Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
bc5d7bb6
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
bc5d7bb6
编写于
1月 22, 2017
作者:
X
xutianbing
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add Sparse = dense * dense unit test with Daoyuan's Function test
上级
077f936a
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
67 addition
and
69 deletion
+67
-69
paddle/function/BufferArg.h
paddle/function/BufferArg.h
+3
-0
paddle/function/FunctionTest.h
paddle/function/FunctionTest.h
+34
-6
paddle/function/MulOp.cpp
paddle/function/MulOp.cpp
+7
-0
paddle/function/MulOpTest.cpp
paddle/function/MulOpTest.cpp
+23
-63
未找到文件。
paddle/function/BufferArg.h
浏览文件 @
bc5d7bb6
...
...
@@ -172,6 +172,7 @@ public:
bool
isTransposed
()
const
{
return
trans_
;
}
bool
isSparseArg
()
const
{
return
TENSOR_SPARSE
==
bufferType_
;
}
bool
isSequenceArg
()
const
{
return
TENSOR_SEQUENCE_DATA
==
bufferType_
;
}
virtual
size_t
numElements
()
const
{
return
shape_
.
getElements
();
}
const
SequenceArg
&
sequence
()
const
;
const
SparseMatrixArg
&
sparse
()
const
;
...
...
@@ -353,6 +354,8 @@ public:
size_t
nnz
()
const
{
return
nnz_
;
}
size_t
numElements
()
const
override
{
return
nnz_
;
}
SparseFormat
dataFormat
()
const
{
return
format_
;
}
SparseValueType
dataType
()
const
{
return
type_
;
}
...
...
paddle/function/FunctionTest.h
浏览文件 @
bc5d7bb6
...
...
@@ -101,6 +101,34 @@ public:
output
.
isTransposed
()));
}
/// add and init output sparse matrix
void
addOutputs
(
const
SparseMatrixArg
&
output
,
ArgType
argType
=
ASSIGN_TO
)
{
cpuSparse_
=
std
::
make_shared
<
CpuSparseMatrix
>
(
output
.
shape
()[
0
],
output
.
shape
()[
1
],
output
.
nnz
(),
output
.
dataType
(),
output
.
dataFormat
(),
output
.
isTransposed
());
gpuSparse_
=
std
::
make_shared
<
GpuSparseMatrix
>
(
output
.
shape
()[
0
],
output
.
shape
()[
1
],
output
.
nnz
(),
output
.
dataType
(),
output
.
dataFormat
(),
output
.
isTransposed
());
/// init sparse matrix
hl_stream_t
stream
(
HPPL_STREAM_1
);
cpuSparse_
->
randomizeUniform
();
gpuSparse_
->
copyFrom
(
*
cpuSparse_
,
stream
);
hl_stream_synchronize
(
stream
);
cpuOutputs_
.
emplace_back
(
std
::
make_shared
<
SparseMatrixArg
>
(
*
cpuSparse_
,
argType
));
gpuOutputs_
.
emplace_back
(
std
::
make_shared
<
SparseMatrixArg
>
(
*
gpuSparse_
,
argType
));
}
void
addInputs
(
const
SequenceArg
&
input
)
{
size_t
batchSize
=
input
.
shape
()[
0
];
size_t
numSeqs
=
batchSize
/
10
+
1
;
...
...
@@ -199,8 +227,7 @@ protected:
void
initOutputs
()
{
for
(
size_t
i
=
0
;
i
<
cpuOutputs_
.
size
();
i
++
)
{
if
(
cpuOutputs_
[
i
]
->
isSparseArg
())
{
LOG
(
INFO
)
<<
"output sparse matrix already init"
;
continue
;
continue
;
/// sparse matrix already init
}
initArg
(
*
cpuOutputs_
[
i
]);
...
...
@@ -218,10 +245,11 @@ protected:
void
compareOutputs
()
{
for
(
size_t
i
=
0
;
i
<
cpuOutputs_
.
size
();
i
++
)
{
// TODO, Need a BufferCheck used to compare the two buffers.
auto
cpu
=
cpuOutputs_
[
i
];
auto
gpu
=
gpuOutputs_
[
i
];
CpuVector
cpuVector
(
cpu
->
shape
().
getElements
(),
(
real
*
)
cpu
->
data
());
GpuVector
gpuVector
(
cpu
->
shape
().
getElements
(),
(
real
*
)
gpu
->
data
());
const
auto
cpu
=
cpuOutputs_
[
i
];
const
auto
gpu
=
gpuOutputs_
[
i
];
CHECK_EQ
(
cpu
->
numElements
(),
gpu
->
numElements
());
CpuVector
cpuVector
(
cpu
->
numElements
(),
(
real
*
)
cpu
->
data
());
GpuVector
gpuVector
(
gpu
->
numElements
(),
(
real
*
)
gpu
->
data
());
autotest
::
TensorCheckErr
(
cpuVector
,
gpuVector
);
}
}
...
...
paddle/function/MulOp.cpp
浏览文件 @
bc5d7bb6
...
...
@@ -319,6 +319,13 @@ public:
auto
outSparseMat
=
outputs
[
0
].
sparse
().
SparseMatrix
<
Device
>
();
if
(
!
inputs
[
0
].
isSparseArg
()
&&
!
inputs
[
1
].
isSparseArg
()
&&
outputs
[
0
].
isSparseArg
())
{
/*
LOG(INFO) << "input0";
inputs[0].matrix<Device>().print(std::cout);
LOG(INFO) << "input1";
inputs[1].matrix<Device>().print(std::cout);
LOG(INFO) << "output sparse matrix";
outSparseMat.print(std::cout); */
MulOp
<
Device
>
(
outSparseMat
,
inputs
[
0
].
matrix
<
Device
>
(),
inputs
[
1
].
matrix
<
Device
>
(),
...
...
paddle/function/MulOpTest.cpp
浏览文件 @
bc5d7bb6
...
...
@@ -183,75 +183,35 @@ TEST(MulOp, DDSparseMul) {
* C += A * B, A sparse, B, C dense
* sparse = dense * dense
*/
void
testSparseDDMatrix
(
void
test
Func
SparseDDMatrix
(
size_t
dimM
,
size_t
dimN
,
size_t
dimK
,
size_t
nnz
,
SparseFormat
FORMAT
)
{
real
alpha
=
1.0
;
real
beta
=
1.0
;
const
auto
cpuFunc
=
FunctionBase
::
funcRegistrar_
.
createByType
(
"MulOp-CPU"
);
cpuFunc
->
init
(
FuncConfig
().
set
(
"scaleAB"
,
alpha
).
set
(
"scaleT"
,
beta
));
const
auto
gpuFunc
=
FunctionBase
::
funcRegistrar_
.
createByType
(
"MulOp-GPU"
);
gpuFunc
->
init
(
FuncConfig
().
set
(
"scaleAB"
,
alpha
).
set
(
"scaleT"
,
beta
));
auto
cpuMatrixA
=
Matrix
::
create
(
dimM
,
dimK
,
false
,
false
);
auto
gpuMatrixA
=
Matrix
::
create
(
dimM
,
dimK
,
false
,
true
);
auto
cpuDenseA
=
Matrix
::
create
(
dimM
,
dimK
,
false
,
false
);
auto
cpuMatrixB
=
Matrix
::
create
(
dimK
,
dimN
,
false
,
false
);
auto
gpuMatrixB
=
Matrix
::
create
(
dimK
,
dimN
,
false
,
true
);
auto
cpuDenseB
=
Matrix
::
create
(
dimK
,
dimN
,
false
,
false
);
CpuSparseMatrix
cpuMatrixC
(
dimM
,
dimN
,
nnz
,
FLOAT_VALUE
,
FORMAT
,
false
);
CpuSparseMatrix
gpuMatrixC_d2h
(
dimM
,
dimN
,
nnz
,
FLOAT_VALUE
,
FORMAT
,
false
);
GpuSparseMatrix
gpuMatrixC
(
dimM
,
dimN
,
nnz
,
FLOAT_VALUE
,
FORMAT
,
false
);
CpuMatrix
cpuDenseC
(
dimM
,
dimN
,
false
);
/*matrix init*/
hl_stream_t
stream
(
HPPL_STREAM_1
);
cpuMatrixA
->
randomizeUniform
();
cpuMatrixB
->
randomizeUniform
();
cpuMatrixC
.
randomizeUniform
();
gpuMatrixA
->
copyFrom
(
*
cpuMatrixA
,
stream
);
gpuMatrixB
->
copyFrom
(
*
cpuMatrixB
,
stream
);
gpuMatrixC
.
copyFrom
(
cpuMatrixC
,
stream
);
cpuDenseA
->
copyFrom
(
*
cpuMatrixA
);
cpuDenseB
->
copyFrom
(
*
cpuMatrixB
);
cpuDenseC
.
copyFrom
(
cpuMatrixC
);
hl_stream_synchronize
(
stream
);
/*matrix mul*/
BufferArgs
cpuInputs
;
BufferArgs
cpuOutputs
;
cpuInputs
.
addArg
(
*
cpuMatrixA
);
cpuInputs
.
addArg
(
*
cpuMatrixB
);
cpuOutputs
.
addArg
(
cpuMatrixC
,
ADD_TO
);
cpuFunc
->
calc
(
cpuInputs
,
cpuOutputs
);
BufferArgs
gpuInputs
;
BufferArgs
gpuOutputs
;
gpuInputs
.
addArg
(
*
gpuMatrixA
);
gpuInputs
.
addArg
(
*
gpuMatrixB
);
gpuOutputs
.
addArg
(
gpuMatrixC
,
ADD_TO
);
gpuFunc
->
calc
(
gpuInputs
,
gpuOutputs
);
BufferArgs
denseInputs
;
BufferArgs
denseOutputs
;
denseInputs
.
addArg
(
*
cpuDenseA
);
denseInputs
.
addArg
(
*
cpuDenseB
);
denseOutputs
.
addArg
(
cpuDenseC
,
ADD_TO
);
cpuFunc
->
calc
(
denseInputs
,
denseOutputs
);
// init Test object
FunctionCompare
test
(
"MulOp"
,
FuncConfig
().
set
(
"scaleAB"
,
alpha
).
set
(
"scaleT"
,
beta
));
// prepare input arguments
/// matrix A : M * K
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
TensorShape
{
dimM
,
dimK
}));
gpuMatrixC_d2h
.
copyFrom
(
gpuMatrixC
,
stream
);
hl_stream_synchronize
(
stream
);
/// matrix B: K * N
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
TensorShape
{
dimK
,
dimN
})
);
/*check result*/
checkSMatrixEqual
(
cpuMatrixC
,
gpuMatrixC_d2h
);
checkSMatrixEqual2Dense
(
cpuMatrixC
,
cpuDenseC
);
/// output sparse matrix C: M * N
test
.
addOutputs
(
SparseMatrixArg
(
VALUE_TYPE_FLOAT
,
TensorShape
{
dimM
,
dimN
},
nnz
,
FORMAT
,
FLOAT_VALUE
,
UNSPECIFIED
,
false
),
ADD_TO
);
// run Function
test
.
run
();
}
TEST
(
M
atrix
,
SparseDDMul
)
{
LOG
(
INFO
)
<<
"test for sparse = dense * dense matrix"
;
TEST
(
M
ulOp
,
SparseDDMul
)
{
LOG
(
INFO
)
<<
"
function
test for sparse = dense * dense matrix"
;
for
(
const
auto
dimM
:
{
10
,
100
,
1000
})
{
for
(
const
auto
dimN
:
{
10
,
100
})
{
for
(
const
auto
dimK
:
{
3
,
10
})
{
...
...
@@ -263,7 +223,7 @@ TEST(Matrix, SparseDDMul) {
<<
" dimK="
<<
std
::
setw
(
5
)
<<
dimK
<<
" nnz="
<<
std
::
setw
(
5
)
<<
nnz
<<
" format="
<<
std
::
setw
(
5
)
<<
FORMAT
;
testSparseDDMatrix
(
dimM
,
dimN
,
dimK
,
nnz
,
FORMAT
);
test
Func
SparseDDMatrix
(
dimM
,
dimN
,
dimK
,
nnz
,
FORMAT
);
}
}
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录