Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
bf5ce626
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
bf5ce626
编写于
6月 15, 2018
作者:
Y
Yibing Liu
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of upstream into fix_docs
上级
316eb3e9
566a9402
变更
20
隐藏空白更改
内联
并排
Showing
20 changed file
with
494 addition
and
179 deletion
+494
-179
paddle/fluid/inference/tensorrt/convert/op_converter.h
paddle/fluid/inference/tensorrt/convert/op_converter.h
+2
-1
paddle/fluid/inference/tensorrt/engine.h
paddle/fluid/inference/tensorrt/engine.h
+23
-9
paddle/fluid/operators/activation_op.cc
paddle/fluid/operators/activation_op.cc
+9
-10
paddle/fluid/operators/detection/box_coder_op.cc
paddle/fluid/operators/detection/box_coder_op.cc
+27
-14
paddle/fluid/operators/gaussian_random_batch_size_like_op.cc
paddle/fluid/operators/gaussian_random_batch_size_like_op.cc
+6
-3
paddle/fluid/operators/listen_and_serv_op.cc
paddle/fluid/operators/listen_and_serv_op.cc
+2
-1
paddle/fluid/operators/mean_op.cc
paddle/fluid/operators/mean_op.cc
+3
-5
paddle/fluid/operators/tensorrt_engine_op.cc
paddle/fluid/operators/tensorrt_engine_op.cc
+18
-10
paddle/fluid/operators/tensorrt_engine_op.h
paddle/fluid/operators/tensorrt_engine_op.h
+17
-16
paddle/fluid/operators/tensorrt_engine_op_test.cc
paddle/fluid/operators/tensorrt_engine_op_test.cc
+98
-1
python/paddle/fluid/initializer.py
python/paddle/fluid/initializer.py
+100
-2
python/paddle/fluid/layers/control_flow.py
python/paddle/fluid/layers/control_flow.py
+1
-1
python/paddle/fluid/layers/io.py
python/paddle/fluid/layers/io.py
+33
-35
python/paddle/fluid/layers/layer_function_generator.py
python/paddle/fluid/layers/layer_function_generator.py
+19
-10
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+61
-44
python/paddle/fluid/layers/tensor.py
python/paddle/fluid/layers/tensor.py
+19
-2
python/paddle/fluid/tests/unittests/test_dist_train.py
python/paddle/fluid/tests/unittests/test_dist_train.py
+23
-6
python/paddle/fluid/tests/unittests/test_initializer.py
python/paddle/fluid/tests/unittests/test_initializer.py
+17
-0
python/paddle/fluid/tests/unittests/test_listen_and_serv_op.py
...n/paddle/fluid/tests/unittests/test_listen_and_serv_op.py
+12
-9
python/paddle/fluid/tests/unittests/test_parallel_executor_crf.py
...addle/fluid/tests/unittests/test_parallel_executor_crf.py
+4
-0
未找到文件。
paddle/fluid/inference/tensorrt/convert/op_converter.h
浏览文件 @
bf5ce626
...
...
@@ -64,7 +64,8 @@ class OpConverter {
(
*
it
)(
op
,
scope
,
test_mode
);
}
// convert fluid block to tensorrt network
// Convert a fluid block to tensorrt network, NOTE it just convert operators,
// the INetwork's inputs and outputs should specified in some other modules.
void
ConvertBlock
(
const
framework
::
proto
::
BlockDesc
&
block
,
const
std
::
unordered_set
<
std
::
string
>&
parameters
,
const
framework
::
Scope
&
scope
,
TensorRTEngine
*
engine
)
{
...
...
paddle/fluid/inference/tensorrt/engine.h
浏览文件 @
bf5ce626
...
...
@@ -51,11 +51,12 @@ class TensorRTEngine : public EngineBase {
nvinfer1
::
Weights
w_
;
};
TensorRTEngine
(
int
max_batch
,
int
max_workspace
,
cudaStream_t
*
stream
,
TensorRTEngine
(
int
max_batch
,
int
max_workspace
,
cudaStream_t
*
stream
=
nullptr
,
nvinfer1
::
ILogger
&
logger
=
NaiveLogger
::
Global
())
:
max_batch_
(
max_batch
),
max_workspace_
(
max_workspace
),
stream_
(
stream
),
stream_
(
stream
?
stream
:
&
default_stream_
),
logger_
(
logger
)
{}
virtual
~
TensorRTEngine
();
...
...
@@ -121,6 +122,8 @@ class TensorRTEngine : public EngineBase {
// the max memory size the engine uses
int
max_workspace_
;
cudaStream_t
*
stream_
;
// If stream_ is not set from outside, hold its own stream.
cudaStream_t
default_stream_
;
nvinfer1
::
ILogger
&
logger_
;
std
::
vector
<
Buffer
>
buffers_
;
...
...
@@ -165,20 +168,31 @@ class TensorRTEngine : public EngineBase {
*/
class
TRT_EngineManager
{
public:
TensorRTEngine
*
Create
(
int
max_batch
,
int
max_workspace
,
cudaStream_t
*
stream
)
{
engines_
.
emplace_back
(
new
TensorRTEngine
(
max_batch
,
max_workspace
,
stream
));
return
engines_
.
back
().
get
();
bool
HasEngine
(
const
std
::
string
&
name
)
const
{
return
engines_
.
count
(
name
)
!=
0
;
}
// Get an engine called `name`.
TensorRTEngine
*
Get
(
const
std
::
string
&
name
)
const
{
return
engines_
.
at
(
name
).
get
();
}
// Create or get an engine called `name`
TensorRTEngine
*
Create
(
int
max_batch
,
int
max_workspace
,
cudaStream_t
*
stream
,
const
std
::
string
&
name
)
{
auto
*
p
=
new
TensorRTEngine
(
max_batch
,
max_workspace
,
stream
);
engines_
[
name
].
reset
(
p
);
return
p
;
}
void
DeleteALl
()
{
for
(
auto
&
ptr
:
engines_
)
{
ptr
.
reset
(
nullptr
);
for
(
auto
&
item
:
engines_
)
{
item
.
second
.
reset
(
nullptr
);
}
}
private:
std
::
vector
<
std
::
unique_ptr
<
TensorRTEngine
>>
engines_
;
std
::
unordered_map
<
std
::
string
,
std
::
unique_ptr
<
TensorRTEngine
>>
engines_
;
};
}
// namespace tensorrt
...
...
paddle/fluid/operators/activation_op.cc
浏览文件 @
bf5ce626
...
...
@@ -112,7 +112,7 @@ $$out = \frac{1}{1 + e^{-x}}$$
__attribute__
((
unused
))
constexpr
char
LogSigmoidDoc
[]
=
R"DOC(
Logsigmoid Activation Operator
$$out = \
log
\frac{1}{1 + e^{-x}}$$
$$out = \
\log \
\frac{1}{1 + e^{-x}}$$
)DOC"
;
...
...
@@ -252,15 +252,14 @@ class SoftShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
AddOutput
(
"Out"
,
"Output of Softshrink operator"
);
AddAttr
<
float
>
(
"lambda"
,
"non-negative offset"
).
SetDefault
(
0.5
f
);
AddComment
(
R"DOC(
Softshrink Activation Operator.
$$
out = \begin{cases}
x - \lambda, \text{if } x > \lambda \\
x + \lambda, \text{if } x < -\lambda \\
0, \text{otherwise}
\end{cases}
$$
:strong:`Softshrink Activation Operator`
.. math::
out = \begin{cases}
x - \lambda, \text{if } x > \lambda \\
x + \lambda, \text{if } x < -\lambda \\
0, \text{otherwise}
\end{cases}
)DOC"
);
}
...
...
paddle/fluid/operators/detection/box_coder_op.cc
浏览文件 @
bf5ce626
...
...
@@ -106,23 +106,36 @@ class BoxCoderOpMaker : public framework::OpProtoAndCheckerMaker {
"and M represents the number of deocded boxes."
);
AddComment
(
R"DOC(
Bounding Box Coder Operator.
Bounding Box Coder.
Encode/Decode the target bounding box with the priorbox information.
The Encoding schema described below:
ox = (tx - px) / pw / pxv
oy = (ty - py) / ph / pyv
ow = log(abs(tw / pw)) / pwv
oh = log(abs(th / ph)) / phv
ox = (tx - px) / pw / pxv
oy = (ty - py) / ph / pyv
ow = log(abs(tw / pw)) / pwv
oh = log(abs(th / ph)) / phv
The Decoding schema described below:
ox = (pw * pxv * tx * + px) - tw / 2
oy = (ph * pyv * ty * + py) - th / 2
ow = exp(pwv * tw) * pw + tw / 2
oh = exp(phv * th) * ph + th / 2
where tx, ty, tw, th denote the target box's center coordinates, width and
height respectively. Similarly, px, py, pw, ph denote the priorbox's(anchor)
center coordinates, width and height. pxv, pyv, pwv, phv denote the variance
of the priorbox and ox, oy, ow, oh denote the encoded/decoded coordinates,
width and height.
ox = (pw * pxv * tx * + px) - tw / 2
oy = (ph * pyv * ty * + py) - th / 2
ow = exp(pwv * tw) * pw + tw / 2
oh = exp(phv * th) * ph + th / 2
where `tx`, `ty`, `tw`, `th` denote the target box's center coordinates, width
and height respectively. Similarly, `px`, `py`, `pw`, `ph` denote the
priorbox's (anchor) center coordinates, width and height. `pxv`, `pyv`, `pwv`,
`phv` denote the variance of the priorbox and `ox`, `oy`, `ow`, `oh` denote the
encoded/decoded coordinates, width and height.
)DOC"
);
}
};
...
...
paddle/fluid/operators/gaussian_random_batch_size_like_op.cc
浏览文件 @
bf5ce626
...
...
@@ -36,11 +36,12 @@ class GaussianRandomBatchSizeLikeOpMaker : public BatchSizeLikeOpMaker {
void
Apply
()
override
{
AddAttr
<
float
>
(
"mean"
,
"(float, default 0.0) "
"
mean of random tensor
."
)
"
The mean (or center) of the gaussian distribution
."
)
.
SetDefault
(
.0
f
);
AddAttr
<
float
>
(
"std"
,
"(float, default 1.0) "
"std of random tensor."
)
"The standard deviation (std, or spread) of the "
"gaussian distribution."
)
.
SetDefault
(
1.0
f
);
AddAttr
<
int
>
(
"seed"
,
"(int, default 0) "
...
...
@@ -55,9 +56,11 @@ class GaussianRandomBatchSizeLikeOpMaker : public BatchSizeLikeOpMaker {
.
SetDefault
(
framework
::
proto
::
VarType
::
FP32
);
AddComment
(
R"DOC(
GaussianRandom Operator.
Used to initialize tensors with gaussian random generator.
The defalut mean of the distribution is 0. and defalut standard
deviation (std) of the distribution is 1.. Uers can set mean and std
by input arguments.
)DOC"
);
}
};
...
...
paddle/fluid/operators/listen_and_serv_op.cc
浏览文件 @
bf5ce626
...
...
@@ -348,7 +348,8 @@ class ListenAndServOpMaker : public framework::OpProtoAndCheckerMaker {
};
void
SignalHandler
::
StopAndExit
(
int
signal_num
)
{
VLOG
(
3
)
<<
"Catch interrupt signal: "
<<
signal_num
<<
", program will exit"
;
// Do not use VLOG here for the device for printing maybe already released.
// exit will release interal allocated resoureces.
exit
(
0
);
}
...
...
paddle/fluid/operators/mean_op.cc
浏览文件 @
bf5ce626
...
...
@@ -33,12 +33,10 @@ class MeanOp : public framework::OperatorWithKernel {
class
MeanOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"X"
,
"The input of mean op"
);
AddOutput
(
"Out"
,
"The output of mean op"
).
Reuse
(
"X"
);
AddInput
(
"X"
,
"
(Tensor)
The input of mean op"
);
AddOutput
(
"Out"
,
"
(Tensor)
The output of mean op"
).
Reuse
(
"X"
);
AddComment
(
R"DOC(
Mean Operator.
Out is a scalar which is the mean of all elements in X.
Mean Operator calculates the mean of all elements in X.
)DOC"
);
}
...
...
paddle/fluid/operators/tensorrt_engine_op.cc
浏览文件 @
bf5ce626
...
...
@@ -66,17 +66,25 @@ nvinfer1::Dims Vec2TRT_Dims(const std::vector<int64_t> &shape) {
}
// namespace
template
<
typename
DeviceContext
,
typename
T
>
void
paddle
::
operators
::
TensorRTEngineKernel
<
DeviceContext
,
T
>::
Prepare
(
void
TensorRTEngineKernel
<
DeviceContext
,
T
>::
Prepare
(
const
framework
::
ExecutionContext
&
context
)
const
{
VLOG
(
4
)
<<
"Prepare engine"
;
// Get the ProgramDesc and pass to convert.
framework
::
proto
::
BlockDesc
block_desc
;
block_desc
.
ParseFromString
(
context
.
Attr
<
std
::
string
>
(
"subgraph"
));
max_batch_
=
context
.
Attr
<
int
>
(
"max_batch"
);
int
max_batch
=
context
.
Attr
<
int
>
(
"max_batch"
);
auto
max_workspace
=
context
.
Attr
<
int
>
(
"max_workspace"
);
engine_
=
Singleton
<
TRT_EngineManager
>::
Global
().
Create
(
max_batch_
,
max_workspace
,
&
stream_
);
engine_
->
InitNetwork
();
auto
params
=
context
.
Attr
<
std
::
vector
<
std
::
string
>>
(
"parameters"
);
std
::
unordered_set
<
std
::
string
>
parameters
;
for
(
const
auto
&
param
:
params
)
{
parameters
.
insert
(
param
);
}
// TODO(Superjomn) replace this with a different stream
auto
*
engine
=
Singleton
<
TRT_EngineManager
>::
Global
().
Create
(
max_batch
,
max_workspace
,
nullptr
/*engine hold its own stream*/
,
context
.
Attr
<
std
::
string
>
(
"engine_uniq_key"
));
engine
->
InitNetwork
();
framework
::
BlockDesc
block
(
nullptr
/*programdesc*/
,
&
block_desc
);
// Add inputs
...
...
@@ -87,24 +95,23 @@ void paddle::operators::TensorRTEngineKernel<DeviceContext, T>::Prepare(
PADDLE_ENFORCE_EQ
(
var
->
GetType
(),
FluidDT
::
VarType_Type_LOD_TENSOR
,
"TensorRT engine only takes LoDTensor as input"
);
auto
shape
=
var
->
GetShape
();
engine
_
->
DeclareInput
(
engine
->
DeclareInput
(
input
,
FluidDataType2TRT
(
var
->
Proto
()
->
type
().
lod_tensor
().
tensor
().
data_type
()),
Vec2TRT_Dims
(
var
->
GetShape
()));
}
// TODO(Superjomn) parameters should be passed after analysised from outside.
inference
::
Singleton
<
inference
::
tensorrt
::
OpConverter
>::
Global
().
ConvertBlock
(
block_desc
,
{},
context
.
scope
(),
engine_
);
block_desc
,
parameters
,
context
.
scope
(),
engine
);
// Add outputs
VLOG
(
4
)
<<
"declare outputs"
;
for
(
auto
&
output
:
context
.
Outputs
(
"Ys"
))
{
VLOG
(
4
)
<<
"declare output "
<<
output
;
engine
_
->
DeclareOutput
(
output
);
engine
->
DeclareOutput
(
output
);
}
engine
_
->
FreezeNetwork
();
engine
->
FreezeNetwork
();
}
class
TensorRTEngineOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
...
...
@@ -113,6 +120,7 @@ class TensorRTEngineOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"Xs"
,
"A list of inputs."
).
AsDuplicable
();
AddOutput
(
"Ys"
,
"A list of outputs"
).
AsDuplicable
();
AddAttr
<
std
::
string
>
(
"subgraph"
,
"the subgraph."
);
AddAttr
<
std
::
string
>
(
"engine_uniq_key"
,
"unique key for the TRT engine."
);
AddAttr
<
int
>
(
"max_batch"
,
"the maximum batch size."
);
AddAttr
<
int
>
(
"max_workspace"
,
"the maximum batch size."
);
AddComment
(
"TensorRT engine operator."
);
...
...
paddle/fluid/operators/tensorrt_engine_op.h
浏览文件 @
bf5ce626
...
...
@@ -19,10 +19,14 @@
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/inference/analysis/helper.h"
#include "paddle/fluid/inference/tensorrt/engine.h"
#include "paddle/fluid/inference/tensorrt/engine.h"
namespace
paddle
{
namespace
operators
{
using
inference
::
Singleton
;
using
inference
::
tensorrt
::
TRT_EngineManager
;
class
TensorRTEngineOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
...
...
@@ -47,16 +51,18 @@ template <typename DeviceContext, typename T>
class
TensorRTEngineKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
if
(
!
engine_
)
{
auto
engine_name
=
context
.
Attr
<
std
::
string
>
(
"engine_uniq_key"
);
if
(
!
Singleton
<
TRT_EngineManager
>::
Global
().
HasEngine
(
engine_name
))
{
Prepare
(
context
);
}
auto
*
engine
=
Singleton
<
TRT_EngineManager
>::
Global
().
Get
(
engine_name
);
auto
input_names
=
context
.
op
().
Inputs
(
"Xs"
);
PADDLE_ENFORCE
(
!
input_names
.
empty
(),
"should pass more than one inputs"
);
// Try to determine a batch_size
auto
&
tensor0
=
inference
::
analysis
::
GetFromScope
<
framework
::
LoDTensor
>
(
context
.
scope
(),
input_names
.
front
());
int
batch_size
=
tensor0
.
dims
()[
0
];
PADDLE_ENFORCE_LE
(
batch_size
,
max_batch_
);
PADDLE_ENFORCE_LE
(
batch_size
,
context
.
Attr
<
int
>
(
"max_batch"
)
);
// Convert input tensor from fluid to engine.
for
(
const
auto
&
x
:
context
.
Inputs
(
"Xs"
))
{
...
...
@@ -64,20 +70,20 @@ class TensorRTEngineKernel : public framework::OpKernel<T> {
auto
&
t
=
inference
::
analysis
::
GetFromScope
<
framework
::
LoDTensor
>
(
context
.
scope
(),
x
);
if
(
platform
::
is_cpu_place
(
t
.
place
()))
{
engine
_
->
SetInputFromCPU
(
x
,
static_cast
<
const
void
*>
(
t
.
data
<
void
>
()),
t
.
memory_size
());
engine
->
SetInputFromCPU
(
x
,
static_cast
<
const
void
*>
(
t
.
data
<
void
>
()),
t
.
memory_size
());
}
else
{
engine
_
->
SetInputFromGPU
(
x
,
static_cast
<
const
void
*>
(
t
.
data
<
void
>
()),
t
.
memory_size
());
engine
->
SetInputFromGPU
(
x
,
static_cast
<
const
void
*>
(
t
.
data
<
void
>
()),
t
.
memory_size
());
}
}
// Execute the engine.
PADDLE_ENFORCE_GT
(
batch_size
,
0
);
engine
_
->
Execute
(
batch_size
);
engine
->
Execute
(
batch_size
);
// Convert output tensor from engine to fluid
for
(
const
auto
&
y
:
context
.
Outputs
(
"Ys"
))
{
// convert output and copy to fluid.
nvinfer1
::
ITensor
*
trt_t
=
engine
_
->
GetITensor
(
y
);
nvinfer1
::
ITensor
*
trt_t
=
engine
->
GetITensor
(
y
);
auto
dims
=
trt_t
->
getDimensions
();
// Use the output ITensor's dims to reshape the Fluid Tensor.
std
::
vector
<
int
>
ddim
(
dims
.
d
,
dims
.
d
+
dims
.
nbDims
);
...
...
@@ -89,27 +95,22 @@ class TensorRTEngineKernel : public framework::OpKernel<T> {
auto
size
=
inference
::
analysis
::
AccuDims
(
dims
.
d
,
dims
.
nbDims
);
if
(
platform
::
is_cpu_place
(
fluid_t
->
place
()))
{
// TODO(Superjomn) change this float to dtype size.
engine
_
->
GetOutputInCPU
(
engine
->
GetOutputInCPU
(
y
,
fluid_t
->
mutable_data
<
float
>
(
platform
::
CPUPlace
()),
size
*
sizeof
(
float
));
}
else
{
engine
_
->
GetOutputInGPU
(
engine
->
GetOutputInGPU
(
y
,
fluid_t
->
mutable_data
<
float
>
(
platform
::
CUDAPlace
()),
size
*
sizeof
(
float
));
}
}
cudaStreamSynchronize
(
stream_
);
cudaStreamSynchronize
(
*
engine
->
stream
()
);
}
protected:
// Build the engine.
void
Prepare
(
const
framework
::
ExecutionContext
&
context
)
const
;
private:
mutable
cudaStream_t
stream_
;
mutable
inference
::
tensorrt
::
TensorRTEngine
*
engine_
{
nullptr
};
mutable
int
max_batch_
{
0
};
};
}
// namespace operators
...
...
paddle/fluid/operators/tensorrt_engine_op_test.cc
浏览文件 @
bf5ce626
...
...
@@ -79,6 +79,17 @@ void SetAttr<int64_t>(framework::proto::OpDesc* op, const std::string& name,
attr
->
set_type
(
paddle
::
framework
::
proto
::
AttrType
::
LONG
);
attr
->
set_l
(
data
);
}
template
<
>
void
SetAttr
<
std
::
vector
<
std
::
string
>>
(
framework
::
proto
::
OpDesc
*
op
,
const
std
::
string
&
name
,
const
std
::
vector
<
std
::
string
>&
data
)
{
auto
*
attr
=
op
->
add_attrs
();
attr
->
set_name
(
name
);
attr
->
set_type
(
paddle
::
framework
::
proto
::
AttrType
::
STRINGS
);
for
(
const
auto
&
s
:
data
)
{
attr
->
add_strings
(
s
.
c_str
());
}
}
}
// namespace
...
...
@@ -123,11 +134,15 @@ TEST(TensorRTEngineOp, manual) {
engine_op_desc
.
SetOutput
(
"Ys"
,
std
::
vector
<
std
::
string
>
({
"z0"
}));
SetAttr
<
std
::
string
>
(
engine_op_desc
.
Proto
(),
"subgraph"
,
block_
->
SerializeAsString
());
SetAttr
<
int
>
(
engine_op_desc
.
Proto
(),
"max_batch"
,
3
0
);
SetAttr
<
int
>
(
engine_op_desc
.
Proto
(),
"max_batch"
,
10
0
);
SetAttr
<
int
>
(
engine_op_desc
.
Proto
(),
"max_workspace"
,
1
<<
10
);
SetAttr
<
std
::
string
>
(
engine_op_desc
.
Proto
(),
"engine_uniq_key"
,
"a_engine"
);
SetAttr
<
std
::
vector
<
std
::
string
>>
(
engine_op_desc
.
Proto
(),
"parameters"
,
std
::
vector
<
std
::
string
>
({}));
LOG
(
INFO
)
<<
"create engine op"
;
auto
engine_op
=
framework
::
OpRegistry
::
CreateOp
(
*
engine_op_desc
.
Proto
());
LOG
(
INFO
)
<<
"engine_op "
<<
engine_op
.
get
();
framework
::
Scope
scope
;
platform
::
CPUPlace
place
;
...
...
@@ -145,6 +160,88 @@ TEST(TensorRTEngineOp, manual) {
engine_op
->
Run
(
scope
,
place
);
}
void
Execute
(
int
batch_size
,
int
input_dim
,
int
output_dim
,
int
nlayers
=
1
)
{
framework
::
ProgramDesc
program
;
framework
::
Scope
scope
;
platform
::
CPUPlace
place
;
platform
::
CPUDeviceContext
ctx
(
place
);
auto
*
block_
=
program
.
Proto
()
->
add_blocks
();
block_
->
set_idx
(
0
);
block_
->
set_parent_idx
(
-
1
);
using
shape_t
=
std
::
vector
<
int64_t
>
;
LOG
(
INFO
)
<<
"create block desc"
;
framework
::
BlockDesc
block_desc
(
&
program
,
block_
);
auto
AddFCLayer
=
[
&
](
const
std
::
string
&
x_name
,
const
std
::
string
&
y_name
,
const
std
::
string
&
z_name
,
bool
x_created
,
const
shape_t
&
x_shape
,
const
shape_t
&
y_shape
,
const
shape_t
&
z_shape
)
{
LOG
(
INFO
)
<<
"create fc op"
;
auto
*
fc
=
block_desc
.
AppendOp
();
fc
->
SetType
(
"mul"
);
fc
->
SetInput
(
"X"
,
std
::
vector
<
std
::
string
>
({
x_name
}));
fc
->
SetInput
(
"Y"
,
std
::
vector
<
std
::
string
>
({
y_name
}));
fc
->
SetOutput
(
"Out"
,
std
::
vector
<
std
::
string
>
({
z_name
}));
// Set inputs' variable shape in BlockDesc
if
(
!
x_created
)
{
AddTensorToBlockDesc
(
block_
,
x_name
,
std
::
vector
<
int64_t
>
({
batch_size
,
input_dim
,
1
,
1
}));
}
AddTensorToBlockDesc
(
block_
,
y_name
,
std
::
vector
<
int64_t
>
({
input_dim
,
output_dim
}));
AddTensorToBlockDesc
(
block_
,
z_name
,
std
::
vector
<
int64_t
>
({
batch_size
,
output_dim
}));
// Prepare variables.
if
(
!
x_created
)
{
CreateCPUTensor
(
&
scope
,
x_name
,
std
::
vector
<
int64_t
>
(
x_shape
));
}
CreateCPUTensor
(
&
scope
,
y_name
,
std
::
vector
<
int64_t
>
(
y_shape
));
CreateCPUTensor
(
&
scope
,
z_name
,
std
::
vector
<
int64_t
>
(
z_shape
));
// It is wired, need to copy manually.
*
block_
->
add_ops
()
=
*
fc
->
Proto
();
};
// Test with 4 layer FC
AddFCLayer
(
"x0"
,
"y0"
,
"z0"
,
false
,
{
batch_size
,
input_dim
},
{
input_dim
,
output_dim
},
{
batch_size
,
output_dim
});
AddFCLayer
(
"z0"
,
"y1"
,
"z1"
,
true
,
{},
{
output_dim
,
output_dim
},
{
batch_size
,
output_dim
});
AddFCLayer
(
"z1"
,
"y2"
,
"z2"
,
true
,
{},
{
output_dim
,
output_dim
},
{
batch_size
,
output_dim
});
AddFCLayer
(
"z2"
,
"y3"
,
"z3"
,
true
,
{},
{
output_dim
,
output_dim
},
{
batch_size
,
output_dim
});
LOG
(
INFO
)
<<
"create tensorrt desc"
;
framework
::
OpDesc
engine_op_desc
(
nullptr
);
engine_op_desc
.
SetType
(
"tensorrt_engine"
);
engine_op_desc
.
SetInput
(
"Xs"
,
std
::
vector
<
std
::
string
>
({
"x0"
}));
engine_op_desc
.
SetOutput
(
"Ys"
,
std
::
vector
<
std
::
string
>
({
"z3"
}));
SetAttr
<
std
::
string
>
(
engine_op_desc
.
Proto
(),
"subgraph"
,
block_
->
SerializeAsString
());
SetAttr
<
int
>
(
engine_op_desc
.
Proto
(),
"max_batch"
,
batch_size
);
SetAttr
<
int
>
(
engine_op_desc
.
Proto
(),
"max_workspace"
,
2
<<
10
);
SetAttr
<
std
::
vector
<
std
::
string
>>
(
engine_op_desc
.
Proto
(),
"parameters"
,
std
::
vector
<
std
::
string
>
({
"y0"
,
"y1"
,
"y2"
,
"y3"
}));
SetAttr
<
std
::
string
>
(
engine_op_desc
.
Proto
(),
"engine_uniq_key"
,
"b_engine"
);
auto
engine_op
=
framework
::
OpRegistry
::
CreateOp
(
*
engine_op_desc
.
Proto
());
// Execute them.
engine_op
->
Run
(
scope
,
place
);
}
// Test with a larger FC layer.
TEST
(
TensorRTEngineOp
,
fc
)
{
Execute
(
40
,
256
,
256
);
}
}
// namespace operators
}
// namespace paddle
...
...
python/paddle/fluid/initializer.py
浏览文件 @
bf5ce626
...
...
@@ -15,11 +15,13 @@
import
framework
import
numpy
as
np
import
contextlib
from
framework
import
convert_np_dtype_to_dtype_
from
core
import
VarDesc
__all__
=
[
'Constant'
,
'Uniform'
,
'Normal'
,
'Xavier'
,
'force_init_on_cpu'
,
'Constant'
,
'Uniform'
,
'Normal'
,
'Xavier'
,
'
Bilinear'
,
'
force_init_on_cpu'
,
'init_on_cpu'
,
'ConstantInitializer'
,
'UniformInitializer'
,
'NormalInitializer'
,
'XavierInitializer'
'NormalInitializer'
,
'XavierInitializer'
,
'BilinearInitializer'
]
_force_init_on_cpu_
=
False
...
...
@@ -422,6 +424,101 @@ class MSRAInitializer(Initializer):
return
op
class
BilinearInitializer
(
Initializer
):
"""Implements the bilinear initializer.
This initializer can be used in transposed convolution operator to
act as upsampling. Users can upsample a feature map with shape of
(B, C, H, W) by any integer factor. The usage is:
>>> factor = 2
>>> w_attr = ParamAttr(learning_rate=0., regularizer=L2Decay(0.),
>>> initializer=Bilinear())
>>> conv_up = fluid.layers.conv2d_transpose(
>>> input,
>>> num_filters=C,
>>> output_size=None,
>>> filter_size=2 * factor - factor % 2,
>>> padding=ceil((factor - 1) / 2.),
>>> stride=factor,
>>> groups=C,
>>> param_attr=w_attr,
>>> bias_attr=False)
Where, `num_filters=C` and `groups=C` means this is channel-wise tranposed
convolution. The filter shape will be (C, 1, K, K) where K is `filer_size`,
This initializer will set a (K, K) interpolation kernel for every channel
of the filter identically. The resulting shape of the output feature map
will be (B, C, factor * H, factor * W). Note that the learning rate and the
weight decay are set to 0 in order to keep coefficient values of bilinear
interpolation unchanged during training.
"""
def
__init__
(
self
):
"""Constructor for BilinearInitializer.
"""
super
(
BilinearInitializer
,
self
).
__init__
()
def
__call__
(
self
,
var
,
block
):
"""Add biliear initialization ops for a variable
Args:
var (Variable): Variable that needs to be initialized.
block (Block): The block in which initialization ops should
be added.
Returns:
the initialization op
Raises:
ValueError: If type of `var` and `block` is not right.
If the shape of `var` size is not 4 and
var.shape[2] != var.shape[3].
"""
if
not
isinstance
(
var
,
framework
.
Variable
):
raise
ValueError
(
"var must be framework.Variable."
)
if
not
isinstance
(
block
,
framework
.
Block
):
raise
ValueError
(
"block must be framework.Block."
)
shape
=
var
.
shape
if
len
(
shape
)
!=
4
:
raise
ValueError
(
"the length of shape must be 4."
)
if
shape
[
2
]
!=
shape
[
3
]:
raise
ValueError
(
"shape[2] must be equal to shape[3]."
)
weight
=
np
.
zeros
(
np
.
prod
(
var
.
shape
),
dtype
=
'float32'
)
size
=
shape
[
3
]
# factor
f
=
np
.
ceil
(
size
/
2.
)
# center
c
=
(
2
*
f
-
1
-
f
%
2
)
/
(
2.
*
f
)
for
i
in
range
(
np
.
prod
(
shape
)):
x
=
i
%
size
y
=
(
i
/
size
)
%
size
weight
[
i
]
=
(
1
-
abs
(
x
/
f
-
c
))
*
(
1
-
abs
(
y
/
f
-
c
))
weight
=
np
.
reshape
(
weight
,
shape
)
if
var
.
dtype
==
VarDesc
.
VarType
.
FP32
:
value_name
=
"fp32_values"
values
=
[
float
(
v
)
for
v
in
weight
.
flat
]
else
:
raise
ValueError
(
"Unsupported dtype %s"
,
input
.
dtype
)
if
np
.
prod
(
shape
)
>
1024
*
1024
:
raise
ValueError
(
"The size of input is too big. "
)
op
=
block
.
append_op
(
type
=
'assign_value'
,
outputs
=
{
'Out'
:
[
var
]},
attrs
=
{
'dtype'
:
var
.
dtype
,
'shape'
:
list
(
shape
),
value_name
:
values
})
var
.
op
=
op
return
op
# We short the class name, since users will use the initializer with the package
# name. The sample code:
#
...
...
@@ -436,3 +533,4 @@ Uniform = UniformInitializer
Normal
=
NormalInitializer
Xavier
=
XavierInitializer
MSRA
=
MSRAInitializer
Bilinear
=
BilinearInitializer
python/paddle/fluid/layers/control_flow.py
浏览文件 @
bf5ce626
...
...
@@ -707,7 +707,7 @@ def lod_rank_table(x, level=0):
.. code-block:: python
x = fluid.layers.data(name='x', shape=[10],
dtype='float32', lod_level=1)
dtype='float32', lod_level=1)
out = layers.lod_rank_table(x=x, level=0)
"""
helper
=
LayerHelper
(
"lod_rank_table"
,
**
locals
())
...
...
python/paddle/fluid/layers/io.py
浏览文件 @
bf5ce626
...
...
@@ -22,9 +22,9 @@ from ..executor import global_scope
from
layer_function_generator
import
generate_layer_fn
,
templatedoc
__all__
=
[
'data'
,
'BlockGuardServ'
,
'ListenAndServ'
,
'Send'
,
'
open_recordio_file
'
,
'open_
files'
,
'read_file'
,
'shuffle'
,
'batch'
,
'double_buffer
'
,
'random_data_generator'
,
'Preprocessor'
,
'load'
'data'
,
'BlockGuardServ'
,
'ListenAndServ'
,
'Send'
,
'
Recv
'
,
'open_
recordio_file'
,
'open_files'
,
'read_file'
,
'shuffle'
,
'batch
'
,
'
double_buffer'
,
'
random_data_generator'
,
'Preprocessor'
,
'load'
]
...
...
@@ -177,18 +177,17 @@ class ListenAndServ(object):
})
def
Send
(
endpoints
,
send_vars
,
get_vars
=
Non
e
):
def
Send
(
endpoints
,
send_vars
,
sync
=
Tru
e
):
"""
Send layer
Send variables to the server side, and get vars from server
side when server have finished running server side program.
Args:
endpoints: comma seperated IP:PORT pairs in the order
endpoints
(str)
: comma seperated IP:PORT pairs in the order
of send_vars to send
send_vars: vars to send
get_vars: vars to get from server after send completes.
Send variables to the server side, and get vars from server
side when server have finished running server side program.
send_vars (list): variables to send to server
sync (bool): whether to wait the request finish
"""
assert
(
type
(
send_vars
)
==
list
)
...
...
@@ -196,40 +195,33 @@ def Send(endpoints, send_vars, get_vars=None):
endpoints
=
list
(
set
(
epmap
))
helper
=
LayerHelper
(
"Send"
,
**
locals
())
if
not
get_vars
:
get_vars
=
[]
for
s
in
send_vars
:
v
=
helper
.
create_tmp_variable
(
dtype
=
s
.
dtype
,
stop_gradient
=
True
)
get_vars
.
append
(
v
)
rpc_op_role_name
=
core
.
op_proto_and_checker_maker
.
kOpRoleAttrName
()
helper
.
append_op
(
type
=
"send"
,
inputs
=
{
"X"
:
send_vars
},
outputs
=
{
"Out"
:
get_vars
},
attrs
=
{
"endpoints"
:
endpoints
,
"epmap"
:
epmap
,
rpc_op_role_name
:
core
.
op_proto_and_checker_maker
.
OpRole
.
RPC
})
return
get_vars
if
sync
:
helper
.
append_op
(
type
=
"send_barrier"
,
attrs
=
{
"endpoints"
:
endpoints
})
def
Recv
(
endpoints
,
get_vars
):
def
Recv
(
endpoints
,
get_vars
,
sync
=
True
):
"""
Rec
v layer
Rec
eive variables from server side
Args:
endpoints: comma seperated IP:PORT pairs in the order
endpoints
(str)
: comma seperated IP:PORT pairs in the order
of send_vars to send
send_vars: vars to send
get_vars: vars to get from server after send completes.
get_vars (list): vars to get from server after send completes.
sync (bool): whether to wait the request finish
Send variables to the server side, and get vars from server
side when server have finished running server side program.
Returns:
list: list of received variables
"""
assert
(
type
(
send_vars
)
==
list
)
assert
(
type
(
get_vars
)
==
list
)
epmap
=
endpoints
.
split
(
","
)
...
...
@@ -242,6 +234,9 @@ def Recv(endpoints, get_vars):
outputs
=
{
"Out"
:
get_vars
},
attrs
=
{
"endpoints"
:
endpoints
,
"epmap"
:
epmap
})
if
sync
:
helper
.
append_op
(
type
=
"fetch_barrier"
,
attrs
=
{
"endpoints"
:
endpoints
})
return
get_vars
def
monkey_patch_reader_methods
(
reader
):
...
...
@@ -383,16 +378,16 @@ def random_data_generator(low, high, shapes, lod_levels, for_parallel=True):
Variable: A Reader Variable from which we can get random data.
Examples:
.. code-block:: python
reader = fluid.layers.io.random_data_generator(
low=0.0,
high=1.0,
shapes=[(3,224,224), (1)],
lod_levels=[0, 0])
.. code-block:: python
# Via the reader, we can use 'read_file' layer to get data:
image, label = fluid.layers.io.read_file(reader)
reader = fluid.layers.random_data_generator(
low=0.0,
high=1.0,
shapes=[[3,224,224], [1]],
lod_levels=[0, 0])
# Via the reader, we can use 'read_file' layer to get data:
image, label = fluid.layers.read_file(reader)
"""
dtypes
=
[
core
.
VarDesc
.
VarType
.
FP32
]
*
len
(
shapes
)
shape_concat
=
[]
...
...
@@ -541,6 +536,9 @@ def __create_unshared_decorated_reader__(op_type, reader, attrs, name=None):
def
shuffle
(
reader
,
buffer_size
):
"""
Shuffle the reader.
"""
return
__create_unshared_decorated_reader__
(
'create_shuffle_reader'
,
reader
,
{
'buffer_size'
:
int
(
buffer_size
)})
...
...
python/paddle/fluid/layers/layer_function_generator.py
浏览文件 @
bf5ce626
...
...
@@ -44,6 +44,11 @@ def _type_to_str_(tp):
return
framework_pb2
.
AttrType
.
Name
(
tp
)
_two_dollar_pattern_
=
re
.
compile
(
r
"\$\$([^\$]+)\$\$"
)
_single_dollar_pattern_
=
re
.
compile
(
r
"\$([^\$]+)\$"
)
_two_bang_pattern_
=
re
.
compile
(
r
"!!([^!]+)!!"
)
def
_generate_doc_string_
(
op_proto
):
"""
Generate docstring by OpProto
...
...
@@ -55,22 +60,26 @@ def _generate_doc_string_(op_proto):
str: the document string
"""
def
escape_math
(
text
):
return
_two_bang_pattern_
.
sub
(
r
'$$\1$$'
,
_single_dollar_pattern_
.
sub
(
r
':math:`\1`'
,
_two_dollar_pattern_
.
sub
(
r
"!!\1!!"
,
text
)))
if
not
isinstance
(
op_proto
,
framework_pb2
.
OpProto
):
raise
TypeError
(
"OpProto should be `framework_pb2.OpProto`"
)
buf
=
cStringIO
.
StringIO
()
buf
.
write
(
op_proto
.
comment
)
buf
.
write
(
escape_math
(
op_proto
.
comment
)
)
buf
.
write
(
'
\n
Args:
\n
'
)
for
each_input
in
op_proto
.
inputs
:
line_begin
=
' {0}: '
.
format
(
_convert_
(
each_input
.
name
))
buf
.
write
(
line_begin
)
buf
.
write
(
each_input
.
comment
)
buf
.
write
(
'
\n
'
)
buf
.
write
(
' '
*
len
(
line_begin
))
buf
.
write
(
'Duplicable: '
)
buf
.
write
(
str
(
each_input
.
duplicable
))
buf
.
write
(
' Optional: '
)
buf
.
write
(
str
(
each_input
.
dispensable
))
buf
.
write
(
escape_math
(
each_input
.
comment
))
if
each_input
.
duplicable
:
buf
.
write
(
" Duplicatable."
)
if
each_input
.
dispensable
:
buf
.
write
(
" Optional."
)
buf
.
write
(
'
\n
'
)
skip_attrs
=
OpProtoHolder
.
generated_op_attr_names
()
...
...
@@ -83,7 +92,7 @@ def _generate_doc_string_(op_proto):
buf
.
write
(
' ('
)
buf
.
write
(
_type_to_str_
(
each_attr
.
type
))
buf
.
write
(
'): '
)
buf
.
write
(
e
ach_attr
.
comment
)
buf
.
write
(
e
scape_math
(
each_attr
.
comment
)
)
buf
.
write
(
'
\n
'
)
if
len
(
op_proto
.
outputs
)
!=
0
:
...
...
@@ -92,7 +101,7 @@ def _generate_doc_string_(op_proto):
for
each_opt
in
op_proto
.
outputs
:
if
not
each_opt
.
intermediate
:
break
buf
.
write
(
e
ach_opt
.
comment
)
buf
.
write
(
e
scape_math
(
each_opt
.
comment
)
)
return
buf
.
getvalue
()
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
bf5ce626
...
...
@@ -225,11 +225,11 @@ def embedding(input,
have two elements which indicate the size of the dictionary of
embeddings and the size of each embedding vector respectively.
is_sparse(bool): The flag indicating whether to use sparse update.
is_distributed
(bool): Whether to run lookup table from remote parameter server.
is_distributed(bool): Whether to run lookup table from remote parameter server.
padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
Otherwise the given :attr:`padding_idx` indicates padding the output
with zeros whenever lookup encounters it in :attr:`input`. If
:math:`padding_idx < 0`, the
padding_idx
to use in lookup is
:math:`padding_idx < 0`, the
:attr:`padding_idx`
to use in lookup is
:math:`size[0] + dim`.
param_attr(ParamAttr): Parameters for this layer
dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
...
...
@@ -364,8 +364,7 @@ def dynamic_lstm(input,
cell_activation(str): The activation for cell output. Choices = ["sigmoid",
"tanh", "relu", "identity"], default "tanh".
candidate_activation(str): The activation for candidate hidden state.
Choices = ["sigmoid", "tanh",
"relu", "identity"],
Choices = ["sigmoid", "tanh", "relu", "identity"],
default "tanh".
dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
name(str|None): A name for this layer(optional). If set None, the layer
...
...
@@ -540,27 +539,31 @@ def dynamic_lstmp(input,
cell_activation(str): The activation for cell output. Choices = ["sigmoid",
"tanh", "relu", "identity"], default "tanh".
candidate_activation(str): The activation for candidate hidden state.
Choices = ["sigmoid", "tanh",
"relu", "identity"],
Choices = ["sigmoid", "tanh", "relu", "identity"],
default "tanh".
proj_activation(str): The activation for projection output.
Choices = ["sigmoid", "tanh",
"relu", "identity"],
Choices = ["sigmoid", "tanh", "relu", "identity"],
default "tanh".
dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
tuple: The projection of hidden state, and cell state of LSTMP. The
\
shape of projection is (T x P), for the cell state which is
\
(T x D), and both LoD is the same with the `input`.
tuple: A tuple of two output variable: the projection of hidden state,
\
and cell state of LSTMP. The shape of projection is (T x P),
\
for the cell state which is (T x D), and both LoD is the same
\
with the `input`.
Examples:
.. code-block:: python
dict_dim, emb_dim = 128, 64
data = fluid.layers.data(name='sequence', shape=[1],
dtype='int32', lod_level=1)
emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
hidden_dim, proj_dim = 512, 256
fc_out = fluid.layers.fc(input=
input_seq
, size=hidden_dim * 4,
fc_out = fluid.layers.fc(input=
emb
, size=hidden_dim * 4,
act=None, bias_attr=None)
proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
size=hidden_dim * 4,
...
...
@@ -626,10 +629,10 @@ def dynamic_gru(input,
candidate_activation
=
'tanh'
,
h_0
=
None
):
"""
**
Dynamic GRU
Layer**
**
Gated Recurrent Unit (GRU)
Layer**
Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
Sequence Modeling <https://arxiv.org/abs/1412.3555>`_
Sequence Modeling <https://arxiv.org/abs/1412.3555>`_
.
The formula is as follows:
...
...
@@ -676,17 +679,25 @@ def dynamic_gru(input,
Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
candidate_activation(str): The activation for candidate hidden state.
Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
h_0 (Variable): The hidden output of the first time step.
h_0 (Variable): This is initial hidden state. If not set, default is
zero. This is a tensor with shape (N x D), where N is the number of
total time steps of input mini-batch feature and D is the hidden
size.
Returns:
Variable: The hidden state of GRU. The shape is :math:`(T
\\
times D)`,
\
and
lod
is the same with the input.
and
sequence length
is the same with the input.
Examples:
.. code-block:: python
dict_dim, emb_dim = 128, 64
data = fluid.layers.data(name='sequence', shape=[1],
dtype='int32', lod_level=1)
emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
hidden_dim = 512
x = fluid.layers.fc(input=
data
, size=hidden_dim * 3)
x = fluid.layers.fc(input=
emb
, size=hidden_dim * 3)
hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
"""
...
...
@@ -924,13 +935,13 @@ def dropout(x, dropout_prob, is_test=False, seed=None, name=None):
Drop or keep each element of `x` independently. Dropout is a regularization
technique for reducing overfitting by preventing neuron co-adaption during
training. The dropout operator randomly set (according to the given dropout
training. The dropout operator randomly set
s
(according to the given dropout
probability) the outputs of some units to zero, while others are remain
unchanged.
Args:
x (Variable): The input tensor.
dropout_prob (float): Probability of setting units to zero.
x (Variable): The input tensor
variable
.
dropout_prob (float): Probability of setting units to zero.
is_test (bool): A flag indicating whether it is in test phrase or not.
seed (int): A Python integer used to create random seeds. If this
parameter is set to None, a random seed is used.
...
...
@@ -940,13 +951,14 @@ def dropout(x, dropout_prob, is_test=False, seed=None, name=None):
will be named automatically.
Returns:
Variable: A tensor variable.
Variable: A tensor variable
is the shape with `x`
.
Examples:
.. code-block:: python
x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
droped = fluid.layers.dropout(input=x, dropout_rate
=0.5)
x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
droped = fluid.layers.dropout(x, dropout_prob
=0.5)
"""
helper
=
LayerHelper
(
'dropout'
,
**
locals
())
...
...
@@ -1235,14 +1247,17 @@ def conv2d(input,
act
=
None
,
name
=
None
):
"""
**Convlution2D Layer**
The convolution2D layer calculates the output based on the input, filter
and strides, paddings, dilations, groups parameters. Input
(Input)
and
Output
(Output) are in NCHW format. W
here N is batch size, C is the number of
and strides, paddings, dilations, groups parameters. Input and
Output
are in NCHW format, w
here N is batch size, C is the number of
channels, H is the height of the feature, and W is the width of the feature.
The details of convolution layer, please refer UFLDL's `convolution,
<http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_ .
Filter is in MCHW format, where M is the number of output image channels,
C is the number of input image channels, H is the height of the filter,
and W is the width of the filter. If the groups is greater than 1,
C will equal the number of input image channels divided by the groups.
Please refer to UFLDL's `convolution
<http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
for more detials.
If bias attribution and activation type are provided, bias is added to the
output of the convolution, and the corresponding activation function is
applied to the final result.
...
...
@@ -1253,15 +1268,14 @@ def conv2d(input,
Out = \sigma (W
\\
ast X + b)
In the above equation
:
Where
:
* :math:`X`: Input value, a tensor with NCHW format.
* :math:`W`: Filter value, a tensor with MCHW format.
* :math:`
\\
ast`: Convolution operation.
* :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
* :math:`
\\
sigma`: Activation function.
* :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be
different.
* :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Example:
...
...
@@ -1272,6 +1286,7 @@ def conv2d(input,
Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
- Output:
Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
Where
...
...
@@ -1283,7 +1298,7 @@ def conv2d(input,
Args:
input (Variable): The input image with [N, C, H, W] format.
num_filters(int): The number of filter. It is as same as the output
num_filters(int): The number of filter. It is as same as the output
image channel.
filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
it must contain two integers, (filter_size_H, filter_size_W).
...
...
@@ -1306,7 +1321,8 @@ def conv2d(input,
bias_attr (ParamAttr): Bias parameter for the Conv2d layer. Default: None
use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
library is installed. Default: True
use_mkldnn (bool): Use mkldnn kernels or not.
use_mkldnn (bool): Use mkldnn kernels or not, it is valid only when compiled
with mkldnn library. Default: False
act (str): Activation type. Default: None
name (str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
...
...
@@ -2987,32 +3003,33 @@ def l2_normalize(x, axis, epsilon=1e-12, name=None):
norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes
.. math::
y =
\f
rac{x}{ \sqrt{\sum {x^2} + epsion }}
y =
\\
frac{x}{ \sqrt{\sum {x^2} + epsion }}
For `x` with more dimensions, this layer independently normalizes each 1-D
slice along dimension `axis`.
Args:
x(Variable|list): The input tensor to l2_normalize layer.
axis(int): The axis on which to apply normalization. If `axis < 0`,
axis(int): The axis on which to apply normalization. If `axis < 0`,
\
the dimension to normalization is rank(X) + axis. -1 is the
last dimension.
epsilon(float): The epsilon value is used to avoid division by zero,
epsilon(float): The epsilon value is used to avoid division by zero,
\
the defalut value is 1e-10.
name(str|None): A name for this layer(optional). If set None, the layer
name(str|None): A name for this layer(optional). If set None, the layer
\
will be named automatically.
Returns:
Variable: The output tensor variable.
Variable: The output tensor variable
is the same shape with `x`
.
Examples:
.. code-block:: python
data = fluid.layers.data(name="data",
shape=(3, 17, 13),
dtype="float32")
normed = fluid.layers.l2_normalize(x=data, axis=1)
data = fluid.layers.data(name="data",
shape=(3, 17, 13),
dtype="float32")
normed = fluid.layers.l2_normalize(x=data, axis=1)
"""
if
len
(
x
.
shape
)
==
1
:
...
...
python/paddle/fluid/layers/tensor.py
浏览文件 @
bf5ce626
...
...
@@ -214,6 +214,7 @@ def assign(input, output):
Examples:
.. code-block:: python
out = fluid.layers.create_tensor(dtype='float32')
hidden = fluid.layers.fc(input=data, size=10)
fluid.layers.assign(hidden, out)
...
...
@@ -509,11 +510,27 @@ def save_combine(x, file_path, overwrite=True):
Saves a list of variables into a single file.
Args:
x(list): A list of Tensor/LoDTensor to be saved together in a single file.
x(list): A list of Tensor/LoDTensor variables to be saved together in
a single file.
file_path(str): The file path where variables will be saved.
overwrite(bool): Whether or not cover the given file when it has already
overwrite(bool): Whether or not cover the given file when it has already
existed. If it's set 'False' and the file is existed, a runtime
error will be thrown.
Returns:
There is no return value.
Examples:
.. code-block:: python
v1 = fluid.layers.data(name="data",
shape=(4, 6),
dtype="float32")
v2 = fluid.layers.data(name="data",
shape=(6, 8, 4),
dtype="float32")
normed = fluid.layers.save_combine([v1, v2], file_path="output")
"""
helper
=
LayerHelper
(
"save_combine"
,
**
locals
())
helper
.
append_op
(
...
...
python/paddle/fluid/tests/unittests/test_dist_train.py
浏览文件 @
bf5ce626
...
...
@@ -16,6 +16,7 @@ import os
import
time
import
unittest
from
multiprocessing
import
Process
import
signal
import
numpy
...
...
@@ -24,9 +25,6 @@ import paddle.fluid.layers as layers
class
TestSendOp
(
unittest
.
TestCase
):
@
unittest
.
skip
(
"This test is buggy. We cannot use time.sleep to sync processes, the connection may fail in unittest."
)
def
test_send
(
self
):
# Run init_serv in a thread
place
=
fluid
.
CPUPlace
()
...
...
@@ -35,7 +33,9 @@ class TestSendOp(unittest.TestCase):
p
.
daemon
=
True
p
.
start
()
time
.
sleep
(
10
)
self
.
ps_timeout
=
5
self
.
_wait_ps_ready
(
p
.
pid
)
with
open
(
"/tmp/paddle.%d.port"
%
p
.
pid
,
"r"
)
as
fn
:
selected_port
=
int
(
fn
.
readlines
()[
0
])
self
.
init_client
(
place
,
selected_port
)
...
...
@@ -44,9 +44,23 @@ class TestSendOp(unittest.TestCase):
self
.
assertTrue
(
numpy
.
allclose
(
self
.
local_out
,
self
.
dist_out
))
# FIXME(typhoonzero): find a way to gracefully shutdown the server.
os
.
system
(
"kill -9 %d"
%
p
.
pid
)
os
.
kill
(
p
.
pid
,
signal
.
SIGKILL
)
p
.
join
()
def
_wait_ps_ready
(
self
,
pid
):
start_left_time
=
self
.
ps_timeout
sleep_time
=
0.5
while
True
:
assert
start_left_time
>=
0
,
"wait ps ready failed"
time
.
sleep
(
sleep_time
)
try
:
# the listen_and_serv_op would touch a file which contains the listen port
# on the /tmp directory until it was ready to process all the RPC call.
os
.
stat
(
"/tmp/paddle.%d.port"
%
pid
)
return
except
os
.
error
:
start_left_time
-=
sleep_time
def
init_serv
(
self
,
place
):
main
=
fluid
.
Program
()
...
...
@@ -84,7 +98,10 @@ class TestSendOp(unittest.TestCase):
dtype
=
"float32"
,
persistable
=
False
,
shape
=
[
32
,
32
])
o
=
layers
.
Send
(
"127.0.0.1:%d"
%
port
,
[
x
],
[
get_var
])
fluid
.
initializer
.
Constant
(
value
=
2.3
)(
get_var
,
main
.
global_block
())
layers
.
Send
(
"127.0.0.1:%d"
%
port
,
[
x
])
o
=
layers
.
Recv
(
"127.0.0.1:%d"
%
port
,
[
get_var
])
exe
=
fluid
.
Executor
(
place
)
self
.
dist_out
=
exe
.
run
(
main
,
fetch_list
=
o
)
# o is a list
...
...
python/paddle/fluid/tests/unittests/test_initializer.py
浏览文件 @
bf5ce626
...
...
@@ -364,5 +364,22 @@ class TestMSRAInitializer(unittest.TestCase):
self
.
assertEqual
(
init_op
.
attr
(
'seed'
),
134
)
class
TestMSRAInitializer
(
unittest
.
TestCase
):
def
test_bilinear_initializer
(
self
):
"""Test the bilinear initializer with supplied arguments
"""
program
=
framework
.
Program
()
block
=
program
.
global_block
()
block
.
create_parameter
(
dtype
=
"float32"
,
shape
=
[
8
,
1
,
3
,
3
],
lod_level
=
0
,
name
=
"param"
,
initializer
=
initializer
.
BilinearInitializer
())
self
.
assertEqual
(
len
(
block
.
ops
),
1
)
init_op
=
block
.
ops
[
0
]
self
.
assertEqual
(
init_op
.
type
,
'assign_value'
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_listen_and_serv_op.py
浏览文件 @
bf5ce626
...
...
@@ -57,17 +57,18 @@ class TestListenAndServOp(OpTest):
def
setUp
(
self
):
self
.
ps_timeout
=
5
self
.
ip
=
"127.0.0.1"
self
.
port
=
"
6173
"
self
.
port
=
"
0
"
self
.
trainers
=
1
self
.
trainer_id
=
1
self
.
trainer_id
=
0
def
_start_pserver
(
self
,
use_cuda
,
sync_mode
):
p
=
Process
(
target
=
run_pserver
,
args
=
(
use_cuda
,
sync_mode
,
self
.
ip
,
self
.
port
,
self
.
trainers
,
self
.
trainer_id
))
p
.
daemon
=
True
p
.
start
()
return
p
.
pid
return
p
def
_wait_ps_ready
(
self
,
pid
):
start_left_time
=
self
.
ps_timeout
...
...
@@ -89,18 +90,20 @@ class TestListenAndServOp(OpTest):
def
test_handle_signal_in_serv_op
(
self
):
# run pserver on CPU in sync mode
p
id
=
self
.
_start_pserver
(
False
,
True
)
self
.
_wait_ps_ready
(
pid
)
p
1
=
self
.
_start_pserver
(
False
,
True
)
self
.
_wait_ps_ready
(
p
1
.
p
id
)
# raise SIGTERM to pserver
os
.
kill
(
pid
,
signal
.
SIGTERM
)
os
.
kill
(
p1
.
pid
,
signal
.
SIGKILL
)
p1
.
join
()
# run pserver on CPU in async mode
p
id
=
self
.
_start_pserver
(
False
,
False
)
self
.
_wait_ps_ready
(
pid
)
p
2
=
self
.
_start_pserver
(
False
,
False
)
self
.
_wait_ps_ready
(
p
2
.
p
id
)
# raise SIGTERM to pserver
os
.
kill
(
pid
,
signal
.
SIGTERM
)
os
.
kill
(
p2
.
pid
,
signal
.
SIGKILL
)
p2
.
join
()
if
__name__
==
'__main__'
:
...
...
python/paddle/fluid/tests/unittests/test_parallel_executor_crf.py
浏览文件 @
bf5ce626
...
...
@@ -173,6 +173,7 @@ class TestCRFModel(unittest.TestCase):
pe
.
run
(
feed
=
feeder
.
feed
(
cur_batch
),
fetch_list
=
[
avg_cost
.
name
]))[
0
]
@
unittest
.
skip
(
reason
=
"CI hangs"
)
def
test_update_sparse_parameter_all_reduce
(
self
):
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
.
reduce_strategy
=
fluid
.
BuildStrategy
.
ReduceStrategy
.
AllReduce
...
...
@@ -181,6 +182,7 @@ class TestCRFModel(unittest.TestCase):
self
.
check_network_convergence
(
is_sparse
=
True
,
build_strategy
=
build_strategy
,
use_cuda
=
False
)
@
unittest
.
skip
(
reason
=
"CI hangs"
)
def
test_update_dense_parameter_all_reduce
(
self
):
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
.
reduce_strategy
=
fluid
.
BuildStrategy
.
ReduceStrategy
.
AllReduce
...
...
@@ -189,6 +191,7 @@ class TestCRFModel(unittest.TestCase):
self
.
check_network_convergence
(
is_sparse
=
False
,
build_strategy
=
build_strategy
,
use_cuda
=
False
)
@
unittest
.
skip
(
reason
=
"CI hangs"
)
def
test_update_sparse_parameter_reduce
(
self
):
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
.
reduce_strategy
=
fluid
.
BuildStrategy
.
ReduceStrategy
.
Reduce
...
...
@@ -197,6 +200,7 @@ class TestCRFModel(unittest.TestCase):
self
.
check_network_convergence
(
is_sparse
=
True
,
build_strategy
=
build_strategy
,
use_cuda
=
False
)
@
unittest
.
skip
(
reason
=
"CI hangs"
)
def
test_update_dense_parameter_reduce
(
self
):
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
.
reduce_strategy
=
fluid
.
BuildStrategy
.
ReduceStrategy
.
Reduce
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录