未验证 提交 c1b4d1c1 编写于 作者: L Li Fuchen 提交者: GitHub

【cherry-pick】add diag_embed op (#23385) (#24001)

* add diag_embed op (#23385)

* add diag_embed op, test=release/2.0-beta

* solved a conflict, test=release/2.0-beta
上级 9eef6677
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/diag_embed_op.h"
namespace paddle {
namespace operators {
class DiagEmbedOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE_EQ(
ctx->HasInput("Input"), true,
platform::errors::NotFound("Input of DiagEmbedOp is not found."));
PADDLE_ENFORCE_EQ(
ctx->HasOutput("Out"), true,
platform::errors::NotFound("Output of DiagEmbedOp is not found."));
int offset = ctx->Attrs().Get<int>("offset");
int dim1 = ctx->Attrs().Get<int>("dim1");
int dim2 = ctx->Attrs().Get<int>("dim2");
auto x_dims = ctx->GetInputDim("Input");
int dim1_ = dim1 < 0 ? x_dims.size() + dim1 + 1 : dim1;
int dim2_ = dim2 < 0 ? x_dims.size() + dim2 + 1 : dim2;
int offset_ = std::abs(offset);
PADDLE_ENFORCE_LE(
dim1_, x_dims.size(),
platform::errors::OutOfRange(
"Dim1 is out of range (expected to be in range of [%ld, "
"%ld], but got %ld).",
-(x_dims.size() + 1), x_dims.size(), dim1));
PADDLE_ENFORCE_LE(
dim2_, x_dims.size(),
platform::errors::OutOfRange(
"Dim2 is out of range (expected to be in range of [%ld, "
"%ld], but got %ld).",
-(x_dims.size() + 1), x_dims.size(), dim2));
PADDLE_ENFORCE_NE(dim1_, dim2_,
platform::errors::InvalidArgument(
"diagonal dimensions should not be identical "
"%ld vs %ld.",
dim1, dim2));
int new_dim_len = offset_ + x_dims[x_dims.size() - 1];
auto sizes = vectorize(x_dims);
sizes.pop_back();
sizes.insert(sizes.begin() + std::min(dim1_, dim2_), new_dim_len);
sizes.insert(sizes.begin() + std::max(dim1_, dim2_), new_dim_len);
ctx->SetOutputDim("Out", framework::make_ddim(sizes));
}
};
class DiagEmbedOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("Input", "The input tensor. Must be at least 1-dimensional.");
AddOutput("Out", "A matrix whose certain 2D planes is diagonal matrix.");
AddAttr<int>(
"offset",
R"DOC((int, default 0), which diagonal to consider. Default: 0 (main diagonal).
)DOC")
.SetDefault(0);
AddAttr<int>(
"dim1",
R"DOC((int, default -2), first dimension with respect to which to take diagonal. Default: -2.
)DOC")
.SetDefault(-2);
AddAttr<int>(
"dim2",
R"DOC((int, default -1), second dimension with respect to which to take diagonal. Default: -1.
)DOC")
.SetDefault(-1);
AddComment(R"DOC(Creates a tensor whose diagonals of certain 2D planes
(specified by dim1 and dim2) are filled by input.
To facilitate creating batched diagonal matrices,
the 2D planes formed by the last two dimensions of the returned tensor
are chosen by default.
)DOC");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
namespace platform = paddle::platform;
REGISTER_OPERATOR(
diag_embed, ops::DiagEmbedOp, ops::DiagEmbedOpMaker,
paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OP_CPU_KERNEL(
diag_embed, ops::DiagEmbedKernel<paddle::platform::CPUDeviceContext, int>,
ops::DiagEmbedKernel<paddle::platform::CPUDeviceContext, float>,
ops::DiagEmbedKernel<paddle::platform::CPUDeviceContext, double>,
ops::DiagEmbedKernel<paddle::platform::CPUDeviceContext, int64_t>);
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/diag_embed_op.h"
namespace ops = paddle::operators;
namespace platform = paddle::platform;
REGISTER_OP_CUDA_KERNEL(
diag_embed, ops::DiagEmbedKernel<paddle::platform::CUDADeviceContext, int>,
ops::DiagEmbedKernel<paddle::platform::CUDADeviceContext, int64_t>,
ops::DiagEmbedKernel<paddle::platform::CUDADeviceContext, float>,
ops::DiagEmbedKernel<paddle::platform::CUDADeviceContext,
platform::float16>,
ops::DiagEmbedKernel<paddle::platform::CUDADeviceContext, double>);
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <algorithm>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/for_range.h"
namespace paddle {
namespace operators {
template <typename T>
struct DiagEmbedFunctor {
DiagEmbedFunctor(const T* input, int64_t numel, const int64_t* dim,
int64_t offset, int64_t dims_size, T* output,
const int64_t* strides)
: input_(input),
numel_(numel),
dim_(dim),
offset_(offset),
dims_size_(dims_size),
output_(output),
strides_(strides) {}
HOSTDEVICE void operator()(size_t idx) const {
int64_t position = 0;
auto numel = numel_;
int64_t num = idx;
for (int64_t i = 0; i < dims_size_; i++) {
numel = numel / dim_[i];
position += num / numel * strides_[i];
num = num % numel;
}
output_[position + offset_] = input_[idx];
}
const T* input_;
int64_t numel_;
const int64_t* dim_;
int64_t offset_;
int64_t dims_size_;
T* output_;
const int64_t* strides_;
};
template <typename DeviceContext, typename T>
class DiagEmbedKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* input = context.Input<framework::Tensor>("Input");
auto* out = context.Output<framework::Tensor>("Out");
const int64_t offset = context.Attr<int>("offset");
const int64_t dim1 = context.Attr<int>("dim1");
const int64_t dim2 = context.Attr<int>("dim2");
auto* input_data = input->data<T>();
T* out_data = out->mutable_data<T>(context.GetPlace());
math::SetConstant<DeviceContext, T> set_zero;
auto& dev_ctx = context.template device_context<DeviceContext>();
set_zero(dev_ctx, out, static_cast<T>(0.0));
auto out_dims = out->dims();
int dim1_ = dim1 < 0 ? out_dims.size() + dim1 : dim1;
int dim2_ = dim2 < 0 ? out_dims.size() + dim2 : dim2;
auto stride = framework::stride(out_dims);
int64_t diag_size;
int64_t storage_offset = 0;
if (offset >= 0) {
int64_t dim = out_dims[dim2_] - offset;
diag_size = std::max<int64_t>(std::min(out_dims[dim1_], dim), 0);
} else {
int64_t dim = out_dims[dim1_] + offset;
diag_size = std::max<int64_t>(std::min(dim, out_dims[dim2_]), 0);
}
if (diag_size == 0) {
// skip
} else if (offset >= 0) {
storage_offset += offset * stride[dim2_];
} else {
storage_offset -= offset * stride[dim1_];
}
auto strides = vectorize(stride);
strides.erase(strides.begin() + std::max(dim1_, dim2_));
strides.erase(strides.begin() + std::min(dim1_, dim2_));
strides.push_back(stride[dim1_] + stride[dim2_]);
const auto dims = vectorize(input->dims());
#ifdef __NVCC__
thrust::device_vector<int64_t> dims_vec(dims);
const int64_t* dims_arr = thrust::raw_pointer_cast(dims_vec.data());
thrust::device_vector<int64_t> strides_vec(strides);
const int64_t* strides_arr = thrust::raw_pointer_cast(strides_vec.data());
#else
const int64_t* dims_arr = dims.data();
const int64_t* strides_arr = strides.data();
#endif
platform::ForRange<DeviceContext> for_range(dev_ctx, input->numel());
DiagEmbedFunctor<T> functor(input_data, input->numel(), dims_arr,
storage_offset, dims.size(), out_data,
strides_arr);
for_range(functor);
}
};
} // namespace operators
} // namespace paddle
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest
import paddle.nn.functional as F
import paddle.fluid as fluid
import paddle.fluid.dygraph as dg
import paddle.fluid.core as core
class TestDiagEmbedOp(OpTest):
def setUp(self):
self.op_type = "diag_embed"
self.init_config()
self.outputs = {'Out': self.target}
def test_check_output(self):
self.check_output()
def init_config(self):
self.case = np.random.randn(2, 3).astype('float32')
self.inputs = {'Input': self.case}
self.attrs = {'offset': 0, 'dim1': -2, 'dim2': -1}
self.target = np.stack([np.diag(r, 0) for r in self.inputs['Input']], 0)
class TestDiagEmbedOpCase1(TestDiagEmbedOp):
def init_config(self):
self.case = np.random.randn(2, 3).astype('float32')
self.inputs = {'Input': self.case}
self.attrs = {'offset': -1, 'dim1': 0, 'dim2': 2}
self.target = np.stack([np.diag(r, -1) for r in self.inputs['Input']],
1)
class TestDiagEmbedAPICase(unittest.TestCase):
def test_case1(self):
diag_embed = np.random.randn(2, 3, 4).astype('float32')
data1 = fluid.data(name='data1', shape=[2, 3, 4], dtype='float32')
out1 = F.diag_embed(data1)
out2 = F.diag_embed(data1, offset=1, dim1=-2, dim2=3)
place = core.CPUPlace()
exe = fluid.Executor(place)
results = exe.run(fluid.default_main_program(),
feed={"data1": diag_embed},
fetch_list=[out1, out2],
return_numpy=True)
target1 = np.stack(
[np.stack([np.diag(s, 0) for s in r], 0) for r in diag_embed], 0)
target2 = np.stack(
[np.stack([np.diag(s, 1) for s in r], 0) for r in diag_embed], 0)
self.assertTrue(np.allclose(results[0], target1))
self.assertTrue(np.allclose(results[1], target2))
if __name__ == "__main__":
unittest.main()
......@@ -14,12 +14,13 @@
# TODO: import all neural network related api under this directory,
# including layers, linear, conv, rnn etc.
# __all__ = []
from .layer import norm
from .functional import extension
__all__ = []
__all__ += norm.__all__
__all__ += extension.__all__
# TODO: define alias in nn directory
# from .clip import ErrorClipByValue #DEFINE_ALIAS
......@@ -220,7 +221,7 @@ from .functional.extension import row_conv #DEFINE_ALIAS
# from .functional.extension import target_assign #DEFINE_ALIAS
# from .functional.extension import temporal_shift #DEFINE_ALIAS
# from .functional.extension import warpctc #DEFINE_ALIAS
# from .functional.extension import diag_embed #DEFINE_ALIAS
from .functional.extension import diag_embed #DEFINE_ALIAS
# from .functional.rnn import gru_unit #DEFINE_ALIAS
# from .functional.rnn import lstm #DEFINE_ALIAS
# from .functional.rnn import lstm_unit #DEFINE_ALIAS
......
......@@ -14,10 +14,11 @@
# TODO: import all neural network related api under this directory,
# including layers, linear, conv, rnn etc.
# __all__ = [ ]
__all__ = []
# TODO: define alias in functional directory
from . import conv
__all__ += conv.__all__
from .conv import conv2d #DEFINE_ALIAS
from .conv import conv2d_transpose #DEFINE_ALIAS
from .conv import conv3d #DEFINE_ALIAS
......@@ -103,6 +104,7 @@ from .conv import conv3d_transpose #DEFINE_ALIAS
# from .vision import yolo_box #DEFINE_ALIAS
# from .vision import yolov3_loss #DEFINE_ALIAS
from . import activation
__all__ += activation.__all__
# from .activation import brelu #DEFINE_ALIAS
# from .activation import elu #DEFINE_ALIAS
# from .activation import erf #DEFINE_ALIAS
......@@ -128,6 +130,8 @@ from .activation import sigmoid #DEFINE_ALIAS
# from .activation import tanh_shrink #DEFINE_ALIAS
# from .activation import thresholded_relu #DEFINE_ALIAS
from .activation import log_softmax #DEFINE_ALIAS
from . import extension
__all__ += extension.__all__
# from .extension import add_position_encoding #DEFINE_ALIAS
# from .extension import autoincreased_step_counter #DEFINE_ALIAS
# from .extension import continuous_value_model #DEFINE_ALIAS
......@@ -143,7 +147,7 @@ from .extension import row_conv #DEFINE_ALIAS
# from .extension import target_assign #DEFINE_ALIAS
# from .extension import temporal_shift #DEFINE_ALIAS
# from .extension import warpctc #DEFINE_ALIAS
# from .extension import diag_embed #DEFINE_ALIAS
from .extension import diag_embed #DEFINE_ALIAS
# from .rnn import gru_unit #DEFINE_ALIAS
# from .rnn import lstm #DEFINE_ALIAS
# from .rnn import lstm_unit #DEFINE_ALIAS
......@@ -176,6 +180,8 @@ from .extension import row_conv #DEFINE_ALIAS
# from .lod import dynamic_gru #DEFINE_ALIAS
# from .lod import dynamic_lstm #DEFINE_ALIAS
# from .lod import dynamic_lstmp #DEFINE_ALIAS
from . import common
#__all__ += common.__all__
# from .common import dropout #DEFINE_ALIAS
# from .common import embedding #DEFINE_ALIAS
# from .common import fc #DEFINE_ALIAS
......
......@@ -29,15 +29,95 @@ __all__ = [
# 'target_assign',
# 'temporal_shift',
# 'warpctc',
# 'diag_embed'
'diag_embed'
]
from ...fluid import core, dygraph_utils
from ...fluid.framework import in_dygraph_mode
import numpy as np
from ...fluid.data_feeder import check_dtype
from ...fluid.layer_helper import LayerHelper
from ...fluid.framework import Variable, in_dygraph_mode
from ...fluid.layers.tensor import assign
from ...fluid import core, dygraph_utils
from ...fluid.layers.layer_function_generator import templatedoc
def diag_embed(input, offset=0, dim1=-2, dim2=-1):
"""
This OP creates a tensor whose diagonals of certain 2D planes (specified by dim1 and dim2)
are filled by ``input``. By default, a 2D plane formed by the last two dimensions
of the returned tensor will be selected.
The argument ``offset`` determines which diagonal is generated:
- If offset = 0, it is the main diagonal.
- If offset > 0, it is above the main diagonal.
- If offset < 0, it is below the main diagonal.
Args:
input(Variable|numpy.ndarray): The input tensor. Must be at least 1-dimensional. The input data type should be float32, float64, int32, int64.
offset(int, optional): Which diagonal to consider. Default: 0 (main diagonal).
dim1(int, optional): The first dimension with respect to which to take diagonal. Default: -2.
dim2(int, optional): The second dimension with respect to which to take diagonal. Default: -1.
Returns:
Variable, the output data type is the same as input data type.
Examples:
.. code-block:: python
import paddle.nn.functional as F
import paddle.fluid.dygraph as dg
import numpy as np
diag_embed = np.random.randn(2, 3).astype('float32')
with dg.guard():
data1 = F.diag_embed(diag_embed)
data2 = F.diag_embed(diag_embed, offset=1, dim1=0, dim2=2)
"""
inputs = {'Input': [input]}
attrs = {'offset': offset, 'dim1': dim1, 'dim2': dim2}
if not isinstance(input, Variable):
input = assign(input)
def __check_input(input, offset, dim1, dim2):
check_dtype(input.dtype, 'Input',
['int32', 'int64', 'float16', 'float32', 'float64'],
'diag_embed')
input_shape = list(input.shape)
assert (len(input_shape) >= 1, \
"Input must be at least 1-dimensional, " \
"But received Input's dimensional: %s.\n" % \
len(input_shape))
assert (
np.abs(dim1) <= len(input_shape),
"Dim1 is out of range (expected to be in range of [%d, %d], but got %d).\n"
% (-(len(input_shape) + 1), len(input_shape), dim1))
assert (
np.abs(dim2) <= len(input_shape),
"Dim2 is out of range (expected to be in range of [%d, %d], but got %d).\n"
% (-(len(input_shape) + 1), len(input_shape), dim2))
dim1_ = dim1 if dim1 >= 0 else len(input_shape) + dim1 + 1
dim2_ = dim2 if dim2 >= 0 else len(input_shape) + dim2 + 1
assert ( dim1_ != dim2_,
"dim1 and dim2 cannot be the same dimension." \
"But received dim1 = %d, dim2 = %d\n"%(dim1, dim2))
if not in_dygraph_mode():
__check_input(input, offset, dim1, dim2)
helper = LayerHelper("diag_embed", **locals())
out = helper.create_variable_for_type_inference(dtype=input.dtype)
helper.append_op(
type='diag_embed',
inputs={'Input': [input]},
attrs={'offset': offset,
'dim1': dim1,
'dim2': dim2},
outputs={'Out': [out]})
out.stop_gradient = True
return out
@templatedoc()
def row_conv(input, weight, act=None):
"""
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册