未验证 提交 be24e5b3 编写于 作者: Z Zeng Jinle 提交者: GitHub

Clean unused code of dim and place (#18565)

* clean code of dim and place, test=develop

* fix failed unittests, test=develop
上级 8869d7f7
...@@ -48,52 +48,6 @@ bool DDim::operator==(const DDim& d) const { ...@@ -48,52 +48,6 @@ bool DDim::operator==(const DDim& d) const {
bool DDim::operator!=(const DDim& d) const { return !(*this == d); } bool DDim::operator!=(const DDim& d) const { return !(*this == d); }
struct DDimPlusVisitor {
explicit DDimPlusVisitor(const int64_t* d1, const int64_t* d2)
: d1_(d1), d2_(d2) {}
template <int D>
inline void operator()(Dim<D>& self) const {
UnrollAdd<D>::Run(d1_, d2_, self.GetMutable());
}
const int64_t* d1_;
const int64_t* d2_;
};
DDim DDim::operator+(const DDim& d) const {
PADDLE_ENFORCE(size() == d.size());
DDim ret;
ret.rank_ = rank_;
ret.apply_visitor(DDimPlusVisitor(Get(), d.Get()));
return ret;
}
struct DDimMulVisitor {
explicit DDimMulVisitor(const int64_t* d1, const int64_t* d2)
: d1_(d1), d2_(d2) {}
template <int D>
inline void operator()(Dim<D>& self) const {
UnrollMul<D>::Run(d1_, d2_, self.GetMutable());
}
const int64_t* d1_;
const int64_t* d2_;
};
DDim DDim::operator*(const DDim& d) const {
PADDLE_ENFORCE(size() == d.size());
DDim ret;
ret.rank_ = rank_;
ret.apply_visitor(DDimMulVisitor(Get(), d.Get()));
return ret;
}
int64_t get(const DDim& ddim, int idx) { return ddim[idx]; }
void set(DDim& ddim, int idx, int value) { ddim[idx] = value; } // NOLINT
std::vector<int64_t> vectorize(const DDim& ddim) { std::vector<int64_t> vectorize(const DDim& ddim) {
std::vector<int64_t> result(DDim::kMaxRank); std::vector<int64_t> result(DDim::kMaxRank);
dynamic_dim_assign(ddim.Get(), result.data(), ddim.size()); dynamic_dim_assign(ddim.Get(), result.data(), ddim.size());
......
...@@ -117,10 +117,6 @@ class DDim { ...@@ -117,10 +117,6 @@ class DDim {
bool operator!=(const DDim& d) const; bool operator!=(const DDim& d) const;
DDim operator+(const DDim& d) const;
DDim operator*(const DDim& d) const;
inline const int64_t* Get() const { return dim_.Get(); } inline const int64_t* Get() const { return dim_.Get(); }
inline int64_t* GetMutable() { return dim_.GetMutable(); } inline int64_t* GetMutable() { return dim_.GetMutable(); }
...@@ -174,9 +170,6 @@ DDim make_ddim(const std::vector<int>& dims); ...@@ -174,9 +170,6 @@ DDim make_ddim(const std::vector<int>& dims);
*/ */
DDim make_ddim(std::initializer_list<int64_t> dims); DDim make_ddim(std::initializer_list<int64_t> dims);
int64_t get(const DDim& dim, int idx);
void set(DDim& dim, int idx, int val); // NOLINT
std::vector<int64_t> vectorize(const DDim& ddim); std::vector<int64_t> vectorize(const DDim& ddim);
std::vector<int> vectorize2int(const DDim& ddim); std::vector<int> vectorize2int(const DDim& ddim);
......
...@@ -34,8 +34,8 @@ TEST(DDim, Equality) { ...@@ -34,8 +34,8 @@ TEST(DDim, Equality) {
// mutate a DDim // mutate a DDim
ddim[1] = 2; ddim[1] = 2;
EXPECT_EQ(ddim[1], 2); EXPECT_EQ(ddim[1], 2);
paddle::framework::set(ddim, 0, 6); ddim[0] = 6;
EXPECT_EQ(paddle::framework::get(ddim, 0), 6); EXPECT_EQ(ddim[0], 6);
// vectorize a DDim // vectorize a DDim
std::vector<int64_t> res_vec = paddle::framework::vectorize(vddim); std::vector<int64_t> res_vec = paddle::framework::vectorize(vddim);
...@@ -48,18 +48,6 @@ TEST(DDim, Equality) { ...@@ -48,18 +48,6 @@ TEST(DDim, Equality) {
EXPECT_EQ(res_vec[1], 2); EXPECT_EQ(res_vec[1], 2);
EXPECT_EQ(res_vec[2], 1); EXPECT_EQ(res_vec[2], 1);
// add two DDims
paddle::framework::DDim ddim_sum = ddim + vddim;
EXPECT_EQ(ddim_sum[0], 15);
EXPECT_EQ(ddim_sum[1], 3);
EXPECT_EQ(ddim_sum[2], 10);
// multiply two DDims
paddle::framework::DDim ddim_mul = ddim * vddim;
EXPECT_EQ(ddim_mul[0], 54);
EXPECT_EQ(ddim_mul[1], 2);
EXPECT_EQ(ddim_mul[2], 25);
// arity of a DDim // arity of a DDim
EXPECT_EQ(paddle::framework::arity(ddim), 3); EXPECT_EQ(paddle::framework::arity(ddim), 3);
EXPECT_EQ(ddim.size(), 3); EXPECT_EQ(ddim.size(), 3);
......
...@@ -94,5 +94,4 @@ cc_library(build_strategy SRCS build_strategy.cc DEPS ...@@ -94,5 +94,4 @@ cc_library(build_strategy SRCS build_strategy.cc DEPS
fuse_relu_depthwise_conv_pass fuse_relu_depthwise_conv_pass
memory_optimize_pass lock_free_optimize_pass memory_optimize_pass lock_free_optimize_pass
alloc_continuous_space_for_grad_pass fuse_all_reduce_op_pass backward_optimizer_op_deps_pass alloc_continuous_space_for_grad_pass fuse_all_reduce_op_pass backward_optimizer_op_deps_pass
fuse_adam_op_pass fuse_sgd_op_pass fuse_momentum_op_pass fuse_adam_op_pass fuse_sgd_op_pass fuse_momentum_op_pass record_skip_memory_opt_vars_pass)
record_skip_memory_opt_vars_pass)
...@@ -45,10 +45,6 @@ class Dim : public Array<int64_t, D> { ...@@ -45,10 +45,6 @@ class Dim : public Array<int64_t, D> {
HOSTDEVICE explicit Dim(int64_t head, Args... args) HOSTDEVICE explicit Dim(int64_t head, Args... args)
: BaseClass(head, args...) {} : BaseClass(head, args...) {}
/** Construct a Dim from a linear index and size. Uses Fortran order
* indexing. */
HOSTDEVICE Dim(int64_t idx, const Dim<D>& size);
/** Construct a Dim with each dimension set to the given index */ /** Construct a Dim with each dimension set to the given index */
HOSTDEVICE explicit Dim(int64_t idx) { this->Fill(idx); } HOSTDEVICE explicit Dim(int64_t idx) { this->Fill(idx); }
...@@ -57,181 +53,12 @@ class Dim : public Array<int64_t, D> { ...@@ -57,181 +53,12 @@ class Dim : public Array<int64_t, D> {
HOST std::string to_string() const; HOST std::string to_string() const;
}; };
namespace detail {
template <int kStart, int kEnd, bool kStop>
struct FortranOrderIndexingConstructorFunctor {
HOSTDEVICE inline static void Run(const int64_t* in, int64_t* idx,
int64_t* out) {
out[kStart] = (*idx) % in[kStart];
(*idx) /= in[kStart];
FortranOrderIndexingConstructorFunctor<kStart + 1, kEnd,
kStart + 1 == kEnd>::Run(in, idx,
out);
}
};
template <int kStart, int kEnd>
struct FortranOrderIndexingConstructorFunctor<kStart, kEnd, true> {
HOSTDEVICE inline static void Run(const int64_t* in, int64_t* idx,
int64_t* out) {}
};
} // namespace detail
template <int D>
HOSTDEVICE Dim<D>::Dim(int64_t idx, const Dim<D>& size) {
detail::FortranOrderIndexingConstructorFunctor<0, D, D == 0>::Run(
size.Get(), &idx, this->GetMutable());
}
template <int idx, int D>
HOSTDEVICE inline int64_t get(const Dim<D>& dim) {
return dim[idx];
}
template <int idx, int D>
HOSTDEVICE inline int64_t& get(Dim<D>& dim) { // NOLINT
return dim[idx];
}
template <int D>
HOSTDEVICE inline int64_t get(const Dim<D>& dim, int idx) {
return dim[idx];
}
template <int D>
HOSTDEVICE inline int64_t& get(Dim<D>& dim, int idx) { // NOLINT
return dim[idx];
}
// Dot product of two dims
template <int D>
HOSTDEVICE inline int64_t linearize(const Dim<D>& a, const Dim<D>& b) {
return UnrollProduct<D>::Run(a.Get(), b.Get());
}
// Product of a Dim // Product of a Dim
template <int D> template <int D>
HOSTDEVICE inline int64_t product(const Dim<D>& a) { HOSTDEVICE inline int64_t product(const Dim<D>& a) {
return UnrollProduct<D>::Run(a.Get()); return UnrollProduct<D>::Run(a.Get());
} }
// Is 0 <= idx_i < size_i for all i?
namespace detail {
template <int kStart, int kEnd, bool kStop>
struct ContainedFunctor {
HOSTDEVICE static inline bool Run(const int64_t* idx, const int64_t* size) {
return (idx[kStart] >= 0 && idx[kStart] < size[kStart]) &&
ContainedFunctor<kStart + 1, kEnd, kStart + 1 == kEnd>::Run(idx,
size);
}
};
template <int kStart, int kEnd>
struct ContainedFunctor<kStart, kEnd, true> {
HOSTDEVICE static constexpr inline bool Run(const int64_t* idx,
const int64_t* size) {
return true;
}
};
} // namespace detail
template <int D>
HOSTDEVICE inline bool contained(const Dim<D>& idx, const Dim<D>& size) {
return detail::ContainedFunctor<0, D, D == 0>::Run(idx.Get(), size.Get());
}
/**
* \brief Compute exclusive prefix-multiply of a Dim.
*/
namespace detail {
template <int kStart, int kEnd, bool kStop>
struct ExPrefixMulFunctor {
HOSTDEVICE static inline void Run(const int64_t* in, int64_t* out) {
kStart == 0 ? out[kStart] = 1 : out[kStart] =
out[kStart - 1] * in[kStart - 1];
detail::ExPrefixMulFunctor<kStart + 1, kEnd, kStart + 1 == kEnd>::Run(in,
out);
}
};
template <int kStart, int kEnd>
struct ExPrefixMulFunctor<kStart, kEnd, true> {
HOSTDEVICE static inline void Run(const int64_t* in, int64_t* out) {}
};
} // namespace detail
template <int D>
HOSTDEVICE inline Dim<D> ex_prefix_mul(const Dim<D>& src) {
Dim<D> ret;
detail::ExPrefixMulFunctor<0, D, D == 0>::Run(src.Get(), ret.GetMutable());
return ret;
}
/**
* Add two dimensions together
*/
template <int D>
HOSTDEVICE inline Dim<D> dim_plus(const Dim<D>& a, const Dim<D>& b) {
Dim<D> ret;
UnrollAdd<D>::Run(a.Get(), b.Get(), ret.GetMutable());
return ret;
}
template <int D>
HOSTDEVICE inline Dim<D> operator+(const Dim<D>& lhs, const Dim<D>& rhs) {
return dim_plus(lhs, rhs);
}
/**
* Multiply two dimensions together
*/
template <int D>
HOSTDEVICE inline Dim<D> dim_mult(const Dim<D>& a, const Dim<D>& b) {
Dim<D> ret;
UnrollMul<D>::Run(a.Get(), b.Get(), ret.GetMutable());
return ret;
}
template <int D>
HOSTDEVICE Dim<D> operator*(const Dim<D>& lhs, const Dim<D>& rhs) {
return dim_mult(lhs, rhs);
}
/**
* \brief Normalize strides to ensure any dimension with extent 1
* has stride 0.
*
* \param size Dim object containing the size of an array
* \param stride Dim object containing stride of an array
* \return Dim object the same size as \p size with normalized strides
*
*/
namespace detail {
template <int kStart, int kEnd, bool kStop>
struct NormalizeStridesFunctor {
HOSTDEVICE static void Run(const int64_t* size, const int64_t* stride,
int64_t* ret) {
ret[kStart] = (size[kStart] == 1 ? 0 : stride[kStart]);
NormalizeStridesFunctor<kStart + 1, kEnd, kStart + 1 == kEnd>::Run(
size, stride, ret);
}
};
template <int kStart, int kEnd>
struct NormalizeStridesFunctor<kStart, kEnd, true> {
HOSTDEVICE static void Run(const int64_t* size, const int64_t* stride,
int64_t* ret) {}
};
} // namespace detail
template <int D>
HOSTDEVICE Dim<D> normalize_strides(const Dim<D>& size, const Dim<D>& stride) {
Dim<D> ret;
detail::NormalizeStridesFunctor<0, D, D == 0>::Run(size.Get(), stride.Get(),
ret.GetMutable());
return ret;
}
/** /**
* Helper function to create a Dim * Helper function to create a Dim
* *
...@@ -265,20 +92,6 @@ HOST std::string Dim<D>::to_string() const { ...@@ -265,20 +92,6 @@ HOST std::string Dim<D>::to_string() const {
return stream.str(); return stream.str();
} }
template <int D>
HOSTDEVICE Dim<D> linear_to_dimension(int linear_index, const Dim<D>& extents) {
Dim<D> result;
for (int i = 0; i < D - 1; ++i) {
result[i] = linear_index % extents[i];
linear_index /= extents[i];
}
result[D - 1] = linear_index;
return result;
}
template <int D, typename T1, typename T2> template <int D, typename T1, typename T2>
inline void static_dim_assign(const T1* in, T2* out) { inline void static_dim_assign(const T1* in, T2* out) {
UnrollAssign<D>::Run(in, out); UnrollAssign<D>::Run(in, out);
......
...@@ -29,34 +29,28 @@ __global__ void dyn_idx_gpu(int64_t* o) { ...@@ -29,34 +29,28 @@ __global__ void dyn_idx_gpu(int64_t* o) {
TEST(Dim, Equality) { TEST(Dim, Equality) {
// construct a Dim on the CPU // construct a Dim on the CPU
auto a = paddle::framework::make_dim(3, 4); auto a = paddle::framework::make_dim(3, 4);
EXPECT_EQ(paddle::framework::get<0>(a), 3); EXPECT_EQ(a[0], 3);
EXPECT_EQ(paddle::framework::get<1>(a), 4); EXPECT_EQ(a[1], 4);
// construct a Dim on the GPU // construct a Dim on the GPU
thrust::device_vector<paddle::framework::Dim<2>> t(2); thrust::device_vector<paddle::framework::Dim<2>> t(2);
test<<<1, 1>>>(thrust::raw_pointer_cast(t.data())); test<<<1, 1>>>(thrust::raw_pointer_cast(t.data()));
a = t[0]; a = t[0];
EXPECT_EQ(paddle::framework::get<0>(a), 5); EXPECT_EQ(a[0], 5);
EXPECT_EQ(paddle::framework::get<1>(a), 6); EXPECT_EQ(a[1], 6);
// linearization
auto b = paddle::framework::make_dim(7, 8);
EXPECT_EQ(paddle::framework::linearize(a, b), 83);
// product // product
EXPECT_EQ(paddle::framework::product(a), 30); EXPECT_EQ(paddle::framework::product(a), 30);
// mutate a Dim // mutate a Dim
paddle::framework::get<1>(b) = 10; auto b = paddle::framework::make_dim(7, 8);
EXPECT_EQ(paddle::framework::get<0>(b), 7); b[1] = 10;
EXPECT_EQ(paddle::framework::get<1>(b), 10); EXPECT_EQ(b[0], 7);
EXPECT_EQ(b[1], 10);
// dynamic access b[0] = 8;
paddle::framework::get(b, 0) = 8;
b[1] = 11; b[1] = 11;
EXPECT_EQ(paddle::framework::get<0>(b), 8); EXPECT_EQ(b[0], 8);
EXPECT_EQ(paddle::framework::get<1>(b), 11);
EXPECT_EQ(paddle::framework::get(b, 0), 8);
EXPECT_EQ(b[1], 11); EXPECT_EQ(b[1], 11);
// dynamic access on GPU // dynamic access on GPU
...@@ -64,24 +58,6 @@ TEST(Dim, Equality) { ...@@ -64,24 +58,6 @@ TEST(Dim, Equality) {
dyn_idx_gpu<<<1, 1>>>(thrust::raw_pointer_cast(r.data())); dyn_idx_gpu<<<1, 1>>>(thrust::raw_pointer_cast(r.data()));
int64_t res = r[0]; int64_t res = r[0];
EXPECT_EQ(res, 6); EXPECT_EQ(res, 6);
// ex_prefix_mul
paddle::framework::Dim<3> c =
paddle::framework::ex_prefix_mul(paddle::framework::Dim<3>(3, 4, 5));
EXPECT_EQ(paddle::framework::get<0>(c), 1);
EXPECT_EQ(paddle::framework::get<1>(c), 3);
EXPECT_EQ(paddle::framework::get<2>(c), 12);
// generate from an index
auto size = paddle::framework::make_dim(4, 5, 2);
c = paddle::framework::Dim<3>(14, size);
EXPECT_EQ(paddle::framework::get<0>(c), 2);
EXPECT_EQ(paddle::framework::get<1>(c), 3);
EXPECT_EQ(paddle::framework::get<2>(c), 0);
c = paddle::framework::Dim<3>(25, size);
EXPECT_EQ(paddle::framework::get<0>(c), 1);
EXPECT_EQ(paddle::framework::get<1>(c), 1);
EXPECT_EQ(paddle::framework::get<2>(c), 1);
} }
TEST(Dim, Bool) { TEST(Dim, Bool) {
...@@ -89,10 +65,6 @@ TEST(Dim, Bool) { ...@@ -89,10 +65,6 @@ TEST(Dim, Bool) {
auto b = paddle::framework::make_dim(5, 6); auto b = paddle::framework::make_dim(5, 6);
auto c = paddle::framework::make_dim(3, 4); auto c = paddle::framework::make_dim(3, 4);
// in_bounds check
EXPECT_TRUE(paddle::framework::contained(a, b));
EXPECT_FALSE(paddle::framework::contained(b, a));
// comparison // comparison
EXPECT_TRUE(a == a); EXPECT_TRUE(a == a);
EXPECT_FALSE(a == b); EXPECT_FALSE(a == b);
......
...@@ -94,36 +94,6 @@ struct UnrollCompare<kStart, kEnd, true> { ...@@ -94,36 +94,6 @@ struct UnrollCompare<kStart, kEnd, true> {
} }
}; };
template <size_t kStart, size_t kEnd, bool kStop>
struct UnrollAdd {
template <typename T>
HOSTDEVICE inline static void Run(const T *d1, const T *d2, T *d3) {
d3[kStart] = d1[kStart] + d2[kStart];
UnrollAdd<kStart + 1, kEnd, kStart + 1 == kEnd>::Run(d1, d2, d3);
}
};
template <size_t kStart, size_t kEnd>
struct UnrollAdd<kStart, kEnd, true> {
template <typename T>
HOSTDEVICE inline static void Run(const T *d1, const T *d2, T *d3) {}
};
template <size_t kStart, size_t kEnd, bool kStop>
struct UnrollMul {
template <typename T>
HOSTDEVICE inline static void Run(const T *d1, const T *d2, T *d3) {
d3[kStart] = d1[kStart] * d2[kStart];
UnrollMul<kStart + 1, kEnd, kStart + 1 == kEnd>::Run(d1, d2, d3);
}
};
template <size_t kStart, size_t kEnd>
struct UnrollMul<kStart, kEnd, true> {
template <typename T>
HOSTDEVICE inline static void Run(const T *d1, const T *d2, T *d3) {}
};
template <size_t kStart, size_t kEnd, bool kStop> template <size_t kStart, size_t kEnd, bool kStop>
struct UnrollProduct { struct UnrollProduct {
template <typename T> template <typename T>
...@@ -131,12 +101,6 @@ struct UnrollProduct { ...@@ -131,12 +101,6 @@ struct UnrollProduct {
return d[kStart] * return d[kStart] *
UnrollProduct<kStart + 1, kEnd, kStart + 1 == kEnd>::Run(d); UnrollProduct<kStart + 1, kEnd, kStart + 1 == kEnd>::Run(d);
} }
template <typename T>
HOSTDEVICE inline static T Run(const T *d1, const T *d2) {
return d1[kStart] * d2[kStart] +
UnrollProduct<kStart + 1, kEnd, kStart + 1 == kEnd>::Run(d1, d2);
}
}; };
template <size_t kStart, size_t kEnd> template <size_t kStart, size_t kEnd>
...@@ -145,11 +109,6 @@ struct UnrollProduct<kStart, kEnd, true> { ...@@ -145,11 +109,6 @@ struct UnrollProduct<kStart, kEnd, true> {
HOSTDEVICE inline constexpr static T Run(const T *d) { HOSTDEVICE inline constexpr static T Run(const T *d) {
return 1; return 1;
} }
template <typename T>
HOSTDEVICE inline constexpr static T Run(const T *d1, const T *d2) {
return 0;
}
}; };
} // namespace detail } // namespace detail
...@@ -166,12 +125,6 @@ using UnrollVarArgsAssign = detail::UnrollVarArgsAssign<T>; ...@@ -166,12 +125,6 @@ using UnrollVarArgsAssign = detail::UnrollVarArgsAssign<T>;
template <size_t N> template <size_t N>
using UnrollCompare = detail::UnrollCompare<0, N, N == 0>; using UnrollCompare = detail::UnrollCompare<0, N, N == 0>;
template <size_t N>
using UnrollAdd = detail::UnrollAdd<0, N, N == 0>;
template <size_t N>
using UnrollMul = detail::UnrollMul<0, N, N == 0>;
template <size_t N> template <size_t N>
using UnrollProduct = detail::UnrollProduct<0, N, N == 0>; using UnrollProduct = detail::UnrollProduct<0, N, N == 0>;
......
...@@ -74,34 +74,9 @@ TEST(unroll_ops, compare) { ...@@ -74,34 +74,9 @@ TEST(unroll_ops, compare) {
EXPECT_FALSE(UnrollCompare<1>::Run(a, b)); EXPECT_FALSE(UnrollCompare<1>::Run(a, b));
} }
TEST(unroll_ops, add) {
int a[] = {2, 3, 4};
int b[] = {5, 10, 102};
int c[] = {0, 0, 0};
UnrollAdd<2>::Run(a, b, c);
EXPECT_EQ(a[0] + b[0], c[0]);
EXPECT_EQ(a[1] + b[1], c[1]);
EXPECT_EQ(c[2], 0);
}
TEST(unroll_ops, mul) {
int a[] = {2, 3, 4};
int b[] = {5, 10, 102};
int c[] = {0, 0, 0};
UnrollMul<2>::Run(a, b, c);
EXPECT_EQ(a[0] * b[0], c[0]);
EXPECT_EQ(a[1] * b[1], c[1]);
EXPECT_EQ(c[2], 0);
}
TEST(unroll_ops, product) { TEST(unroll_ops, product) {
int a[] = {2, 3, 4}; int a[] = {2, 3, 4};
int b[] = {5, 10, 102};
EXPECT_EQ(UnrollProduct<3>::Run(a), a[0] * a[1] * a[2]); EXPECT_EQ(UnrollProduct<3>::Run(a), a[0] * a[1] * a[2]);
EXPECT_EQ(UnrollProduct<3>::Run(a, b),
a[0] * b[0] + a[1] * b[1] + a[2] * b[2]);
} }
} // namespace framework } // namespace framework
......
...@@ -248,8 +248,7 @@ class HierarchicalSigmoidGradOpKernel : public framework::OpKernel<T> { ...@@ -248,8 +248,7 @@ class HierarchicalSigmoidGradOpKernel : public framework::OpKernel<T> {
w_grad->set_height(w.dims()[0]); w_grad->set_height(w.dims()[0]);
auto* w_grad_value = w_grad->mutable_value(); auto* w_grad_value = w_grad->mutable_value();
framework::DDim temp_dim(w.dims()); framework::DDim temp_dim(w.dims());
set(temp_dim, 0, real_rows.size()); temp_dim[0] = real_rows.size();
w_grad_value->mutable_data<T>(temp_dim, ctx.GetPlace()); w_grad_value->mutable_data<T>(temp_dim, ctx.GetPlace());
zero(dev_ctx, w_grad_value, static_cast<T>(0.0)); zero(dev_ctx, w_grad_value, static_cast<T>(0.0));
bit_code->MulGradWeight(pre_out_grad, w_grad, in); bit_code->MulGradWeight(pre_out_grad, w_grad, in);
......
...@@ -40,15 +40,6 @@ class PlacePrinter : public boost::static_visitor<> { ...@@ -40,15 +40,6 @@ class PlacePrinter : public boost::static_visitor<> {
} // namespace detail } // namespace detail
static Place the_default_place;
void set_place(const Place &place) { the_default_place = place; }
const Place &get_place() { return the_default_place; }
const CUDAPlace default_gpu() { return CUDAPlace(0); }
const CPUPlace default_cpu() { return CPUPlace(); }
const CUDAPinnedPlace default_cuda_pinned() { return CUDAPinnedPlace(); }
bool is_gpu_place(const Place &p) { bool is_gpu_place(const Place &p) {
return boost::apply_visitor(IsCUDAPlace(), p); return boost::apply_visitor(IsCUDAPlace(), p);
} }
......
...@@ -80,13 +80,6 @@ typedef boost::variant<CUDAPlace, CPUPlace, CUDAPinnedPlace> Place; ...@@ -80,13 +80,6 @@ typedef boost::variant<CUDAPlace, CPUPlace, CUDAPinnedPlace> Place;
using PlaceList = std::vector<Place>; using PlaceList = std::vector<Place>;
void set_place(const Place &);
const Place &get_place();
const CUDAPlace default_gpu();
const CPUPlace default_cpu();
const CUDAPinnedPlace default_cuda_pinned();
bool is_gpu_place(const Place &); bool is_gpu_place(const Place &);
bool is_cpu_place(const Place &); bool is_cpu_place(const Place &);
bool is_cuda_pinned_place(const Place &); bool is_cuda_pinned_place(const Place &);
......
...@@ -30,16 +30,6 @@ TEST(Place, Equality) { ...@@ -30,16 +30,6 @@ TEST(Place, Equality) {
EXPECT_FALSE(paddle::platform::places_are_same_class(g0, cpu)); EXPECT_FALSE(paddle::platform::places_are_same_class(g0, cpu));
} }
TEST(Place, Default) {
EXPECT_TRUE(paddle::platform::is_gpu_place(paddle::platform::get_place()));
EXPECT_TRUE(paddle::platform::is_gpu_place(paddle::platform::default_gpu()));
EXPECT_TRUE(paddle::platform::is_cpu_place(paddle::platform::default_cpu()));
EXPECT_FALSE(paddle::platform::is_cpu_place(paddle::platform::get_place()));
paddle::platform::set_place(paddle::platform::CPUPlace());
EXPECT_TRUE(paddle::platform::is_cpu_place(paddle::platform::get_place()));
}
TEST(Place, Print) { TEST(Place, Print) {
{ {
std::stringstream ss; std::stringstream ss;
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册