未验证 提交 bfc34ac1 编写于 作者: Z Zeng Jinle 提交者: GitHub

Merge pull request #14536 from sneaxiy/dlpack_integration

Add dlpack support
...@@ -205,6 +205,7 @@ include(external/pybind11) # download pybind11 ...@@ -205,6 +205,7 @@ include(external/pybind11) # download pybind11
include(external/cares) include(external/cares)
include(external/cub) include(external/cub)
include(external/xxhash) # download xxhash include(external/xxhash) # download xxhash
include(external/dlpack)
include(external/snappy) # download snappy include(external/snappy) # download snappy
include(external/snappystream) # download snappystream include(external/snappystream) # download snappystream
......
include(ExternalProject)
set(DLPACK_SOURCE_DIR ${THIRD_PARTY_PATH}/dlpack)
set(DLPACK_INCLUDE_DIR ${DLPACK_SOURCE_DIR}/src/extern_dlpack/include)
include_directories(${DLPACK_INCLUDE_DIR})
ExternalProject_Add(
extern_dlpack
${EXTERNAL_PROJECT_LOG_ARGS}
GIT_REPOSITORY "https://github.com/dmlc/dlpack.git"
GIT_TAG "v0.2"
PREFIX ${DLPACK_SOURCE_DIR}
UPDATE_COMMAND ""
CONFIGURE_COMMAND ""
BUILD_COMMAND ""
INSTALL_COMMAND ""
TEST_COMMAND ""
)
if(${CMAKE_VERSION} VERSION_LESS "3.3.0")
set(dummyfile ${CMAKE_CURRENT_BINARY_DIR}/dlpack_dummy.c)
file(WRITE ${dummyfile} "const char *dummy = \"${dummyfile}\";")
add_library(dlpack STATIC ${dummyfile})
else()
add_library(dlpack INTERFACE)
endif()
add_dependencies(dlpack extern_dlpack)
LIST(APPEND externl_project_dependencies dlpack)
...@@ -192,3 +192,6 @@ cc_test(tuple_test SRCS tuple_test.cc ) ...@@ -192,3 +192,6 @@ cc_test(tuple_test SRCS tuple_test.cc )
if (NOT WIN32) if (NOT WIN32)
cc_test(rw_lock_test SRCS rw_lock_test.cc) cc_test(rw_lock_test SRCS rw_lock_test.cc)
endif (NOT WIN32) endif (NOT WIN32)
cc_library(dlpack_tensor SRCS dlpack_tensor.cc DEPS tensor dlpack)
cc_test(dlpack_tensor_test SRCS dlpack_tensor_test.cc DEPS dlpack_tensor glog)
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/dlpack_tensor.h"
namespace paddle {
namespace framework {
namespace internal {
template <typename T>
static ::DLDataType GetDLDataTypeCode() {
::DLDataType dtype;
if (std::is_same<T, platform::float16>::value ||
std::is_floating_point<T>::value) {
dtype.code = kDLFloat;
} else if (std::is_unsigned<T>::value) {
dtype.code = kDLUInt;
} else if (std::is_integral<T>::value) {
dtype.code = kDLInt;
} else {
PADDLE_THROW("Unsupported data type %s", typeid(T).name());
}
dtype.bits = 8 * sizeof(T);
dtype.lanes = 1;
return dtype;
}
static DLDataType GetDLDataTypeFromTypeIndex(const std::type_index &type) {
#define REG_DL_DATA_TYPE(type) \
{ std::type_index(typeid(type)), GetDLDataTypeCode<type>() }
static const std::unordered_map<std::type_index, ::DLDataType>
type_to_dtype_map({
REG_DL_DATA_TYPE(platform::float16), // NOLINT
REG_DL_DATA_TYPE(float), // NOLINT
REG_DL_DATA_TYPE(double), // NOLINT
REG_DL_DATA_TYPE(int), // NOLINT
REG_DL_DATA_TYPE(int64_t), // NOLINT
REG_DL_DATA_TYPE(bool), // NOLINT
REG_DL_DATA_TYPE(size_t), // NOLINT
REG_DL_DATA_TYPE(int16_t), // NOLINT
REG_DL_DATA_TYPE(uint8_t), // NOLINT
REG_DL_DATA_TYPE(int8_t) // NOLINT
});
static auto type_to_dtype_map_end_it = type_to_dtype_map.end();
auto it = type_to_dtype_map.find(type);
PADDLE_ENFORCE(it != type_to_dtype_map_end_it, "Unsupported data type %s",
type.name());
return it->second;
#undef REG_DL_DATA_TYPE
}
struct DLContextVisitor : public boost::static_visitor<::DLContext> {
inline ::DLContext operator()(const platform::CPUPlace &place) const {
DLContext ctx;
ctx.device_type = kDLCPU;
ctx.device_id = 0;
return ctx;
}
inline ::DLContext operator()(const platform::CUDAPlace &place) const {
#ifdef PADDLE_WITH_CUDA
DLContext ctx;
ctx.device_type = kDLGPU;
ctx.device_id = place.device;
return ctx;
#else
PADDLE_THROW("platform::CUDAPlace is not supported in CPU only version");
#endif
}
inline ::DLContext operator()(const platform::CUDAPinnedPlace &place) const {
#ifdef PADDLE_WITH_CUDA
DLContext ctx;
ctx.device_type = kDLCPUPinned;
ctx.device_id = 0;
return ctx;
#else
PADDLE_THROW(
"platform::CUDAPinnedPlace is not supported in CPU only version");
#endif
}
};
} // namespace internal
DLPackTensor::DLPackTensor(const Tensor &tensor, LaneType lanes) {
// init data, data buffer
t_.data = const_cast<void *>(tensor.data<void>());
// init ctx, DLContext type with device_type and device_id
auto place = tensor.place();
t_.ctx = boost::apply_visitor(internal::DLContextVisitor(), place);
// init dtype
t_.dtype = internal::GetDLDataTypeFromTypeIndex(tensor.type());
t_.dtype.lanes = lanes;
// init ndim, tensor rank
auto &dims = tensor.dims();
using DimType = decltype(t_.ndim); // int
t_.ndim = static_cast<DimType>(dims.size());
// init shape, tensor dims
t_.shape = shape_;
for (DimType i = 0; i < t_.ndim; ++i) {
t_.shape[i] = dims[i];
}
// init strides, nullptr means the tensor is compact
t_.strides = nullptr;
// init byte_offset
t_.byte_offset = 0;
}
} // namespace framework
} // namespace paddle
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <dlpack/dlpack.h>
#include "paddle/fluid/framework/tensor.h"
namespace paddle {
namespace framework {
class DLPackTensor {
public:
using LaneType = decltype(::DLTensor::dtype.lanes); // uint16_t
using ShapeType =
std::remove_reference<decltype(::DLTensor::shape[0])>::type; // int64_t
// lanes is only used in CPU to enable vectorization
explicit DLPackTensor(const Tensor& tensor, LaneType lanes = 1);
inline operator const ::DLTensor&() const { return t_; }
inline operator ::DLTensor&() { return t_; }
private:
::DLTensor t_;
// The shape in DLTensor is defined as int64_t*
// Add this member to make TVMTensor init without heap allocation
ShapeType shape_[9];
};
} // namespace framework
} // namespace paddle
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/dlpack_tensor.h"
#include <glog/logging.h>
#include <gtest/gtest.h>
#include <vector>
namespace paddle {
namespace framework {
namespace { // NOLINT
template <typename T>
constexpr uint8_t GetDLDataTypeCode() {
return std::is_same<platform::float16, T>::value ||
std::is_floating_point<T>::value
? static_cast<uint8_t>(kDLFloat)
: (std::is_unsigned<T>::value
? static_cast<uint8_t>(kDLUInt)
: (std::is_integral<T>::value ? static_cast<uint8_t>(kDLInt)
: static_cast<uint8_t>(-1)));
}
} // NOLINT
template <typename T>
void TestMain(const platform::Place &place, uint16_t lanes) {
DDim dims{4, 5, 6, 7};
Tensor tensor;
tensor.Resize(dims);
void *p = tensor.mutable_data<T>(place);
DLPackTensor dlpack_tensor(tensor, lanes);
::DLTensor &dl_tensor = dlpack_tensor;
CHECK_EQ(p, dl_tensor.data);
if (platform::is_cpu_place(place)) {
CHECK_EQ(kDLCPU, dl_tensor.ctx.device_type);
CHECK_EQ(0, dl_tensor.ctx.device_id);
} else if (platform::is_gpu_place(place)) {
CHECK_EQ(kDLGPU, dl_tensor.ctx.device_type);
CHECK_EQ(boost::get<platform::CUDAPlace>(place).device,
dl_tensor.ctx.device_id);
} else if (platform::is_cuda_pinned_place(place)) {
CHECK_EQ(kDLCPUPinned, dl_tensor.ctx.device_type);
CHECK_EQ(0, dl_tensor.ctx.device_id);
} else {
CHECK_EQ(false, true);
}
CHECK_EQ(dims.size(), dl_tensor.ndim);
for (auto i = 0; i < dims.size(); ++i) {
CHECK_EQ(dims[i], dl_tensor.shape[i]);
}
CHECK_EQ(dl_tensor.strides == nullptr, true);
CHECK_EQ(static_cast<uint64_t>(0), dl_tensor.byte_offset);
CHECK_EQ(lanes, dl_tensor.dtype.lanes);
CHECK_EQ(sizeof(T) * 8, dl_tensor.dtype.bits);
CHECK_EQ(GetDLDataTypeCode<T>(), dl_tensor.dtype.code);
}
template <typename T>
void TestMainLoop() {
#ifdef PADDLE_WITH_CUDA
std::vector<platform::Place> places{platform::CPUPlace(),
platform::CUDAPlace(0),
platform::CUDAPinnedPlace()};
if (platform::GetCUDADeviceCount() > 1) {
places.emplace_back(platform::CUDAPlace(1));
}
#else
std::vector<platform::Place> places{platform::CPUPlace()};
#endif
std::vector<uint16_t> lanes{1, 2};
for (auto &p : places) {
for (auto &l : lanes) {
TestMain<T>(p, l);
}
}
}
#define PADDLE_DLPACK_TEST(type) \
TEST(dlpack, test_##type) { TestMainLoop<type>(); }
using float16 = platform::float16;
PADDLE_DLPACK_TEST(float16);
PADDLE_DLPACK_TEST(float);
PADDLE_DLPACK_TEST(double);
PADDLE_DLPACK_TEST(int);
PADDLE_DLPACK_TEST(int64_t);
PADDLE_DLPACK_TEST(bool);
PADDLE_DLPACK_TEST(size_t);
PADDLE_DLPACK_TEST(int16_t);
PADDLE_DLPACK_TEST(uint8_t);
PADDLE_DLPACK_TEST(int8_t);
#undef PADDLE_DLPACK_TEST
} // namespace framework
} // namespace paddle
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册