Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
bdc832cb
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
bdc832cb
编写于
11月 06, 2017
作者:
D
Dong Zhihong
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
"add eval interface"
上级
233a305b
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
67 addition
and
13 deletion
+67
-13
paddle/operators/accuracy_op.cc
paddle/operators/accuracy_op.cc
+4
-0
paddle/operators/accuracy_op.h
paddle/operators/accuracy_op.h
+4
-2
python/paddle/v2/framework/evaluator.py
python/paddle/v2/framework/evaluator.py
+57
-10
python/paddle/v2/framework/tests/test_accuracy_op.py
python/paddle/v2/framework/tests/test_accuracy_op.py
+2
-1
未找到文件。
paddle/operators/accuracy_op.cc
浏览文件 @
bdc832cb
...
...
@@ -30,6 +30,8 @@ class AccuracyOp : public framework::OperatorWithKernel {
"Input (Label) of accuracy op should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Accuracy"
),
"Output (Accuracy) of AccuracyOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Correct"
),
"Output (Correct) of AccuracyOp should not be null."
);
auto
inference_dim
=
ctx
->
GetInputDim
(
"Out"
);
auto
label_dim
=
ctx
->
GetInputDim
(
"Label"
);
...
...
@@ -43,6 +45,7 @@ class AccuracyOp : public framework::OperatorWithKernel {
" the same as label."
);
ctx
->
SetOutputDim
(
"Accuracy"
,
{
1
});
ctx
->
SetOutputDim
(
"Correct"
,
{
1
});
ctx
->
ShareLoD
(
"Out"
,
/*->*/
"Accuracy"
);
}
...
...
@@ -65,6 +68,7 @@ class AccuracyOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"Label"
,
"Label of the training data"
);
// TODO(typhoonzero): AddInput("Weight", ...
AddOutput
(
"Accuracy"
,
"The accuracy of current batch"
);
AddOutput
(
"Correct"
,
"The correct samples count of current batch"
);
AddComment
(
R"DOC(
Accuracy. It will print accuracy rate for classification.
...
...
paddle/operators/accuracy_op.h
浏览文件 @
bdc832cb
...
...
@@ -42,8 +42,10 @@ class AccuracyKernel : public framework::OpKernel<T> {
auto
*
indices
=
ctx
.
Input
<
Tensor
>
(
"Indices"
);
auto
*
label
=
ctx
.
Input
<
Tensor
>
(
"Label"
);
auto
*
accuracy
=
ctx
.
Output
<
Tensor
>
(
"Accuracy"
);
auto
*
correct
=
ctx
.
Output
<
Tensor
>
(
"Correct"
);
float
*
accuracy_data
=
accuracy
->
mutable_data
<
float
>
(
ctx
.
GetPlace
());
float
*
correct_data
=
correct
->
mutable_data
<
float
>
(
ctx
.
GetPlace
());
int
*
accuracy_data
=
accuracy
->
mutable_data
<
int
>
(
ctx
.
GetPlace
());
const
int64_t
*
indices_data
=
indices
->
data
<
int64_t
>
();
const
int64_t
*
label_data
=
label
->
data
<
int64_t
>
();
...
...
@@ -68,7 +70,7 @@ class AccuracyKernel : public framework::OpKernel<T> {
}
}
// FIXME(typhoonzero): we don't accumulate the accuracy for now.
*
correct_data
=
num_correct
;
*
accuracy_data
=
static_cast
<
float
>
(
num_correct
)
/
static_cast
<
float
>
(
num_samples
);
}
...
...
python/paddle/v2/framework/evaluator.py
浏览文件 @
bdc832cb
...
...
@@ -12,18 +12,35 @@ class Evaluator(object):
add increment operator to accumulate the metric states
"""
def
__init__
(
self
,
evaluator_typ
e
,
**
kwargs
):
def
__init__
(
self
,
nam
e
,
**
kwargs
):
self
.
_states
=
[]
self
.
_helper
=
LayerHelper
(
layer_type
=
evaluator_typ
e
,
**
kwargs
)
self
.
_helper
=
LayerHelper
(
layer_type
=
nam
e
,
**
kwargs
)
@
staticmethod
def
clear
(
self
):
# def _update(self):
# """
# Updates the internal states througth operator
# """
# raise NotImplementedError()
def
reset
(
self
):
"""
c
lear metric states at the begin of each pass/user specified batch
C
lear metric states at the begin of each pass/user specified batch
"""
raise
NotImplementedError
()
reset_program
=
Program
()
for
var
in
self
.
_states
:
zeros
=
helper
.
create_tmp_variable
(
dtype
=
var
.
data_type
)
self
.
_helper
.
append_op
(
type
=
"fill_constant"
,
outputs
=
{
"Out"
:
[
zeros
]},
attrs
=
{
"shape"
:
var
.
shape
,
"value"
:
0
,
})
self
.
_helper
.
append_op
(
type
=
"scale"
,
inputs
=
{
"X"
:
zeros
},
outputs
=
{
"Out"
:
var
})
return
reset_program
def
eval
uate
(
self
):
def
eval
(
self
):
"""
Merge the mini-batch statistics to form the evaluation result for multiple mini-batches.
"""
...
...
@@ -31,6 +48,10 @@ class Evaluator(object):
class
Accuracy
(
Evaluator
):
"""
Accuracy need two state variable Total, Correct
"""
def
__init__
(
self
,
input
,
label
,
k
=
1
,
**
kwargs
):
super
(
Accuracy
,
self
).
__init__
(
"accuracy"
,
**
kwargs
)
g_total
=
helper
.
create_global_variable
(
...
...
@@ -43,6 +64,8 @@ class Accuracy(Evaluator):
persistable
=
True
,
dtype
=
"int64"
,
shape
=
[
1
])
self
.
_states
.
append
(
g_total
)
self
.
_states
.
append
(
g_correct
)
topk_out
=
helper
.
create_tmp_variable
(
dtype
=
input
.
data_type
)
topk_indices
=
helper
.
create_tmp_variable
(
dtype
=
"int64"
)
...
...
@@ -61,10 +84,34 @@ class Accuracy(Evaluator):
"Indices"
:
[
topk_indices
],
"Label"
:
[
label
]
},
outputs
=
{
"Accuracy"
:
[
acc_out
]})
outputs
=
{
"Accuracy"
:
[
acc_out
],
"Correct"
:
[
tp_out
],
})
helper
.
append_op
(
type
=
"sum"
,
inputs
=
{
"X"
:
[
g_total
,
],
},
type
=
"sum"
,
inputs
=
{
"X"
:
[
g_total
,
tp_out
]},
outputs
=
{
"Out"
:
[
g_total
]})
return
acc_out
def
eval
(
self
):
eval_program
=
Program
()
g_total
=
self
.
_program
# This is demo for composing low level op to compute metric
class
F1
(
Evaluator
):
def
__init__
(
self
,
input
,
label
,
**
kwargs
):
super
(
F1
,
self
).
__init__
(
"F1"
,
**
kwargs
)
super
(
Accuracy
,
self
).
__init__
(
"accuracy"
,
**
kwargs
)
g_total
=
helper
.
create_global_variable
(
name
=
unique_name
(
"Total"
),
persistable
=
True
,
dtype
=
"int64"
,
shape
=
[
1
])
g_correct
=
helper
.
create_global_variable
(
name
=
unique_name
(
"Correct"
),
persistable
=
True
,
dtype
=
"int64"
,
shape
=
[
1
])
python/paddle/v2/framework/tests/test_accuracy_op.py
浏览文件 @
bdc832cb
...
...
@@ -18,7 +18,8 @@ class TestAccuracyOp(OpTest):
num_correct
+=
1
break
self
.
outputs
=
{
'Accuracy'
:
np
.
array
([
num_correct
/
float
(
n
)]).
astype
(
"float32"
)
'Accuracy'
:
np
.
array
([
num_correct
/
float
(
n
)]).
astype
(
"float32"
),
'Correct'
:
np
.
array
([
num_correct
]).
astype
(
"int32"
)
}
def
test_check_output
(
self
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录