未验证 提交 bf6cbbc7 编写于 作者: T Tao Luo 提交者: GitHub

remove unused fc_gan unit-test demo (#26889)

上级 030b298e
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tarfile
import paddle.fluid as fluid
import paddle
from paddle.fluid import core
URL = 'http://paddle-unittest-data.gz.bcebos.com/python_paddle_fluid_tests_demo_async-executor/train_data.tar.gz'
MD5 = '2a405a31508969b3ab823f42c0f522ca'
def bow_net(data,
label,
dict_dim=89528,
emb_dim=128,
hid_dim=128,
hid_dim2=96,
class_dim=2):
"""
BOW net
This model is from https://github.com/PaddlePaddle/models:
models/fluid/PaddleNLP/text_classification/nets.py
"""
# embedding
emb = fluid.layers.embedding(
input=data, size=[dict_dim, emb_dim], is_sparse=True)
bow = fluid.layers.sequence_pool(input=emb, pool_type='sum')
bowh = fluid.layers.tanh(bow)
# fc layer after conv
fc_1 = fluid.layers.fc(input=bowh, size=hid_dim, act="tanh")
fc_2 = fluid.layers.fc(input=fc_1, size=hid_dim2, act="tanh")
# probability of each class
prediction = fluid.layers.fc(input=[fc_2], size=class_dim, act="softmax")
# cross entropy loss
cost = fluid.layers.cross_entropy(input=prediction, label=label)
# mean loss
avg_cost = fluid.layers.mean(x=cost)
acc = fluid.layers.accuracy(input=prediction, label=label)
return avg_cost, acc, prediction
def train():
# Download data
with tarfile.open(paddle.dataset.common.download(URL, "imdb", MD5)) as tarf:
tarf.extractall(path='./')
tarf.close()
# Initialize dataset description
dataset = fluid.DatasetFactory().create_dataset()
dataset.set_batch_size(128) # See API doc for how to change other fields
# define network
# input text data
data = fluid.layers.data(
name="words", shape=[1], dtype="int64", lod_level=1)
# label data
label = fluid.layers.data(name="label", shape=[1], dtype="int64")
dataset.set_use_var([data, label])
avg_cost, acc, prediction = bow_net(data, label)
sgd_optimizer = fluid.optimizer.Adagrad(learning_rate=0.002)
opt_ops, weight_and_grad = sgd_optimizer.minimize(avg_cost)
# Run startup program
startup_program = fluid.default_startup_program()
place = fluid.CPUPlace()
executor = fluid.Executor(place)
executor.run(startup_program)
main_program = fluid.default_main_program()
epochs = 10
filelist = ["train_data/part-%d" % i for i in range(12)]
dataset.set_filelist(filelist)
for i in range(epochs):
dataset.set_thread(4)
executor.train_from_dataset(
main_program, # This can be changed during iteration
dataset, # This can be changed during iteration
debug=False)
fluid.io.save_inference_model('imdb/epoch%d.model' % i,
[data.name, label.name], [acc], executor)
if __name__ == "__main__":
train()
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import errno
import math
import os
import matplotlib
import numpy
import paddle
import paddle.fluid as fluid
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
NOISE_SIZE = 100
NUM_PASS = 1000
NUM_REAL_IMGS_IN_BATCH = 121
NUM_TRAIN_TIMES_OF_DG = 3
LEARNING_RATE = 2e-5
def D(x):
hidden = fluid.layers.fc(input=x,
size=200,
act='relu',
param_attr='D.w1',
bias_attr='D.b1')
logits = fluid.layers.fc(input=hidden,
size=1,
act=None,
param_attr='D.w2',
bias_attr='D.b2')
return logits
def G(x):
hidden = fluid.layers.fc(input=x,
size=200,
act='relu',
param_attr='G.w1',
bias_attr='G.b1')
img = fluid.layers.fc(input=hidden,
size=28 * 28,
act='tanh',
param_attr='G.w2',
bias_attr='G.b2')
return img
def plot(gen_data):
gen_data.resize(gen_data.shape[0], 28, 28)
n = int(math.ceil(math.sqrt(gen_data.shape[0])))
fig = plt.figure(figsize=(n, n))
gs = gridspec.GridSpec(n, n)
gs.update(wspace=0.05, hspace=0.05)
for i, sample in enumerate(gen_data):
ax = plt.subplot(gs[i])
plt.axis('off')
ax.set_xticklabels([])
ax.set_yticklabels([])
ax.set_aspect('equal')
plt.imshow(sample.reshape(28, 28), cmap='Greys_r')
return fig
def main():
try:
os.makedirs("./out")
except OSError as e:
if e.errno != errno.EEXIST:
raise
startup_program = fluid.Program()
d_program = fluid.Program()
dg_program = fluid.Program()
with fluid.program_guard(d_program, startup_program):
img = fluid.layers.data(name='img', shape=[784], dtype='float32')
d_loss = fluid.layers.sigmoid_cross_entropy_with_logits(
x=D(img),
label=fluid.layers.data(
name='label', shape=[1], dtype='float32'))
d_loss = fluid.layers.mean(d_loss)
with fluid.program_guard(dg_program, startup_program):
noise = fluid.layers.data(
name='noise', shape=[NOISE_SIZE], dtype='float32')
g_img = G(x=noise)
g_program = dg_program.clone()
dg_loss = fluid.layers.sigmoid_cross_entropy_with_logits(
x=D(g_img),
label=fluid.layers.fill_constant_batch_size_like(
input=noise, dtype='float32', shape=[-1, 1], value=1.0))
dg_loss = fluid.layers.mean(dg_loss)
opt = fluid.optimizer.Adam(learning_rate=LEARNING_RATE)
opt.minimize(loss=d_loss, startup_program=startup_program)
opt.minimize(
loss=dg_loss,
startup_program=startup_program,
parameter_list=[
p.name for p in g_program.global_block().all_parameters()
])
exe = fluid.Executor(fluid.CPUPlace())
exe.run(startup_program)
num_true = NUM_REAL_IMGS_IN_BATCH
train_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.mnist.train(), buf_size=60000),
batch_size=num_true)
for pass_id in range(NUM_PASS):
for batch_id, data in enumerate(train_reader()):
num_true = len(data)
n = numpy.random.uniform(
low=-1.0, high=1.0,
size=[num_true * NOISE_SIZE]).astype('float32').reshape(
[num_true, NOISE_SIZE])
generated_img = exe.run(g_program,
feed={'noise': n},
fetch_list={g_img})[0]
real_data = numpy.array([x[0] for x in data]).astype('float32')
real_data = real_data.reshape(num_true, 784)
total_data = numpy.concatenate([real_data, generated_img])
total_label = numpy.concatenate([
numpy.ones(
shape=[real_data.shape[0], 1], dtype='float32'),
numpy.zeros(
shape=[real_data.shape[0], 1], dtype='float32')
])
d_loss_np = exe.run(d_program,
feed={'img': total_data,
'label': total_label},
fetch_list={d_loss})[0]
for _ in range(NUM_TRAIN_TIMES_OF_DG):
n = numpy.random.uniform(
low=-1.0, high=1.0,
size=[2 * num_true * NOISE_SIZE]).astype('float32').reshape(
[2 * num_true, NOISE_SIZE, 1, 1])
dg_loss_np = exe.run(dg_program,
feed={'noise': n},
fetch_list={dg_loss})[0]
print("Pass ID={0}, Batch ID={1}, D-Loss={2}, DG-Loss={3}".format(
pass_id, batch_id, d_loss_np, dg_loss_np))
# generate image each batch
fig = plot(generated_img)
plt.savefig(
'out/{0}.png'.format(str(pass_id).zfill(3)), bbox_inches='tight')
plt.close(fig)
if __name__ == '__main__':
main()
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import numpy as np
import copy
import pickle
import os
from functools import partial
import logging
import time
import paddle
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import argparse
import random
import sys
import math
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger("fluid")
logger.setLevel(logging.INFO)
is_profile = False
def parse_args():
parser = argparse.ArgumentParser("Resnet with pipelie parallel.")
parser.add_argument(
'--batch_size', type=int, default=100, help='input batch size')
parser.add_argument('--lr', type=float, default=0.001, help='learning rate')
return parser.parse_args()
def conv_bn_layer(input, num_filters, filter_size, stride=1, groups=1,
act=None):
conv = fluid.layers.conv2d(
input=input,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
act=None,
bias_attr=False)
return fluid.layers.batch_norm(
input=conv,
act=act, )
def shortcut(input, ch_out, stride, is_first):
ch_in = input.shape[1]
if ch_in != ch_out or stride != 1 or is_first == True:
return conv_bn_layer(input, ch_out, 1, stride)
else:
return input
def bottleneck_block(input, num_filters, stride):
conv0 = conv_bn_layer(
input=input, num_filters=num_filters, filter_size=1, act='relu')
conv1 = conv_bn_layer(
input=conv0,
num_filters=num_filters,
filter_size=3,
stride=stride,
act='relu')
conv2 = conv_bn_layer(
input=conv1, num_filters=num_filters * 4, filter_size=1, act=None)
short = shortcut(input, num_filters * 4, stride, is_first=False)
return fluid.layers.elementwise_add(x=short, y=conv2, act='relu')
def basic_block(input, num_filters, stride, is_first):
conv0 = conv_bn_layer(
input=input,
num_filters=num_filters,
filter_size=3,
act='relu',
stride=stride)
conv1 = conv_bn_layer(
input=conv0, num_filters=num_filters, filter_size=3, act=None)
short = shortcut(input, num_filters, stride, is_first)
return fluid.layers.elementwise_add(x=short, y=conv1, act='relu')
def network(input, layers=50, class_dim=1000):
supported_layers = [18, 34, 50, 101, 152]
assert layers in supported_layers
depth = None
if layers == 18:
depth = [2, 2, 2, 2]
elif layers == 34 or layers == 50:
depth = [3, 4, 6, 3]
elif layers == 101:
depth = [3, 4, 23, 3]
elif layers == 152:
depth = [3, 8, 36, 3]
num_filters = [64, 128, 256, 512]
with fluid.device_guard("gpu:0"):
conv = conv_bn_layer(
input=input, num_filters=64, filter_size=7, stride=2, act='relu')
conv = fluid.layers.pool2d(
input=conv,
pool_size=3,
pool_stride=2,
pool_padding=1,
pool_type='max')
if layers >= 50:
for block in range(len(depth)):
with fluid.device_guard("gpu:1"):
for i in range(depth[block]):
conv = bottleneck_block(
input=conv,
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1)
with fluid.device_guard("gpu:2"):
pool = fluid.layers.pool2d(
input=conv, pool_size=7, pool_type='avg', global_pooling=True)
stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
out = fluid.layers.fc(
input=pool,
size=class_dim,
param_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.Uniform(-stdv, stdv)))
else:
for block in range(len(depth)):
with fluid.device_guard("gpu:1"):
for i in range(depth[block]):
conv = basic_block(
input=conv,
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
is_first=block == i == 0)
with fluid.device_guard("gpu:2"):
pool = fluid.layers.pool2d(
input=conv, pool_size=7, pool_type='avg', global_pooling=True)
stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
out = fluid.layers.fc(
input=pool,
size=class_dim,
param_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.Uniform(-stdv, stdv)))
return out
def train():
args = parse_args()
lr = args.lr
with fluid.device_guard("gpu:0"):
image = fluid.layers.data(
name="image", shape=[3, 224, 224], dtype="float32")
label = fluid.layers.data(name="label", shape=[1], dtype="int64")
data_loader = fluid.io.DataLoader.from_generator(
feed_list=[image, label],
capacity=64,
use_double_buffer=True,
iterable=False)
fc = build_network(image, layers=50)
with fluid.device_guard("gpu:3"):
out, prob = fluid.layers.softmax_with_cross_entropy(
logits=fc, label=label, return_softmax=True)
loss = fluid.layers.mean(out)
acc_top1 = fluid.layers.accuracy(input=prob, label=label, k=1)
acc_top5 = fluid.layers.accuracy(input=prob, label=label, k=5)
optimizer = fluid.optimizer.SGD(lr)
optimizer = fluid.optimizer.PipelineOptimizer(optimizer, num_microbatches=2)
optimizer.minimize(loss)
def train_reader():
for _ in range(4000):
img = np.random.random(size=[3, 224, 224]).astype('float32')
label = np.random.random(size=[1]).astype('int64')
yield img, label
data_loader.set_sample_generator(train_reader, batch_size=args.batch_size)
place = fluid.CUDAPlace(0)
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
data_loader.start()
logger.info("begin training...")
exe.train_from_dataset(fluid.default_main_program(), debug=is_profile)
if __name__ == "__main__":
train()
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy
import six
import paddle
import paddle.dataset.mnist as mnist
import paddle.fluid as fluid
def network(is_train):
reader = fluid.layers.py_reader(
capacity=10,
shapes=((-1, 784), (-1, 1)),
dtypes=('float32', 'int64'),
name="train_reader" if is_train else "test_reader",
use_double_buffer=True)
img, label = fluid.layers.read_file(reader)
hidden = img
for i in six.moves.xrange(2):
hidden = fluid.layers.fc(input=hidden, size=100, act='tanh')
hidden = fluid.layers.dropout(
hidden, dropout_prob=0.5, is_test=not is_train)
prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
loss = fluid.layers.cross_entropy(input=prediction, label=label)
return fluid.layers.mean(loss), reader
def main():
train_prog = fluid.Program()
startup_prog = fluid.Program()
with fluid.program_guard(train_prog, startup_prog):
with fluid.unique_name.guard():
loss, train_reader = network(True)
adam = fluid.optimizer.Adam(learning_rate=0.01)
adam.minimize(loss)
test_prog = fluid.Program()
test_startup = fluid.Program()
with fluid.program_guard(test_prog, test_startup):
with fluid.unique_name.guard():
test_loss, test_reader = network(False)
use_cuda = fluid.core.is_compiled_with_cuda()
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
fluid.Executor(place).run(startup_prog)
fluid.Executor(place).run(test_startup)
trainer = fluid.ParallelExecutor(
use_cuda=use_cuda, loss_name=loss.name, main_program=train_prog)
tester = fluid.ParallelExecutor(
use_cuda=use_cuda, share_vars_from=trainer, main_program=test_prog)
train_reader.decorate_paddle_reader(
paddle.reader.shuffle(
paddle.batch(mnist.train(), 512), buf_size=8192))
test_reader.decorate_paddle_reader(paddle.batch(mnist.test(), 512))
for epoch_id in six.moves.xrange(10):
train_reader.start()
try:
while True:
print(
'train_loss',
numpy.array(trainer.run(fetch_list=[loss.name])))
except fluid.core.EOFException:
print('End of epoch', epoch_id)
train_reader.reset()
test_reader.start()
try:
while True:
print(
'test loss',
numpy.array(tester.run(fetch_list=[test_loss.name])))
except fluid.core.EOFException:
print('End of testing')
test_reader.reset()
if __name__ == '__main__':
main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册