未验证 提交 c49560da 编写于 作者: C Chengmo 提交者: GitHub

supplement bug fix of parameter server (#26217) (#26909)

* fix fluid.embedding
上级 1b60f7f6
......@@ -25,25 +25,32 @@ class DistributedLookupTableOp : public framework::OperatorWithKernel {
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE(ctx->HasInputs("Ids"),
"Input(Ids) of LookupTableOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("W"),
"Input(W) of LookupTableOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutputs("Outputs"),
"Output(Outs) of LookupTableOp should not be null.");
PADDLE_ENFORCE_EQ(ctx->HasInputs("Ids"), true,
platform::errors::InvalidArgument(
"Input(Ids) of LookupTableOp should not be null."));
PADDLE_ENFORCE_EQ(ctx->HasInput("W"), true,
platform::errors::InvalidArgument(
"Input(W) of LookupTableOp should not be null."));
PADDLE_ENFORCE_EQ(ctx->HasOutputs("Outputs"), true,
platform::errors::InvalidArgument(
"Output(Outs) of LookupTableOp should not be null."));
auto ids_dims = ctx->GetInputsDim("Ids");
auto table_dims = ctx->GetInputDim("W");
PADDLE_ENFORCE_EQ(table_dims.size(), 2,
"Only 2 dimensions of the 'Embedding' is supported.");
PADDLE_ENFORCE_EQ(
table_dims.size(), 2,
platform::errors::InvalidArgument(
"Only 2 dimensions of the 'Embedding' is supported."));
for (auto &ids_dim : ids_dims) {
PADDLE_ENFORCE_EQ(ids_dim.size(), 2,
"The dimension of the 'Ids' tensor must be 2.");
platform::errors::InvalidArgument(
"The dimension of the 'Ids' tensor must be 2."));
}
auto endpoints = ctx->Attrs().Get<std::vector<std::string>>("endpoints");
// for fluid.embedding
auto lookup_table_version =
ctx->Attrs().Get<std::string>("lookup_table_version");
......
......@@ -35,9 +35,30 @@ class DistributedLookupTableKernel : public framework::OpKernel<T> {
auto endpoints = context.Attr<std::vector<std::string>>("endpoints");
auto is_distributed = context.Attr<bool>("is_distributed");
auto lookup_table_version =
context.Attr<std::string>("lookup_table_version");
operators::distributed::prefetchs(id_names, out_names, embedding_name,
is_distributed, lookup_tables, endpoints,
context, context.scope());
if (lookup_table_version == "lookup_table_v2") {
auto &scope = context.scope();
auto emb_dim =
scope.FindVar(embedding_name)->Get<framework::LoDTensor>().dims()[1];
for (size_t i = 0; i < id_names.size(); ++i) {
auto *id_var = scope.FindVar(id_names[i]);
auto *out_var = scope.FindVar(out_names[i]);
auto *id_tensor = id_var->GetMutable<framework::LoDTensor>();
auto *out_tensor = out_var->GetMutable<framework::LoDTensor>();
auto id_dims = id_tensor->dims();
out_tensor->Resize(framework::make_ddim(
{static_cast<int64_t>(id_dims[0]), static_cast<int64_t>(id_dims[1]),
static_cast<int64_t>(emb_dim)}));
}
}
}
};
......
......@@ -154,15 +154,16 @@ class ParameterServerRuntime(RuntimeBase):
kwargs["sparse_attrs"] = get_sparse_attrs()
return kwargs
from paddle.fluid.incubate.fleet.parameter_server.ir.public import _get_lr_ops
from paddle.fluid.incubate.fleet.parameter_server.ir.public import _get_lr_ops, _has_global_step
from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler.distributed_strategy import \
SyncStrategy, GeoStrategy
trainer_config = self.async_strategy.get_trainer_runtime_config()
lrs = _get_lr_ops(self.origin_main_program)
if len(lrs) > 0:
lrs = _has_global_step(_get_lr_ops(self.origin_main_program))
if lrs:
kwargs = {"need_global_step": "1"}
else:
kwargs = {"need_global_step": "0"}
......
......@@ -42,6 +42,9 @@ op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
LR_SCHED_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.LRSched
OPT_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Optimize
SPARSE_OP_LIST = ["lookup_table", "lookup_table_v2"]
SPARSE_OP_TYPE_DICT = {"lookup_table": "W", "lookup_table_v2": "W"}
def _get_lr_ops(program):
lr_ops = []
......@@ -66,7 +69,7 @@ def _has_global_step(lr_ops):
def is_sparse_op(op):
if op.type == "lookup_table" and op.attr('is_sparse') is True and op.attr(
if op.type in SPARSE_OP_LIST and op.attr('is_sparse') is True and op.attr(
'is_distributed') is False:
return True
......@@ -78,7 +81,7 @@ def is_sparse_op(op):
def is_distributed_sparse_op(op):
if op.type == "lookup_table" and op.attr('is_distributed') is True:
if op.type in SPARSE_OP_LIST and op.attr('is_distributed') is True:
return True
if op.type == "distributed_lookup_table" and op.attr(
......@@ -802,11 +805,10 @@ class CompileTimeStrategy(object):
def _get_sparse_varnames():
varnames = []
op_types = {"lookup_table": "W"}
for op in origin_program.global_block().ops:
if op.type in op_types.keys() \
if op.type in SPARSE_OP_TYPE_DICT.keys() \
and op.attr('remote_prefetch') is True:
param_name = op.input(op_types[op.type])[0]
param_name = op.input(SPARSE_OP_TYPE_DICT[op.type])[0]
varnames.append(param_name)
return list(set(varnames))
......
......@@ -40,6 +40,8 @@ LR_SCHED_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.LRSched
OPT_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Optimize
op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
SPARSE_OP_TYPE_DICT = {"lookup_table": "W", "lookup_table_v2": "W"}
DEVICE_LIST = ["cpu", "gpu", "xpu"]
COMMUNICATE_OPS_TYPE = ["send", "recv", "fetch_barrier", "send_barrier"]
DEFAULT_DEVICE = 'cpu'
......@@ -81,11 +83,10 @@ def distributed_ops_pass(program, config):
def _get_pull_sparse_ops(_program):
pull_sparse_ops = {}
op_types = {"lookup_table": "W"}
for op in _program.global_block().ops:
if op.type in op_types.keys() \
if op.type in SPARSE_OP_TYPE_DICT.keys() \
and op.attr('remote_prefetch') is True:
param_name = op.input(op_types[op.type])[0]
param_name = op.input(SPARSE_OP_TYPE_DICT[op.type])[0]
ops = pull_sparse_ops.get(param_name, [])
ops.append(op)
pull_sparse_ops[param_name] = ops
......@@ -101,6 +102,7 @@ def distributed_ops_pass(program, config):
w = program.global_block().vars[ops[0].input("W")[0]]
padding_idx = ops[0].attr("padding_idx")
is_distributed = ops[0].attr("is_distributed")
op_type = ops[0].type
outputs = [
program.global_block().vars[op.output("Out")[0]] for op in ops
......@@ -149,7 +151,8 @@ def distributed_ops_pass(program, config):
"is_distributed": is_distributed,
"pserver_num": len(pserver_endpoints),
"padding_idx": padding_idx,
"trainer_id": trainer_id
"trainer_id": trainer_id,
"lookup_table_version": op_type
})
else:
raise ValueError(
......
......@@ -432,8 +432,6 @@ if(WITH_DISTRIBUTE)
list(REMOVE_ITEM DIST_TEST_OPS "test_dist_mnist_lars")
list(REMOVE_ITEM DIST_TEST_OPS "test_dist_mnist_train")
list(REMOVE_ITEM DIST_TEST_OPS "test_dist_save_load")
list(REMOVE_ITEM DIST_TEST_OPS "test_dist_simnet_bow")
list(REMOVE_ITEM DIST_TEST_OPS "test_dist_fleet_ctr")
list(REMOVE_ITEM DIST_TEST_OPS "test_dist_text_classification")
list(REMOVE_ITEM DIST_TEST_OPS "test_dist_train")
list(REMOVE_ITEM DIST_TEST_OPS "test_dist_word2vec")
......
......@@ -196,8 +196,7 @@ class TestDistCTR2x2(FleetDistRunnerBase):
fleet.stop_worker()
def do_dataset_training(self, fleet):
dnn_input_dim, lr_input_dim, train_file_path = ctr_dataset_reader.prepare_data(
)
train_file_list = ctr_dataset_reader.prepare_fake_data()
exe = fluid.Executor(fluid.CPUPlace())
......@@ -206,9 +205,7 @@ class TestDistCTR2x2(FleetDistRunnerBase):
thread_num = 2
batch_size = 128
filelist = []
for _ in range(thread_num):
filelist.append(train_file_path)
filelist = train_file_list
# config dataset
dataset = paddle.distributed.fleet.DatasetFactory().create_dataset()
......
......@@ -19,6 +19,8 @@ import argparse
import time
import math
import random
import shutil
import tempfile
import paddle
import paddle.fluid as fluid
......@@ -29,7 +31,8 @@ from multiprocessing import Process
import os
import signal
from functools import reduce
from test_dist_base import TestDistRunnerBase, runtime_main
from test_dist_fleet_base import runtime_main, FleetDistRunnerBase
from paddle.distributed.fleet.base.util_factory import fleet_util
DTYPE = "int64"
DATA_URL = 'http://paddle-dist-ce-data.bj.bcebos.com/simnet.train.1000'
......@@ -49,6 +52,18 @@ fluid.default_startup_program().random_seed = 1
fluid.default_main_program().random_seed = 1
def fake_simnet_reader():
def reader():
for _ in range(1000):
q = np.random.random_integers(0, 1500 - 1, size=1).tolist()
label = np.random.random_integers(0, 1, size=1).tolist()
pt = np.random.random_integers(0, 1500 - 1, size=1).tolist()
nt = np.random.random_integers(0, 1500 - 1, size=1).tolist()
yield [q, label, pt, nt]
return reader
def get_acc(cos_q_nt, cos_q_pt, batch_size):
cond = fluid.layers.less_than(cos_q_nt, cos_q_pt)
cond = fluid.layers.cast(cond, dtype='float64')
......@@ -75,34 +90,40 @@ def get_loss(cos_q_pt, cos_q_nt):
return avg_cost
def get_optimizer(op="sgd"):
if op.upper() == "sgd".upper():
optimizer = fluid.optimizer.SGD(learning_rate=base_lr)
elif op.upper() == "adam".upper():
optimizer = fluid.optimizer.Adam(learning_rate=base_lr)
else:
optimizer = fluid.optimizer.SGD(learning_rate=base_lr)
return optimizer
def train_network(batch_size,
is_distributed=False,
is_sparse=False,
is_self_contained_lr=False):
is_self_contained_lr=False,
is_pyreader=False):
# query
q = fluid.layers.data(
name="query_ids", shape=[1], dtype="int64", lod_level=1)
# label data
label = fluid.layers.data(name="label", shape=[1], dtype="int64")
# pt
pt = fluid.layers.data(
name="pos_title_ids", shape=[1], dtype="int64", lod_level=1)
# nt
nt = fluid.layers.data(
name="neg_title_ids", shape=[1], dtype="int64", lod_level=1)
datas = [q, label, pt, nt]
reader = None
if is_pyreader:
reader = fluid.io.PyReader(
feed_list=datas,
capacity=64,
iterable=False,
use_double_buffer=False)
# embedding
q_emb = fluid.embedding(
input=q,
is_distributed=is_distributed,
size=[dict_dim, emb_dim],
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.Constant(value=0.01),
name="__emb__",
learning_rate=emb_lr) if is_self_contained_lr else fluid.ParamAttr(
initializer=fluid.initializer.Constant(value=0.01),
name="__emb__"),
initializer=fluid.initializer.Constant(value=0.01), name="__emb__"),
is_sparse=is_sparse)
q_emb = fluid.layers.reshape(q_emb, [-1, emb_dim])
# vsum
......@@ -115,12 +136,8 @@ def train_network(batch_size,
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.Constant(value=0.01),
name="__q_fc__",
learning_rate=base_lr))
# label data
label = fluid.layers.data(name="label", shape=[1], dtype="int64")
# pt
pt = fluid.layers.data(
name="pos_title_ids", shape=[1], dtype="int64", lod_level=1)
learning_rate=base_lr), )
# embedding
pt_emb = fluid.embedding(
input=pt,
......@@ -129,9 +146,7 @@ def train_network(batch_size,
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.Constant(value=0.01),
name="__emb__",
learning_rate=emb_lr) if is_self_contained_lr else fluid.ParamAttr(
initializer=fluid.initializer.Constant(value=0.01),
name="__emb__"),
learning_rate=emb_lr),
is_sparse=is_sparse)
pt_emb = fluid.layers.reshape(pt_emb, [-1, emb_dim])
# vsum
......@@ -142,24 +157,16 @@ def train_network(batch_size,
input=pt_ss,
size=hid_dim,
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.Constant(value=0.01),
name="__fc__",
learning_rate=base_lr),
initializer=fluid.initializer.Constant(value=0.01), name="__fc__"),
bias_attr=fluid.ParamAttr(name="__fc_b__"))
# nt
nt = fluid.layers.data(
name="neg_title_ids", shape=[1], dtype="int64", lod_level=1)
# embedding
nt_emb = fluid.embedding(
input=nt,
is_distributed=is_distributed,
size=[dict_dim, emb_dim],
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.Constant(value=0.01),
name="__emb__",
learning_rate=emb_lr) if is_self_contained_lr else fluid.ParamAttr(
initializer=fluid.initializer.Constant(value=0.01),
name="__emb__"),
initializer=fluid.initializer.Constant(value=0.01), name="__emb__"),
is_sparse=is_sparse)
nt_emb = fluid.layers.reshape(nt_emb, [-1, emb_dim])
# vsum
......@@ -170,9 +177,7 @@ def train_network(batch_size,
input=nt_ss,
size=hid_dim,
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.Constant(value=0.01),
name="__fc__",
learning_rate=base_lr),
initializer=fluid.initializer.Constant(value=0.01), name="__fc__"),
bias_attr=fluid.ParamAttr(name="__fc_b__"))
cos_q_pt = fluid.layers.cos_sim(q_fc, pt_fc)
cos_q_nt = fluid.layers.cos_sim(q_fc, nt_fc)
......@@ -180,79 +185,67 @@ def train_network(batch_size,
avg_cost = get_loss(cos_q_pt, cos_q_nt)
# acc
acc = get_acc(cos_q_nt, cos_q_pt, batch_size)
return [avg_cost, acc, cos_q_pt]
def combination(x, y):
res = [[[xi, yi] for yi in y] for xi in x]
return res[0]
def get_one_data(file_list):
for file in file_list:
contents = []
with open(file, "r") as fin:
for i in fin:
contents.append(i.strip())
for index, q in enumerate(contents):
try:
one_data = [[int(j) for j in i.split(" ")]
for i in q.split(";")[:-1]]
if one_data[1][0] + one_data[1][1] != len(one_data) - 3:
q = fin.readline()
continue
tmp = combination(one_data[3:3 + one_data[1][0]],
one_data[3 + one_data[1][0]:])
except Exception as e:
continue
for each in tmp:
yield [one_data[2], 0, each[0], each[1]]
def get_batch_reader(file_list, batch_size):
def batch_reader():
res = []
for i in get_one_data(file_list):
if random.random() <= sample_rate:
res.append(i)
if len(res) >= batch_size:
yield res
res = []
return batch_reader
def get_train_reader(batch_size):
# The training data set.
train_file = os.path.join(paddle.dataset.common.DATA_HOME, "simnet",
"train")
train_reader = get_batch_reader([train_file], batch_size)
train_feed = ["query_ids", "pos_title_ids", "neg_title_ids", "label"]
return train_reader, train_feed
class TestDistSimnetBow2x2(TestDistRunnerBase):
def get_model(self, batch_size=2):
# Train program
avg_cost, acc, predict = \
train_network(batch_size,
bool(int(os.environ["IS_DISTRIBUTED"])),
bool(int(os.environ["IS_SPARSE"])),
bool(int(os.environ["IS_SELF_CONTAINED_LR"])))
inference_program = fluid.default_main_program().clone()
# Optimization
opt = os.getenv('OPTIMIZER', 'sgd')
opt = get_optimizer(opt)
opt.minimize(avg_cost)
# Reader
train_reader, _ = get_train_reader(batch_size)
return inference_program, avg_cost, train_reader, train_reader, acc, predict
return avg_cost, acc, cos_q_pt, reader
class TestDistSimnetBow2x2(FleetDistRunnerBase):
"""
For test SimnetBow model, use Fleet api
"""
def net(self, args, batch_size=4, lr=0.01):
avg_cost, _, predict, self.reader = \
train_network(batch_size=batch_size, is_distributed=False,
is_sparse=True, is_self_contained_lr=False, is_pyreader=(args.reader == "pyreader"))
self.avg_cost = avg_cost
self.predict = predict
return avg_cost
def check_model_right(self, dirname):
model_filename = os.path.join(dirname, "__model__")
with open(model_filename, "rb") as f:
program_desc_str = f.read()
program = fluid.Program.parse_from_string(program_desc_str)
with open(os.path.join(dirname, "__model__.proto"), "w") as wn:
wn.write(str(program))
def do_pyreader_training(self, fleet):
"""
do training using dataset, using fetch handler to catch variable
Args:
fleet(Fleet api): the fleet object of Parameter Server, define distribute training role
"""
exe = fluid.Executor(fluid.CPUPlace())
fleet.init_worker()
exe.run(fluid.default_startup_program())
batch_size = 4
# reader
train_reader = paddle.batch(fake_simnet_reader(), batch_size=batch_size)
self.reader.decorate_sample_list_generator(train_reader)
for epoch_id in range(1):
self.reader.start()
try:
pass_start = time.time()
while True:
loss_val = exe.run(program=fluid.default_main_program(),
fetch_list=[self.avg_cost.name])
loss_val = np.mean(loss_val)
message = "TRAIN ---> pass: {} loss: {}\n".format(epoch_id,
loss_val)
fleet_util.print_on_rank(message, 0)
pass_time = time.time() - pass_start
except fluid.core.EOFException:
self.reader.reset()
fleet.stop_worker()
def do_dataset_training(self, fleet):
pass
if __name__ == "__main__":
paddle.dataset.common.download(DATA_URL, 'simnet', DATA_MD5, "train")
runtime_main(TestDistSimnetBow2x2)
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import os
import logging
import tarfile
import random
import paddle
import paddle.fluid.incubate.data_generator as data_generator
logging.basicConfig()
logger = logging.getLogger("paddle")
logger.setLevel(logging.INFO)
class DatasetSimnetReader(data_generator.MultiSlotDataGenerator):
def generate_sample(self, line):
pass
......@@ -156,40 +156,5 @@ class TestDistCtrHalfAsync2x2(TestFleetBase):
"dist_fleet_ctr.py", delta=1e-5, check_error_log=True)
class TestDistCtrPsGpuPyreaderAsync2x2(TestFleetBase):
def _setup_config(self):
self._mode = "async"
self._reader = "pyreader"
def check_with_place(self,
model_file,
delta=1e-3,
check_error_log=False,
need_envs={}):
required_envs = {
"PATH": os.getenv("PATH", ""),
"PYTHONPATH": os.getenv("PYTHONPATH", ""),
"LD_LIBRARY_PATH": os.getenv("LD_LIBRARY_PATH", ""),
"FLAGS_rpc_deadline": "30000", # 5sec to fail fast
"http_proxy": "",
"FLAGS_communicator_send_queue_size": "2",
"FLAGS_communicator_max_merge_var_num": "2",
"CPU_NUM": "2",
"SAVE_MODEL": "1"
}
required_envs.update(need_envs)
if check_error_log:
required_envs["GLOG_v"] = "3"
required_envs["GLOG_logtostderr"] = "1"
tr0_losses, tr1_losses = self._run_cluster(model_file, required_envs)
def test_dist_train(self):
self.check_with_place(
"dist_fleet_ctr_ps_gpu.py", delta=1e-5, check_error_log=True)
if __name__ == "__main__":
unittest.main()
......@@ -21,7 +21,7 @@ import paddle.fluid.incubate.fleet.base.role_maker as role_maker
from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler import fleet
from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler.distributed_strategy import StrategyFactory
from test_dist_fleet_base import TestFleetBase
from dist_simnet_bow import train_network
from dist_fleet_simnet_bow import train_network
class TestDistGeoCtr_2x2(TestFleetBase):
......@@ -72,7 +72,7 @@ class TestGeoSgdTranspiler(unittest.TestCase):
strategy = StrategyFactory.create_geo_strategy(5)
avg_cost, _, _ = train_network(batch_size, is_distribute, is_sparse)
avg_cost, _, _, _ = train_network(batch_size, is_distribute, is_sparse)
optimizer = fluid.optimizer.SGD(0.1)
optimizer = fleet.distributed_optimizer(optimizer, strategy)
......
......@@ -21,7 +21,7 @@ import paddle.fluid.incubate.fleet.base.role_maker as role_maker
from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler import fleet
from paddle.fluid.transpiler.distribute_transpiler import DistributeTranspilerConfig
from test_dist_fleet_base import TestFleetBase
from dist_simnet_bow import train_network
from dist_fleet_simnet_bow import train_network
@unittest.skip(reason="Skip unstable ut, add it after PR 22957 merged")
......@@ -44,7 +44,7 @@ class TestDistGeoClipByGlobalNormTranspiler(unittest.TestCase):
strategy.geo_sgd_mode = True
strategy.geo_sgd_need_push_nums = 5
avg_cost, _, _ = train_network(batch_size, is_distribute, is_sparse)
avg_cost, _, _, _ = train_network(batch_size, is_distribute, is_sparse)
fluid.clip.set_gradient_clip(
clip=fluid.clip.GradientClipByGlobalNorm(2.0))
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import os
import unittest
import tempfile
from test_dist_fleet_base import TestFleetBase
class TestDistSimnetASync2x2(TestFleetBase):
def _setup_config(self):
self._mode = "async"
self._reader = "pyreader"
def check_with_place(self,
model_file,
delta=1e-3,
check_error_log=False,
need_envs={}):
required_envs = {
"PATH": os.getenv("PATH", ""),
"PYTHONPATH": os.getenv("PYTHONPATH", ""),
"LD_LIBRARY_PATH": os.getenv("LD_LIBRARY_PATH", ""),
"FLAGS_rpc_deadline": "5000", # 5sec to fail fast
"http_proxy": "",
"CPU_NUM": "2"
}
required_envs.update(need_envs)
if check_error_log:
required_envs["GLOG_v"] = "3"
required_envs["GLOG_logtostderr"] = "1"
tr0_losses, tr1_losses = self._run_cluster(model_file, required_envs)
def test_dist_train(self):
self.check_with_place(
"dist_fleet_simnet_bow.py", delta=1e-5, check_error_log=True)
if __name__ == "__main__":
unittest.main()
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import os
import unittest
from test_dist_base import TestDistBase
import os
flag_name = os.path.splitext(__file__)[0]
class TestDistSimnetBowDense2x2(TestDistBase):
def _setup_config(self):
self._sync_mode = True
self._enforce_place = "CPU"
def test_simnet_bow(self):
need_envs = {
"IS_DISTRIBUTED": '0',
"IS_SPARSE": '0',
'IS_SELF_CONTAINED_LR': '1'
}
self.check_with_place(
"dist_simnet_bow.py",
delta=1e-5,
check_error_log=True,
need_envs=need_envs,
log_name=flag_name)
class TestDistSimnetBow2x2DenseAsync(TestDistBase):
def _setup_config(self):
self._sync_mode = False
self._enforce_place = "CPU"
# FIXME(typhoonzero): fix async tests later
def notest_simnet_bow(self):
need_envs = {
"IS_DISTRIBUTED": '0',
"IS_SPARSE": '0',
'IS_SELF_CONTAINED_LR': '1',
}
self.check_with_place(
"dist_simnet_bow.py",
delta=100,
check_error_log=True,
need_envs=need_envs,
log_name=flag_name)
class TestDistSimnetBowSparse2x2(TestDistBase):
def _setup_config(self):
self._sync_mode = True
self._enforce_place = "CPU"
def test_simnet_bow(self):
need_envs = {
"IS_DISTRIBUTED": '0',
"IS_SPARSE": '1',
'IS_SELF_CONTAINED_LR': '1'
}
self.check_with_place(
"dist_simnet_bow.py",
delta=1e-5,
check_error_log=True,
need_envs=need_envs,
log_name=flag_name)
class TestDistSimnetBow2x2SparseAsync(TestDistBase):
def _setup_config(self):
self._sync_mode = False
self._enforce_place = "CPU"
def test_simnet_bow(self):
need_envs = {
"IS_DISTRIBUTED": '0',
"IS_SPARSE": '1',
'IS_SELF_CONTAINED_LR': '1'
}
self.check_with_place(
"dist_simnet_bow.py",
delta=100,
check_error_log=True,
need_envs=need_envs,
log_name=flag_name)
# FIXME(tangwei): Learningrate variable is not created on pserver.
class TestDistSimnetBow2x2LookupTableSync(TestDistBase):
def _setup_config(self):
self._sync_mode = True
self._enforce_place = "CPU"
def test_simnet_bow(self):
need_envs = {
"IS_DISTRIBUTED": '0',
"IS_SPARSE": '1',
'IS_SELF_CONTAINED_LR': '1'
}
self.check_with_place(
"dist_simnet_bow.py",
delta=1e-5,
check_error_log=True,
need_envs=need_envs,
log_name=flag_name)
class TestDistSimnetBow2x2LookupTableAsync(TestDistBase):
def _setup_config(self):
self._sync_mode = False
self._enforce_place = "CPU"
def test_simnet_bow(self):
need_envs = {
"IS_DISTRIBUTED": '0',
"IS_SPARSE": '1',
'IS_SELF_CONTAINED_LR': '1'
}
self.check_with_place(
"dist_simnet_bow.py",
delta=100,
check_error_log=True,
need_envs=need_envs,
log_name=flag_name)
class TestDistSimnetBow2x2LookupTableNotContainLRSync(TestDistBase):
def _setup_config(self):
self._sync_mode = True
self._enforce_place = "CPU"
def test_simnet_bow(self):
need_envs = {
"IS_DISTRIBUTED": '0',
"IS_SPARSE": '1',
'IS_SELF_CONTAINED_LR': '0'
}
self.check_with_place(
"dist_simnet_bow.py",
delta=1e-5,
check_error_log=True,
need_envs=need_envs,
log_name=flag_name)
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册