Var
(
"bias"
)
->
GetMutable
<
Tensor
>
();
auto
*
mean
=
scope
.
Var
(
"mean"
)
->
GetMutable
<
Tensor
>
();
auto
*
variance
=
scope
.
Var
(
"variance"
)
->
GetMutable
<
Tensor
>
();
auto
*
y
=
scope
.
Var
(
"y"
)
->
GetMutable
<
Tensor
>
();
x
->
Resize
({
2
,
32
,
10
,
20
});
auto
x_dims
=
x
->
dims
();
const
int64_t
channel_size
=
x_dims
[
1
];
// NCHW
scale
->
Resize
({
channel_size
});
bias
->
Resize
({
channel_size
});
mean
->
Resize
({
channel_size
});
variance
->
Resize
(
DDim
({
channel_size
}));
// prepare op desc
cpp
::
OpDesc
desc
;
desc
.
SetType
(
"batch_norm"
);
desc
.
SetInput
(
"X"
,
{
"x"
});
desc
.
SetInput
(
"Scale"
,
{
"scale"
});
desc
.
SetInput
(
"Bias"
,
{
"bias"
});
desc
.
SetInput
(
"Mean"
,
{
"mean"
});
desc
.
SetInput
(
"Variance"
,
{
"variance"
});
desc
.
SetOutput
(
"Y"
,
{
"y"
});
desc
.
SetAttr
(
"is_test"
,
true
);
desc
.
SetAttr
(
"use_global_stats"
,
false
);
desc
.
SetAttr
(
"epsilon"
,
1e-5
f
);
desc
.
SetAttr
(
"momentum"
,
0.9
f
);
desc
.
SetAttr
(
"data_layout"
,
std
::
string
(
"NCHW"
));
BatchNormOp
batch_norm
(
"batch_norm"
);
batch_norm
.
SetValidPlaces
({
Place
{
TARGET
(
kHost
),
PRECISION
(
kFloat
)}});
batch_norm
.
Attach
(
desc
,
&
scope
);
batch_norm
.
CheckShape
();
batch_norm
.
InferShape
();
// check output dims
auto
y_dims
=
y
->
dims
();
CHECK_EQ
(
y_dims
.
size
(),
x_dims
.
size
());
for
(
size_t
i
=
0
;
i
<
y_dims
.
size
();
i
++
)
{
CHECK_EQ
(
y_dims
[
i
],
x_dims
[
i
]);
}
}
TEST
(
batch_norm_op_lite
,
test_enable_is_test
)
{
// prepare variables
Scope
scope
;
auto
*
x
=
scope
.
Var
(
"x"
)
->
GetMutable
<
Tensor
>
();
auto
*
scale
=
scope
.
Var
(
"scale"
)
->
GetMutable
<
Tensor
>
();
auto
*
bias
=
scope
.
Var
(
"bias"
)
->
GetMutable
<
Tensor
>
();
auto
*
mean
=
scope
.
Var
(
"mean"
)
->
GetMutable
<
Tensor
>
();
auto
*
variance
=
scope
.
Var
(
"variance"
)
->
GetMutable
<
Tensor
>
();
auto
*
y
=
scope
.
Var
(
"y"
)
->
GetMutable
<
Tensor
>
();
auto
*
mean_out
=
scope
.
Var
(
"mean_out"
)
->
GetMutable
<
Tensor
>
();
auto
*
variance_out
=
scope
.
Var
(
"variance_out"
)
->
GetMutable
<
Tensor
>
();
auto
*
saved_mean
=
scope
.
Var
(
"saved_mean"
)
->
GetMutable
<
Tensor
>
();
auto
*
saved_variance
=
scope
.
Var
(
"saved_variance"
)
->
GetMutable
<
Tensor
>
();
x
->
Resize
({
2
,
32
,
10
,
20
});
auto
x_dims
=
x
->
dims
();
const
int64_t
channel_size
=
x_dims
[
1
];
// NCHW
scale
->
Resize
({
channel_size
});
bias
->
Resize
({
channel_size
});
mean
->
Resize
({
channel_size
});
variance
->
Resize
({
channel_size
});
// prepare op desc
cpp
::
OpDesc
desc
;
desc
.
SetType
(
"batch_norm"
);
desc
.
SetInput
(
"X"
,
{
"x"
});
desc
.
SetInput
(
"Scale"
,
{
"scale"
});
desc
.
SetInput
(
"Bias"
,
{
"bias"
});
desc
.
SetInput
(
"Mean"
,
{
"mean"
});
desc
.
SetInput
(
"Variance"
,
{
"variance"
});
desc
.
SetOutput
(
"Y"
,
{
"y"
});
desc
.
SetOutput
(
"MeanOut"
,
{
"mean_out"
});
desc
.
SetOutput
(
"VarianceOut"
,
{
"variance_out"
});
desc
.
SetOutput
(
"SavedMean"
,
{
"saved_mean"
});
desc
.
SetOutput
(
"SavedVariance"
,
{
"saved_variance"
});
desc
.
SetAttr
(
"is_test"
,
false
);
desc
.
SetAttr
(
"use_global_stats"
,
false
);
desc
.
SetAttr
(
"epsilon"
,
1e-5
f
);
desc
.
SetAttr
(
"momentum"
,
0.9
f
);
desc
.
SetAttr
(
"data_layout"
,
std
::
string
(
"NCHW"
));
BatchNormOp
batch_norm
(
"batch_norm"
);
batch_norm
.
SetValidPlaces
({
Place
{
TARGET
(
kHost
),
PRECISION
(
kFloat
)}});
batch_norm
.
Attach
(
desc
,
&
scope
);
batch_norm
.
CheckShape
();
batch_norm
.
InferShape
();
// check output dims
auto
y_dims
=
y
->
dims
();
CHECK_EQ
(
y_dims
.
size
(),
x_dims
.
size
());
for
(
size_t
i
=
0
;
i
<
y_dims
.
size
();
i
++
)
{
CHECK_EQ
(
y_dims
[
i
],
x_dims
[
i
]);
}
auto
mean_out_dims
=
mean_out
->
dims
();
auto
variance_out_dims
=
variance_out
->
dims
();
auto
saved_mean_dims
=
saved_mean
->
dims
();
auto
saved_variance_dims
=
saved_variance
->
dims
();
CHECK_EQ
(
mean_out_dims
.
size
(),
1UL
);
CHECK_EQ
(
variance_out_dims
.
size
(),
1UL
);
CHECK_EQ
(
saved_mean_dims
.
size
(),
1UL
);
CHECK_EQ
(
saved_variance_dims
.
size
(),
1UL
);
CHECK_EQ
(
mean_out_dims
[
0
],
channel_size
);
CHECK_EQ
(
variance_out_dims
[
0
],
channel_size
);
CHECK_EQ
(
saved_mean_dims
[
0
],
channel_size
);
CHECK_EQ
(
saved_variance_dims
[
0
],
channel_size
);
}
}
// namespace operators
}
// namespace lite
}
// namespace paddle
paddle/fluid/lite/operators/op_params.h
浏览文件 @
c659d037
...
@@ -57,6 +57,7 @@ struct FcParam {
...
@@ -57,6 +57,7 @@ struct FcParam {
lite
::
Tensor
*
output
{};
lite
::
Tensor
*
output
{};
lite
::
DDim
in_mat_dims
;
lite
::
DDim
in_mat_dims
;
int
in_num_col_dims
{
1
};
int
in_num_col_dims
{
1
};
bool
weight_transposed
{
false
};
};
};
struct
ReluParam
{
struct
ReluParam
{
...
@@ -145,6 +146,25 @@ struct ConvParam {
...
@@ -145,6 +146,25 @@ struct ConvParam {
std
::
string
data_format
{
"Anylayout"
};
std
::
string
data_format
{
"Anylayout"
};
};
};
// For BatchNorm op
struct
BatchNormParam
{
lite
::
Tensor
*
x
{};
lite
::
Tensor
*
bias
{};
lite
::
Tensor
*
scale
{};
lite
::
Tensor
*
mean
{};
lite
::
Tensor
*
variance
{};
lite
::
Tensor
*
y
{};
lite
::
Tensor
*
mean_out
{};
lite
::
Tensor
*
variance_out
{};
lite
::
Tensor
*
saved_mean
{};
lite
::
Tensor
*
saved_variance
{};
bool
is_test
{
true
};
bool
use_global_stats
{
false
};
float
epsilon
;
float
momentum
;
DataLayoutType
data_layout
{
DATALAYOUT
(
kNCHW
)};
};
// For Pooling op
// For Pooling op
struct
PoolParam
{
struct
PoolParam
{
lite
::
Tensor
*
x
{};
lite
::
Tensor
*
x
{};
...
@@ -177,10 +197,10 @@ struct DropoutParam {
...
@@ -177,10 +197,10 @@ struct DropoutParam {
// For Split op
// For Split op
struct
SplitParam
{
struct
SplitParam
{
lite
::
Tensor
*
x
{};
lite
::
Tensor
*
x
{};
std
::
vector
<
lite
::
Tensor
*>
*
output
{};
std
::
vector
<
lite
::
Tensor
*>
output
{};
int
axis
{
-
1
};
int
axis
{
-
1
};
int
num
{
0
};
int
num
{
0
};
std
::
vector
<
int
>
*
sections
;
std
::
vector
<
int
>
sections
;
};
};
/// ----------------------- element wise operators ----------------------
/// ----------------------- element wise operators ----------------------
...
...
paddle/fluid/lite/operators/split_op.cc
浏览文件 @
c659d037
...
@@ -21,7 +21,7 @@ namespace operators {
...
@@ -21,7 +21,7 @@ namespace operators {
bool
SplitOp
::
CheckShape
()
const
{
bool
SplitOp
::
CheckShape
()
const
{
CHECK_OR_FALSE
(
param_
.
x
);
CHECK_OR_FALSE
(
param_
.
x
);
CHECK_
OR_FALSE
(
param_
.
output
);
CHECK_
GT_OR_FALSE
(
param_
.
output
.
size
(),
1UL
);
auto
x_dims
=
param_
.
x
->
dims
();
auto
x_dims
=
param_
.
x
->
dims
();
auto
x_rank
=
x_dims
.
size
();
auto
x_rank
=
x_dims
.
size
();
CHECK_OR_FALSE
(
param_
.
axis
>=
-
static_cast
<
int
>
(
x_rank
)
&&
CHECK_OR_FALSE
(
param_
.
axis
>=
-
static_cast
<
int
>
(
x_rank
)
&&
...
@@ -31,7 +31,7 @@ bool SplitOp::CheckShape() const {
...
@@ -31,7 +31,7 @@ bool SplitOp::CheckShape() const {
bool
SplitOp
::
InferShape
()
const
{
bool
SplitOp
::
InferShape
()
const
{
const
auto
&
outs
=
param_
.
output
;
const
auto
&
outs
=
param_
.
output
;
auto
in_dims
=
param_
.
x
.
dims
();
auto
in_dims
=
param_
.
x
->
dims
();
int
axis
=
param_
.
axis
;
int
axis
=
param_
.
axis
;
int
num
=
param_
.
num
;
int
num
=
param_
.
num
;
const
auto
&
sections
=
param_
.
sections
;
const
auto
&
sections
=
param_
.
sections
;
...
@@ -68,7 +68,7 @@ bool SplitOp::AttachImpl(const cpp::OpDesc &opdesc, lite::Scope *scope) {
...
@@ -68,7 +68,7 @@ bool SplitOp::AttachImpl(const cpp::OpDesc &opdesc, lite::Scope *scope) {
param_
.
sections
=
opdesc
.
GetAttr
<
std
::
vector
<
int
>>
(
"sections"
);
param_
.
sections
=
opdesc
.
GetAttr
<
std
::
vector
<
int
>>
(
"sections"
);
param_
.
x
=
const_cast
<
lite
::
Tensor
*>
(
param_
.
x
=
const_cast
<
lite
::
Tensor
*>
(
&
scope
->
FindVar
(
opdesc
.
Input
(
"X"
).
front
())
->
Get
<
lite
::
Tensor
>
());
&
scope
->
FindVar
(
opdesc
.
Input
(
"X"
).
front
())
->
Get
<
lite
::
Tensor
>
());
auto
outs
=
op
_
desc
.
Output
(
"Out"
);
auto
outs
=
opdesc
.
Output
(
"Out"
);
for
(
auto
var
:
outs
)
{
for
(
auto
var
:
outs
)
{
param_
.
output
.
push_back
(
scope
->
FindVar
(
var
)
->
GetMutable
<
lite
::
Tensor
>
());
param_
.
output
.
push_back
(
scope
->
FindVar
(
var
)
->
GetMutable
<
lite
::
Tensor
>
());
}
}
...
@@ -79,4 +79,4 @@ bool SplitOp::AttachImpl(const cpp::OpDesc &opdesc, lite::Scope *scope) {
...
@@ -79,4 +79,4 @@ bool SplitOp::AttachImpl(const cpp::OpDesc &opdesc, lite::Scope *scope) {
}
// namespace lite
}
// namespace lite
}
// namespace paddle
}
// namespace paddle
REGISTER_LITE_OP
(
s
oftmax
,
paddle
::
lite
::
operators
::
Softmax
Op
);
REGISTER_LITE_OP
(
s
plit
,
paddle
::
lite
::
operators
::
Split
Op
);
paddle/fluid/lite/operators/split_op.h
浏览文件 @
c659d037
...
@@ -23,7 +23,7 @@ namespace paddle {
...
@@ -23,7 +23,7 @@ namespace paddle {
namespace
lite
{
namespace
lite
{
namespace
operators
{
namespace
operators
{
class
S
oftmax
Op
:
public
OpLite
{
class
S
plit
Op
:
public
OpLite
{
public:
public:
SplitOp
()
{}
SplitOp
()
{}
explicit
SplitOp
(
const
std
::
string
&
op_type
)
:
OpLite
(
op_type
)
{}
explicit
SplitOp
(
const
std
::
string
&
op_type
)
:
OpLite
(
op_type
)
{}
...
...
paddle/fluid/lite/tools/build.sh
浏览文件 @
c659d037
...
@@ -59,11 +59,15 @@ function cmake_arm {
...
@@ -59,11 +59,15 @@ function cmake_arm {
-DARM_TARGET_OS
=
$1
-DARM_TARGET_ARCH_ABI
=
$2
-DARM_TARGET_OS
=
$1
-DARM_TARGET_ARCH_ABI
=
$2
}
}
function
build_single
{
#make $1 -j$(expr $(nproc) - 2)
make
$1
-j8
}
function
build
{
function
build
{
file
=
$1
file
=
$1
for
_test
in
$(
cat
$file
)
;
do
for
_test
in
$(
cat
$file
)
;
do
#make $_test -j$(expr $(nproc) - 2)
build_single
$_test
make
$_test
-j8
done
done
}
}
...
@@ -81,39 +85,6 @@ function test_lite {
...
@@ -81,39 +85,6 @@ function test_lite {
done
done
}
}
port_armv8
=
5554
port_armv7
=
5556
# Run test on android
function
test_lite_android
{
local
file
=
$1
local
adb_abi
=
$2
local
port
=
if
[[
${
adb_abi
}
==
"armeabi-v7a"
]]
;
then
port
=
${
port_armv7
}
fi
if
[[
${
adb_abi
}
==
"arm64-v8a"
]]
;
then
port
=
${
port_armv8
}
fi
if
[[
"
${
port
}
x"
==
"x"
]]
;
then
echo
"Port can not be empty"
exit
1
fi
echo
"file:
${
file
}
"
# push all to adb and test
adb_work_dir
=
"/data/local/tmp"
skip_list
=
"test_model_parser_lite"
for
_test
in
$(
cat
$file
)
;
do
[[
$skip_list
=
~
(
^|[[:space:]]
)
$_test
(
$|
[[
:space:]]
)
]]
&&
continue
||
echo
'skip $_test'
testpath
=
$(
find ./paddle/fluid
-name
${
_test
}
)
adb
-s
emulator-
${
port
}
push
${
testpath
}
${
adb_work_dir
}
adb
-s
emulator-
${
port
}
shell
chmod
+x
"
${
adb_work_dir
}
/
${
_test
}
"
adb
-s
emulator-
${
port
}
shell
"./
${
adb_work_dir
}
/
${
_test
}
"
done
}
# Build the code and run lite server tests. This is executed in the CI system.
# Build the code and run lite server tests. This is executed in the CI system.
function
build_test_server
{
function
build_test_server
{
mkdir
-p
./build
mkdir
-p
./build
...
@@ -126,8 +97,34 @@ function build_test_server {
...
@@ -126,8 +97,34 @@ function build_test_server {
build
$LIBS_FILE
build
$LIBS_FILE
}
}
# Build the code and run lite server tests. This is executed in the CI system.
# test_arm_android <some_test_name> <adb_port_number>
function
test_arm_android
{
test_name
=
$1
port
=
$2
if
[[
"
${
test_name
}
x"
==
"x"
]]
;
then
echo
"test_name can not be empty"
exit
1
fi
if
[[
"
${
port
}
x"
==
"x"
]]
;
then
echo
"Port can not be empty"
exit
1
fi
echo
"test name:
${
test_name
}
"
adb_work_dir
=
"/data/local/tmp"
skip_list
=
"test_model_parser_lite"
# add more with space
[[
$skip_list
=
~
(
^|[[:space:]]
)
$test_name
(
$|
[[
:space:]]
)
]]
&&
continue
||
echo
'skip $test_name'
testpath
=
$(
find ./paddle/fluid
-name
${
test_name
}
)
adb
-s
emulator-
${
port
}
push
${
testpath
}
${
adb_work_dir
}
adb
-s
emulator-
${
port
}
shell
chmod
+x
"
${
adb_work_dir
}
/
${
test_name
}
"
adb
-s
emulator-
${
port
}
shell
"./
${
adb_work_dir
}
/
${
test_name
}
"
}
# Build the code and run lite arm tests. This is executed in the CI system.
function
build_test_arm
{
function
build_test_arm
{
port_armv8
=
5554
port_armv7
=
5556
adb kill-server
adb kill-server
adb devices |
grep
emulator |
cut
-f1
|
while
read
line
;
do
adb
-s
$line
emu
kill
;
done
adb devices |
grep
emulator |
cut
-f1
|
while
read
line
;
do
adb
-s
$line
emu
kill
;
done
# start android arm64-v8a armeabi-v7a emulators first
# start android arm64-v8a armeabi-v7a emulators first
...
@@ -140,6 +137,7 @@ function build_test_arm {
...
@@ -140,6 +137,7 @@ function build_test_arm {
for
os
in
"android"
"armlinux"
;
do
for
os
in
"android"
"armlinux"
;
do
for
abi
in
"arm64-v8a"
"armeabi-v7a"
"armeabi-v7a-hf"
;
do
for
abi
in
"arm64-v8a"
"armeabi-v7a"
"armeabi-v7a-hf"
;
do
# TODO(TJ): enable compile on v7-hf on andorid and all v7 on armlinux
if
[[
${
abi
}
==
"armeabi-v7a-hf"
]]
;
then
if
[[
${
abi
}
==
"armeabi-v7a-hf"
]]
;
then
echo
"armeabi-v7a-hf is not supported on both android and armlinux"
echo
"armeabi-v7a-hf is not supported on both android and armlinux"
continue
continue
...
@@ -156,17 +154,30 @@ function build_test_arm {
...
@@ -156,17 +154,30 @@ function build_test_arm {
cmake_arm
${
os
}
${
abi
}
cmake_arm
${
os
}
${
abi
}
build
$TESTS_FILE
build
$TESTS_FILE
# armlinux need in another docker
# TODO(TJ): enable test with armlinux
if
[[
${
os
}
==
"android"
]]
;
then
if
[[
${
os
}
==
"android"
]]
;
then
adb_abi
=
${
abi
}
adb_abi
=
${
abi
}
if
[[
${
adb_abi
}
==
"armeabi-v7a-hf"
]]
;
then
if
[[
${
adb_abi
}
==
"armeabi-v7a-hf"
]]
;
then
adb_abi
=
"armeabi-v7a"
adb_abi
=
"armeabi-v7a"
fi
fi
if
[[
${
adb_abi
}
==
"armeabi-v7a"
]]
;
then
if
[[
${
adb_abi
}
==
"armeabi-v7a"
]]
;
then
# skip v7 tests
# skip all armv7 tests
# TODO(TJ): enable test with armv7
continue
continue
fi
fi
test_lite_android
$TESTS_FILE
${
adb_abi
}
local
port
=
# armlinux need in another docker
if
[[
${
adb_abi
}
==
"armeabi-v7a"
]]
;
then
port
=
${
port_armv7
}
fi
if
[[
${
adb_abi
}
==
"arm64-v8a"
]]
;
then
port
=
${
port_armv8
}
fi
echo
"test file:
${
TESTS_FILE
}
"
for
_test
in
$(
cat
$TESTS_FILE
)
;
do
test_arm_android
$_test
$port
done
fi
fi
cd
-
cd
-
done
done
...
@@ -182,12 +193,13 @@ function print_usage {
...
@@ -182,12 +193,13 @@ function print_usage {
echo
"----------------------------------------"
echo
"----------------------------------------"
echo
-e
"cmake_x86: run cmake with X86 mode"
echo
-e
"cmake_x86: run cmake with X86 mode"
echo
-e
"cmake_cuda: run cmake with CUDA mode"
echo
-e
"cmake_cuda: run cmake with CUDA mode"
echo
-e
"cmake_arm: run cmake with ARM mode"
echo
-e
"
--arm_os=<os> --arm_abi=<abi>
cmake_arm: run cmake with ARM mode"
echo
echo
echo
-e
"build: compile the tests"
echo
-e
"build: compile the tests"
echo
-e
"--test_name=<test_name> build_single: compile single test"
echo
echo
echo
-e
"test_server: run server tests"
echo
-e
"test_server: run server tests"
echo
-e
"
test_mobile: run mobile tests
"
echo
-e
"
--test_name=<test_name> --adb_port_number=<adb_port_number> test_arm_android: run arm test
"
echo
"----------------------------------------"
echo
"----------------------------------------"
echo
echo
}
}
...
@@ -200,11 +212,31 @@ function main {
...
@@ -200,11 +212,31 @@ function main {
TESTS_FILE
=
"
${
i
#*=
}
"
TESTS_FILE
=
"
${
i
#*=
}
"
shift
shift
;;
;;
--test_name
=
*
)
TEST_NAME
=
"
${
i
#*=
}
"
shift
;;
--arm_os
=
*
)
ARM_OS
=
"
${
i
#*=
}
"
shift
;;
--arm_abi
=
*
)
ARM_ABI
=
"
${
i
#*=
}
"
shift
;;
--arm_port
=
*
)
ARM_PORT
=
"
${
i
#*=
}
"
shift
;;
build
)
build
)
build
$TESTS_FILE
build
$TESTS_FILE
build
$LIBS_FILE
build
$LIBS_FILE
shift
shift
;;
;;
build_single
)
build_single
$TEST_NAME
shift
;;
cmake_x86
)
cmake_x86
)
cmake_x86
cmake_x86
shift
shift
...
@@ -214,15 +246,15 @@ function main {
...
@@ -214,15 +246,15 @@ function main {
shift
shift
;;
;;
cmake_arm
)
cmake_arm
)
cmake_arm
$
2
$3
cmake_arm
$
ARM_OS
$ARM_ABI
shift
shift
;;
;;
test_server
)
test_server
)
test_lite
$TESTS_FILE
test_lite
$TESTS_FILE
shift
shift
;;
;;
test_
mobile
)
test_
arm_android
)
test_
lite
$TESTS_FILE
test_
arm_android
$TEST_NAME
$ARM_PORT
shift
shift
;;
;;
build_test_server
)
build_test_server
)
...
@@ -250,6 +282,4 @@ function main {
...
@@ -250,6 +282,4 @@ function main {
done
done
}
}
print_usage
main
$@
main
$@
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录