未验证 提交 bed71992 编写于 作者: H heliqi 提交者: GitHub

add matmul_to_mul matmul_v2_to_mul matmul_v2_to_matmul test case (#37645)

* add matmul_to_mul matmul_v2_to_mul matmul_v2_to_matmul test case

* modify skip func to ignore_pass_case func

* rebuild CI

* rebuild CI

* add test_map_xx_pass timeout

* add test_map_xx_pass timeout

* merge from develop

* add timeout notest;test=coverage

* Cmakelist add timeout

* add timeout

* add attr of matmul_v2

* add trt skip

* delete trt config

* add skip,  mul diff on 3080
上级 00a50af8
......@@ -103,6 +103,9 @@ if (WITH_MKLDNN AND TENSORRT_FOUND AND WITH_GPU)
set_tests_properties(test_flatten2_matmul_fuse_pass PROPERTIES TIMEOUT 240)
set_tests_properties(test_squeeze2_matmul_fuse_pass PROPERTIES TIMEOUT 240)
set_tests_properties(test_reshape2_matmul_fuse_pass PROPERTIES TIMEOUT 240)
set_tests_properties(test_map_matmul_v2_to_matmul_pass PROPERTIES TIMEOUT 240)
set_tests_properties(test_map_matmul_v2_to_mul_pass PROPERTIES TIMEOUT 240)
set_tests_properties(test_map_matmul_to_mul_pass PROPERTIES TIMEOUT 240)
endif()
if (WITH_MKLDNN)
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from auto_scan_test import PassAutoScanTest, IgnoreReasons
from program_config import TensorConfig, ProgramConfig, OpConfig
import numpy as np
import paddle.inference as paddle_infer
from functools import partial
from typing import Optional, List, Callable, Dict, Any, Set
import unittest
import hypothesis
from hypothesis import given, settings, seed, example, assume, reproduce_failure
import hypothesis.strategies as st
class TestMapMatmulToMulPass(PassAutoScanTest):
"""
x_var y_var(persistable)
\ /
matmul
"""
def sample_predictor_configs(self, program_config):
# cpu
config = self.create_inference_config(use_gpu=False)
yield config, ["mul", ], (1e-5, 1e-5)
# for gpu
config = self.create_inference_config(use_gpu=True)
yield config, ["mul", ], (1e-5, 1e-5)
# TRT
# config = self.create_trt_inference_config()
# config.enable_tensorrt_engine(
# max_batch_size=10,
# workspace_size=10240,
# min_subgraph_size=0,
# precision_mode=paddle_infer.PrecisionType.Float32,
# use_static=False,
# use_calib_mode=False)
# yield config, ["mul", ], (1e-5, 1e-5)
def add_ignore_pass_case(self):
# Here we put some skip rules to avoid known bugs
def teller1(program_config, predictor_config):
if predictor_config.use_gpu():
# On 3080, the results of MatMul and Mul are different
return True
if predictor_config.tensorrt_engine_enabled():
# On 3080, the results of MatMul and Mul are different
return True
x_shape = list(program_config.inputs["matmul_x"].shape)
if len(x_shape) > 5:
return True
return False
self.add_ignore_check_case(
teller1, IgnoreReasons.PASS_ACCURACY_ERROR,
"The pass error on TRT while shape of mul_x > 5.")
def sample_program_config(self, draw):
# 1. Generate shape and attr of matmul
x_shape = draw(
st.lists(
st.integers(
min_value=1, max_value=8), min_size=2, max_size=5))
y_shape = draw(
st.lists(
st.integers(
min_value=1, max_value=8), min_size=2, max_size=2))
y_shape[0] = x_shape[-1]
alpha = 1.0
transpose_X = False
transpose_Y = False
matmul_op = OpConfig(
"matmul",
inputs={"X": ["matmul_x"],
"Y": ["matmul_y"]},
outputs={"Out": ["matmul_out"]},
alpha=alpha,
transpose_X=transpose_X,
transpose_Y=transpose_Y,
fused_reshape_X=[],
fused_reshape_Y=[],
fused_transpose_X=[],
fused_transpose_Y=[],
fused_reshape_Out=[],
fused_transpose_Out=[], )
ops = [matmul_op, ]
weights = {"matmul_y": TensorConfig(shape=y_shape), }
inputs = {"matmul_x": TensorConfig(shape=x_shape), }
program_config = ProgramConfig(
ops=ops,
weights=weights,
inputs=inputs,
outputs=ops[-1].outputs["Out"], )
return program_config
def test(self):
self.run_and_statis(
quant=False,
max_examples=100,
passes=["map_matmul_to_mul_pass"],
max_duration=180)
if __name__ == "__main__":
unittest.main()
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from auto_scan_test import PassAutoScanTest, IgnoreReasons
from program_config import TensorConfig, ProgramConfig, OpConfig
import numpy as np
import paddle.inference as paddle_infer
from functools import partial
from typing import Optional, List, Callable, Dict, Any, Set
import unittest
import hypothesis
from hypothesis import given, settings, seed, example, assume, reproduce_failure
import hypothesis.strategies as st
class TestMapMatmulToMulPass(PassAutoScanTest):
"""
x_var y_var(persistable)
\ /
matmul_v2
"""
def sample_predictor_configs(self, program_config):
# cpu
config = self.create_inference_config(use_gpu=False)
yield config, ["matmul", ], (1e-5, 1e-5)
# for gpu
config = self.create_inference_config(use_gpu=True)
yield config, ["matmul", ], (1e-5, 1e-5)
# TRT
# config = self.create_trt_inference_config()
# config.enable_tensorrt_engine(
# max_batch_size=10,
# workspace_size=10240,
# min_subgraph_size=0,
# precision_mode=paddle_infer.PrecisionType.Float32,
# use_static=False,
# use_calib_mode=False)
# yield config, ["matmul", ], (1e-5, 1e-5)
def add_ignore_pass_case(self):
# Here we put some skip rules to avoid known bugs
def teller1(program_config, predictor_config):
if predictor_config.tensorrt_engine_enabled():
# On 3080, the results of MatMul and Mul are different
return True
x_shape = list(program_config.inputs["matmul_x"].shape)
if len(x_shape) > 5:
return True
return False
self.add_ignore_check_case(
teller1, IgnoreReasons.PASS_ACCURACY_ERROR,
"The pass error on TRT while shape of mul_x > 5.")
def sample_program_config(self, draw):
# 1. Generate shape and attr of matmul
x_shape = draw(
st.lists(
st.integers(
min_value=1, max_value=8), min_size=2, max_size=5))
y_shape = draw(
st.lists(
st.integers(
min_value=1, max_value=8), min_size=2, max_size=2))
transpose_X = draw(st.booleans())
transpose_Y = draw(st.booleans())
if transpose_X:
if transpose_Y:
y_shape[1] = x_shape[-2]
else:
y_shape[0] = x_shape[-2]
else:
if transpose_Y:
y_shape[1] = x_shape[-1]
else:
y_shape[0] = x_shape[-1]
y_shape = x_shape[0:len(x_shape) - 2] + y_shape
alpha = 1.0
matmul_op = OpConfig(
"matmul_v2",
inputs={"X": ["matmul_x"],
"Y": ["matmul_y"]},
outputs={"Out": ["matmul_out"]},
alpha=alpha,
trans_x=transpose_X,
trans_y=transpose_Y,
fused_reshape_Out=[],
fused_transpose_Out=[],
fused_reshape_X=[],
fused_reshape_Y=[],
fused_transpose_X=[],
fused_transpose_Y=[], )
ops = [matmul_op, ]
weights = {}
inputs = {
"matmul_x": TensorConfig(shape=x_shape),
"matmul_y": TensorConfig(shape=y_shape),
}
program_config = ProgramConfig(
ops=ops,
weights=weights,
inputs=inputs,
outputs=ops[-1].outputs["Out"], )
return program_config
def test(self):
self.run_and_statis(
quant=False,
max_examples=100,
passes=["map_matmul_v2_to_matmul_pass"])
if __name__ == "__main__":
unittest.main()
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from auto_scan_test import PassAutoScanTest, IgnoreReasons
from program_config import TensorConfig, ProgramConfig, OpConfig
import numpy as np
import paddle.inference as paddle_infer
from functools import partial
from typing import Optional, List, Callable, Dict, Any, Set
import unittest
import hypothesis
from hypothesis import given, settings, seed, example, assume, reproduce_failure
import hypothesis.strategies as st
class TestMapMatmulToMulPass(PassAutoScanTest):
"""
x_var y_var(persistable)
\ /
matmul_v2
"""
def sample_predictor_configs(self, program_config):
# cpu
config = self.create_inference_config(use_gpu=False)
yield config, ["mul", ], (1e-5, 1e-5)
# for gpu
config = self.create_inference_config(use_gpu=True)
yield config, ["mul", ], (1e-5, 1e-5)
# TRT
# config = self.create_trt_inference_config()
# config.enable_tensorrt_engine(
# max_batch_size=10,
# workspace_size=10240,
# min_subgraph_size=0,
# precision_mode=paddle_infer.PrecisionType.Float32,
# use_static=False,
# use_calib_mode=False)
# yield config, ["mul", ], (1e-5, 1e-5)
def add_ignore_pass_case(self):
# Here we put some skip rules to avoid known bugs
def teller1(program_config, predictor_config):
if predictor_config.tensorrt_engine_enabled():
# On 3080, the results of MatMul and Mul are different
return True
x_shape = list(program_config.inputs["matmul_x"].shape)
if len(x_shape) > 5:
return True
return False
self.add_ignore_check_case(
teller1, IgnoreReasons.PASS_ACCURACY_ERROR,
"The pass error on TRT while shape of mul_x > 5.")
def sample_program_config(self, draw):
# 1. Generate shape and attr of matmul
x_shape = draw(
st.lists(
st.integers(
min_value=1, max_value=8), min_size=2, max_size=5))
y_shape = draw(
st.lists(
st.integers(
min_value=1, max_value=8), min_size=2, max_size=2))
y_shape[0] = x_shape[-1]
alpha = 1.0
transpose_X = False
transpose_Y = False
matmul_op = OpConfig(
"matmul_v2",
inputs={"X": ["matmul_x"],
"Y": ["matmul_y"]},
outputs={"Out": ["matmul_out"]},
alpha=alpha,
trans_x=transpose_X,
trans_y=transpose_Y,
fused_reshape_Out=[],
fused_transpose_Out=[],
fused_reshape_X=[],
fused_reshape_Y=[],
fused_transpose_X=[],
fused_transpose_Y=[], )
ops = [matmul_op, ]
weights = {"matmul_y": TensorConfig(shape=y_shape), }
inputs = {"matmul_x": TensorConfig(shape=x_shape), }
program_config = ProgramConfig(
ops=ops,
weights=weights,
inputs=inputs,
outputs=ops[-1].outputs["Out"], )
return program_config
def test(self):
self.run_and_statis(
quant=False, max_examples=100,
passes=["map_matmul_v2_to_mul_pass"])
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册