Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
befc3e06
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
befc3e06
编写于
2月 24, 2017
作者:
Y
Yu Yang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Clean mnist code
上级
ef9041c0
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
33 addition
and
33 deletion
+33
-33
python/paddle/v2/data_set/config.py
python/paddle/v2/data_set/config.py
+8
-0
python/paddle/v2/data_set/mnist.py
python/paddle/v2/data_set/mnist.py
+25
-33
未找到文件。
python/paddle/v2/data_set/config.py
0 → 100644
浏览文件 @
befc3e06
import
os
__all__
=
[
'DATA_HOME'
]
DATA_HOME
=
os
.
path
.
expanduser
(
'~/.cache/paddle_data_set'
)
if
not
os
.
path
.
exists
(
DATA_HOME
):
os
.
makedirs
(
DATA_HOME
)
python/paddle/v2/data_set/mnist.py
浏览文件 @
befc3e06
import
sklearn.datasets.mldata
import
sklearn.datasets.mldata
import
sklearn.model_selection
import
sklearn.model_selection
import
numpy
import
numpy
from
config
import
DATA_HOME
__all__
=
[
'MNIST
Reader'
,
'train_reader_creator'
,
'test_reader
_creator'
]
__all__
=
[
'MNIST
'
,
'train_creator'
,
'test
_creator'
]
DATA_HOME
=
None
def
__mnist_reader_creator__
(
data
,
target
):
def
reader
():
n_samples
=
data
.
shape
[
0
]
for
i
in
xrange
(
n_samples
):
yield
(
data
[
i
]
/
255.0
).
astype
(
numpy
.
float32
),
int
(
target
[
i
])
def
__mnist_reader__
(
data
,
target
):
return
reader
n_samples
=
data
.
shape
[
0
]
for
i
in
xrange
(
n_samples
):
yield
data
[
i
].
astype
(
numpy
.
float32
),
int
(
target
[
i
])
class
MNIST
Reader
(
object
):
class
MNIST
(
object
):
"""
"""
mnist dataset reader. The `train_reader` and `test_reader` method returns
mnist dataset reader. The `train_reader` and `test_reader` method returns
a iterator of each sample. Each sample is combined by 784-dim float and a
a iterator of each sample. Each sample is combined by 784-dim float and a
one-dim label
one-dim label
"""
"""
def
__init__
(
self
,
random_state
):
def
__init__
(
self
,
random_state
=
0
,
test_size
=
10000
,
**
options
):
data
=
sklearn
.
datasets
.
mldata
.
fetch_mldata
(
data
=
sklearn
.
datasets
.
mldata
.
fetch_mldata
(
"MNIST original"
,
data_home
=
DATA_HOME
)
"MNIST original"
,
data_home
=
DATA_HOME
)
n_train
=
60000
self
.
X_train
,
self
.
X_test
,
self
.
y_train
,
self
.
y_test
=
sklearn
.
model_selection
.
train_test_split
(
self
.
X_train
,
self
.
X_test
,
self
.
y_train
,
self
.
y_test
=
sklearn
.
model_selection
.
train_test_split
(
data
.
data
/
255.0
,
data
.
data
,
data
.
target
.
astype
(
"int"
),
data
.
target
,
train_size
=
n_train
,
test_size
=
test_size
,
random_state
=
random_state
)
random_state
=
random_state
,
**
options
)
def
train_
reade
r
(
self
):
def
train_
creato
r
(
self
):
return
__mnist_reader__
(
self
.
X_train
,
self
.
y_train
)
return
__mnist_reader_
creator_
_
(
self
.
X_train
,
self
.
y_train
)
def
test_
reade
r
(
self
):
def
test_
creato
r
(
self
):
return
__mnist_reader__
(
self
.
X_test
,
self
.
y_test
)
return
__mnist_reader_
creator_
_
(
self
.
X_test
,
self
.
y_test
)
__default_instance__
=
MNISTReader
(
0
)
__default_instance__
=
MNIST
()
train_creator
=
__default_instance__
.
train_creator
test_creator
=
__default_instance__
.
test_creator
def
train_reader_creator
():
"""
Default train set reader creator.
"""
return
__default_instance__
.
train_reader
def
test_reader_creator
():
"""
Default test set reader creator.
"""
return
__default_instance__
.
test_reader
def
unittest
():
def
unittest
():
assert
len
(
list
(
train_reader_creator
()()))
==
60000
size
=
12045
mnist
=
MNIST
(
test_size
=
size
)
assert
len
(
list
(
mnist
.
test_creator
()()))
==
size
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录