未验证 提交 bb5963da 编写于 作者: L lilong12 提交者: GitHub

[CP] add a strategy to run program with fleet (#33511)

* Add raw program meta optimizer (#32597)

* add raw program, test=develop

* add precision unitest for executor all reduce (#33339)

* fix dp (#33297)
Co-authored-by: NYuang Liu <liuyuang@baidu.com>
Co-authored-by: N李季 <2042519524@qq.com>
上级 7be50f90
......@@ -175,6 +175,7 @@ message DistributedStrategy {
optional float last_comm_group_size_MB = 27 [ default = 1 ];
optional bool find_unused_parameters = 28 [ default = false ];
optional bool tensor_parallel = 29 [ default = false ];
optional bool without_graph_optimization = 30 [ default = false ];
optional RecomputeConfig recompute_configs = 101;
optional AMPConfig amp_configs = 102;
......
......@@ -827,6 +827,32 @@ class DistributedStrategy(object):
"sharding_configs")
assign_configs_value(self.strategy.sharding_configs, configs)
@property
def without_graph_optimization(self):
"""
Run program using Executor other than ParallelExecutor.
Examples:
.. code-block:: python
import paddle.distributed.fleet as fleet
strategy = fleet.DistributedStrategy()
strategy.without_graph_optimization = True
"""
return self.strategy.without_graph_optimization
@without_graph_optimization.setter
@is_strict_auto
def without_graph_optimization(self, flag):
if isinstance(flag, bool):
self.strategy.without_graph_optimization = flag
else:
print(
"WARNING: without_graph_optimization should have value of bool type"
)
@property
def pipeline(self):
"""
......
......@@ -28,3 +28,4 @@ from .sharding_optimizer import ShardingOptimizer
from .dygraph_optimizer import HybridParallelOptimizer
from .dygraph_optimizer import HybridParallelGradScaler
from .tensor_parallel_optimizer import TensorParallelOptimizer
from .raw_program_optimizer import RawProgramOptimizer
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
from __future__ import print_function
from __future__ import division
import os
import paddle.fluid as fluid
from paddle.fluid import core, unique_name
from ..base.private_helper_function import wait_server_ready
from .meta_optimizer_base import MetaOptimizerBase
from .common import OpRole, OP_ROLE_KEY, OP_ROLE_VAR_KEY, CollectiveHelper, is_loss_grad_op, is_backward_op, is_optimizer_op
class RawProgramOptimizer(MetaOptimizerBase):
def __init__(self, optimizer):
super(RawProgramOptimizer, self).__init__(optimizer)
self.inner_opt = optimizer
self.meta_optimizers_white_list = [
"RecomputeOptimizer",
"AMPOptimizer",
]
self.meta_optimizers_black_list = ["GraphExecutionOptimizer", ]
self.global_ring_id = 0
def _set_basic_info(self, loss, role_maker, user_defined_optimizer,
user_defined_strategy):
super(RawProgramOptimizer, self)._set_basic_info(
loss, role_maker, user_defined_optimizer, user_defined_strategy)
self.without_graph_optimization = user_defined_strategy.without_graph_optimization
def _can_apply(self):
if not self.role_maker._is_collective:
return False
if self.without_graph_optimization == True:
return True
return False
def _disable_strategy(self, dist_strategy):
dist_strategy.without_graph_optimization = False
def _enable_strategy(self, dist_strategy, context):
dist_strategy.without_graph_optimization = True
def _broadcast_params(self, ring_id):
block = self.startup_program.global_block()
param = None
for param in block.iter_parameters():
if param.is_distributed:
continue
block.append_op(
type='c_broadcast',
inputs={'X': param},
outputs={'Out': param},
attrs={
'ring_id': ring_id,
'root': 0,
OP_ROLE_KEY: OpRole.Forward
})
if not param: return # no parameter on this device
block.append_op(
type='c_sync_comm_stream',
inputs={'X': param},
outputs={'Out': param},
attrs={'ring_id': ring_id,
OP_ROLE_KEY: OpRole.Forward})
def _get_process_group_info(self):
# global ring info
self.global_endpoints = self.endpoints
self.global_rank = self.rank
self.global_nranks = self.nranks
def _init_process_group(self):
self._get_process_group_info()
collective_helper = CollectiveHelper(self.role_maker, wait_port=False)
# Create global ring for all gpus (ring_id = 0)
collective_helper._init_communicator(
self.startup_program, self.current_endpoint, self.global_endpoints,
self.global_rank, self.global_ring_id, True, self.global_ring_id,
True)
self._broadcast_params(self.global_ring_id)
def minimize_impl(self,
loss,
startup_program=None,
parameter_list=None,
no_grad_set=None):
self.endpoints = self.role_maker._get_trainer_endpoints()
self.current_endpoint = self.endpoints[self.role_maker._worker_index()]
self.rank = self.role_maker._worker_index()
self.nranks = self.role_maker._worker_num()
if startup_program is None:
startup_program = fluid.default_startup_program()
self.startup_program = startup_program
block = loss.block
program = block.program
self.main_program = program
optimize_ops, params_grads = self.inner_opt.minimize(
loss, startup_program, parameter_list, no_grad_set)
if self.nranks == 1:
return optimize_ops, params_grads
self._init_process_group()
self.main_program = program
if self.nranks > 1:
self._transpile_main_program(loss)
return optimize_ops, params_grads
def _transpile_main_program(self, loss):
self._insert_loss_grad_ops(loss)
self._insert_allreduce_ops()
def _insert_loss_grad_ops(self, loss):
"""
In order to keep the learning rate consistent in different numbers of
training workers, we scale the loss grad by the number of workers
"""
block = self.main_program.global_block()
for idx, op in reversed(list(enumerate(block.ops))):
if is_loss_grad_op(op):
loss_grad_var = block.vars[op.output_arg_names[0]]
block._insert_op(
idx + 1,
type='scale',
inputs={'X': loss_grad_var},
outputs={'Out': loss_grad_var},
attrs={
'scale': 1.0 / self.nranks,
OP_ROLE_KEY: OpRole.Backward
})
def _insert_allreduce_ops(self):
block = self.main_program.global_block()
ring_id = self.global_ring_id
grad = None
for idx, op in reversed(list(enumerate(block.ops))):
if is_backward_op(op) and \
OP_ROLE_VAR_KEY in op.attr_names:
op_role_var = op.attr(OP_ROLE_VAR_KEY)
if len(op_role_var) == 0:
continue
assert len(op_role_var) % 2 == 0
offset = 1
for i in range(0, len(op_role_var), 2):
param_name = op_role_var[i]
param = block.var(param_name)
grad_name = op_role_var[i + 1]
grad = block.var(grad_name)
if param.is_distributed:
continue
block._insert_op(
idx + offset,
type='c_sync_calc_stream',
inputs={'X': grad},
outputs={'Out': grad},
attrs={OP_ROLE_KEY: OpRole.Backward, })
offset += 1
block._insert_op(
idx + offset,
type='c_allreduce_sum',
inputs={'X': grad},
outputs={'Out': grad},
attrs={
'ring_id': ring_id,
OP_ROLE_KEY: OpRole.Backward
})
if grad is None:
return
for idx, op in enumerate(block.ops):
if is_optimizer_op(op):
block._insert_op(
idx,
type='c_sync_comm_stream',
inputs={'X': grad},
outputs={'Out': grad},
attrs={'ring_id': ring_id,
OP_ROLE_KEY: OpRole.Backward})
break
......@@ -17,6 +17,7 @@ list(APPEND DIST_TEST_OPS test_parallel_dygraph_sparse_embedding)
list(APPEND DIST_TEST_OPS test_parallel_dygraph_sparse_embedding_over_height)
list(APPEND DIST_TEST_OPS test_parallel_dygraph_transformer)
list(APPEND DIST_TEST_OPS test_fleet_pipeline_meta_optimizer)
list(APPEND DIST_TEST_OPS test_fleet_raw_program_meta_optimizer)
list(APPEND DIST_TEST_OPS test_fleet_graph_execution_meta_optimizer)
list(APPEND DIST_TEST_OPS test_gen_nccl_id_op)
list(APPEND DIST_TEST_OPS test_parallel_dygraph_unused_variables)
......@@ -54,6 +55,7 @@ list(APPEND MIXED_DIST_TEST_OPS test_fleet_base_2)
list(APPEND MIXED_DIST_TEST_OPS test_fleet_base_3)
list(APPEND MIXED_DIST_TEST_OPS test_fleet_recompute_meta_optimizer)
list(APPEND MIXED_DIST_TEST_OPS test_fleet_pipeline_meta_optimizer)
list(APPEND MIXED_DIST_TEST_OPS test_fleet_raw_program_meta_optimizer)
list(APPEND MIXED_DIST_TEST_OPS test_fleet_amp_meta_optimizer)
list(APPEND MIXED_DIST_TEST_OPS test_fleet_amp_init)
list(APPEND MIXED_DIST_TEST_OPS test_fleet_gradient_merge_meta_optimizer)
......@@ -100,6 +102,7 @@ if(((NOT WITH_ROCM) AND (NOT WITH_GPU)) OR WIN32)
LIST(REMOVE_ITEM TEST_OPS test_collective_sendrecv_api)
LIST(REMOVE_ITEM TEST_OPS test_collective_wait)
LIST(REMOVE_ITEM TEST_OPS test_memcpy_op)
LIST(REMOVE_ITEM TEST_OPS test_raw_program_optimizer)
endif()
if(WIN32)
......@@ -571,7 +574,7 @@ endif()
py_test_modules(test_parallel_executor_crf MODULES test_parallel_executor_crf)
# Coverage pipeline use cuda 10.1 now, profiler will random hang in cuda 10.1,
# see https://github.com/PaddlePaddle/Paddle/issues/29082 for details.
# We guess there are some bugs in cuda 10.1 or 10.2,
# We guess there are some bugs in cuda 10.1 or 10.2,
# since this unittest is stable in cuda 11 (py3 pipeline) now.
if(NOT WITH_COVERAGE)
py_test_modules(test_parallel_executor_profiler MODULES test_parallel_executor_profiler)
......@@ -596,8 +599,8 @@ py_test_modules(test_fuse_bn_act_pass MODULES test_fuse_bn_act_pass ENVS FLAGS_c
py_test_modules(test_fuse_bn_add_act_pass MODULES test_fuse_bn_add_act_pass ENVS FLAGS_cudnn_deterministic=1 FLAGS_cudnn_batchnorm_spatial_persistent=1 FLAGS_conv_workspace_size_limit=1000)
# NOTE: These unittests will appear NaN steadily in windows CI. After analysis,
# it is found that windows CI will run all the training unittests with the ON_INFER option turned on,
# which will not appear in other CIs. The calculation behavior of some ops in inference mode is
# it is found that windows CI will run all the training unittests with the ON_INFER option turned on,
# which will not appear in other CIs. The calculation behavior of some ops in inference mode is
# inconsistent with that in non-inference mode.
if(NOT ON_INFER)
py_test_modules(test_parallel_executor_seresnext_base_cpu MODULES test_parallel_executor_seresnext_base_cpu)
......@@ -640,7 +643,7 @@ if (WITH_XPU)
add_subdirectory(xpu)
endif()
# dist xpu tests:
# dist xpu tests:
if (WITH_XPU_BKCL)
py_test(test_collective_reduce_api_xpu SRCS "test_collective_reduce_api.py")
py_test(test_collective_allreduce_api_xpu SRCS "test_collective_allreduce_api.py")
......@@ -708,6 +711,7 @@ if (WITH_DISTRIBUTE)
set_tests_properties(test_dist_fleet_ctr2 PROPERTIES TIMEOUT 200)
set_tests_properties(test_dist_fleet_sparse_embedding_ctr PROPERTIES TIMEOUT 200)
set_tests_properties(test_dist_fleet_infer PROPERTIES TIMEOUT 200)
set_tests_properties(test_dist_fleet_raw_program_optimizer PROPERTIES TIMEOUT 120)
endif()
if (WITH_DISTRIBUTE AND NOT APPLE)
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from test_dist_base import TestDistRunnerBase, runtime_main
import unittest
import paddle
import os
import paddle.distributed.fleet as fleet
import paddle.distributed.fleet.base.role_maker as role_maker
import numpy as np
from functools import reduce
import paddle.fluid as fluid
paddle.enable_static()
DTYPE = "float32"
paddle.dataset.mnist.fetch()
# Fix seed for test
fluid.default_startup_program().random_seed = 1
fluid.default_main_program().random_seed = 1
def cnn_model(data):
conv_pool_1 = fluid.nets.simple_img_conv_pool(
input=data,
filter_size=5,
num_filters=20,
pool_size=2,
pool_stride=2,
act="relu",
param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(
value=0.01)))
conv_pool_2 = fluid.nets.simple_img_conv_pool(
input=conv_pool_1,
filter_size=5,
num_filters=50,
pool_size=2,
pool_stride=2,
act="relu",
param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(
value=0.01)))
SIZE = 10
input_shape = conv_pool_2.shape
param_shape = [reduce(lambda a, b: a * b, input_shape[1:], 1)] + [SIZE]
scale = (2.0 / (param_shape[0]**2 * SIZE))**0.5
predict = fluid.layers.fc(
input=conv_pool_2,
size=SIZE,
act="softmax",
param_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.Constant(value=0.01)))
return predict
class TestFleetMetaOptimizerPrecision(TestDistRunnerBase):
def get_model(self, batch_size=2, single_device=False):
# Input data
images = fluid.layers.data(name='pixel', shape=[1, 28, 28], dtype=DTYPE)
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
# Train program
predict = cnn_model(images)
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(x=cost)
# Evaluator
batch_size_tensor = fluid.layers.create_tensor(dtype='int64')
batch_acc = fluid.layers.accuracy(
input=predict, label=label, total=batch_size_tensor)
test_program = fluid.default_main_program().clone(for_test=True)
# Reader
train_reader = paddle.batch(
paddle.dataset.mnist.test(), batch_size=batch_size)
test_reader = paddle.batch(
paddle.dataset.mnist.test(), batch_size=batch_size)
optimizer = paddle.fluid.optimizer.Adam(0.01)
if single_device:
optimizer.minimize(avg_cost)
else:
role = role_maker.PaddleCloudRoleMaker(is_collective=True)
fleet.init(role)
strategy = paddle.distributed.fleet.DistributedStrategy()
strategy.without_graph_optimization = True
optimizer = fleet.distributed_optimizer(
optimizer, strategy=strategy)
optimizer.minimize(avg_cost)
return test_program, avg_cost, train_reader, test_reader, batch_acc, predict
if __name__ == "__main__":
runtime_main(TestFleetMetaOptimizerPrecision)
......@@ -186,6 +186,76 @@ class TestDistRunnerBase(object):
fleet.save_inference_model(exe, infer_save_dir_fleet,
feeded_var_names, [avg_cost])
def run_use_fleet_api_20_trainer(self, args):
"""
1. remove codes for DistributedStrategy and leave the DistributedStrategy part to get_model()
2. to run with fleet 2.0 api, set flags _use_fleet_api and _use_fleet_api_20 to True
3. for now, not support test for model save
"""
assert args.update_method == "nccl2" or "bkcl"
self.lr = args.lr
print_to_err("use_fleet 2.0", "fleet.node_num:")
test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
self.get_model(batch_size=args.batch_size)
if fluid.core.is_compiled_with_cuda():
device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
place = fluid.CUDAPlace(device_id)
elif fluid.core.is_compiled_with_xpu():
device_id = int(os.getenv("FLAGS_selected_xpus", "0"))
place = fluid.XPUPlace(device_id)
else:
raise ValueError(
"fleet dygraph api must in paddlepaddle-xpu or paddlepaddle-gpu."
)
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
eprint(type(self).__name__, "run worker startup program done.")
feed_var_list = [
var
for var in fluid.default_main_program().global_block().vars.values()
if var.is_data
]
eprint("feed_var_list:", feed_var_list)
if feed_var_list[0].name == 'label':
feed_var_list = feed_var_list[::-1]
feeder = fluid.DataFeeder(feed_var_list, place)
reader_generator = train_reader()
def get_data():
origin_batch = next(reader_generator)
if args.update_method != "local" and args.use_reader_alloc:
new_batch = []
for offset, item in enumerate(origin_batch):
if offset % 2 == args.trainer_id:
new_batch.append(item)
return new_batch
else:
return origin_batch
print_to_err(type(self).__name__, "begin to train on trainer")
out_losses = []
for i in six.moves.xrange(RUN_STEP):
loss, = exe.run(fluid.default_main_program(),
fetch_list=[avg_cost.name],
feed=feeder.feed(get_data()))
out_losses.append(loss[0])
print_to_err(type(self).__name__, "run step %d finished" % i)
print_to_err(type(self).__name__, "trainer run finished")
print_to_err(type(self).__name__, "dist losses: {}".format(out_losses))
if six.PY2:
print(pickle.dumps(out_losses))
else:
sys.stdout.buffer.write(pickle.dumps(out_losses))
def run_use_fleet_api_trainer(self, args):
assert args.update_method == "nccl2" or "bkcl"
......@@ -630,6 +700,7 @@ def runtime_main(test_class):
parser.add_argument('--use_hallreduce', action='store_true')
parser.add_argument('--use_pipeline', action='store_true')
parser.add_argument('--use_fleet_api', action='store_true')
parser.add_argument('--use_fleet_api_20', action='store_true')
parser.add_argument('--use_local_sgd', action='store_true')
parser.add_argument('--ut4grad_allreduce', action='store_true')
parser.add_argument(
......@@ -671,6 +742,8 @@ def runtime_main(test_class):
model.run_pserver(args)
elif args.use_fleet_api:
model.run_use_fleet_api_trainer(args)
elif args.use_fleet_api_20:
model.run_use_fleet_api_20_trainer(args)
elif args.use_pipeline:
model.run_pipeline_trainer(args)
else:
......@@ -734,6 +807,7 @@ class TestDistBase(unittest.TestCase):
self._nccl_comm_num = 1
self._enable_backward_deps = False
self._use_fleet_api = False
self._use_fleet_api_20 = False
self._use_local_sgd = False
self._ut4grad_allreduce = False
self._use_hallreduce = False
......@@ -1060,7 +1134,7 @@ class TestDistBase(unittest.TestCase):
tr_cmd += " --fuse_all_reduce {}".format(self._fuse_all_reduce)
if self._use_fleet_api:
tr_cmd += " --use_fleet_api"
tr_cmd += " --use_fleet_api_20" if self._use_fleet_api_20 else " --use_fleet_api"
if self._use_local_sgd:
tr_cmd += " --use_local_sgd"
if self._ut4grad_allreduce:
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from test_dist_base import TestDistBase
import paddle
import os
paddle.enable_static()
flag_name = os.path.splitext(__file__)[0]
class TestFleetMetaOptimizerPrecision(TestDistBase):
def _setup_config(self):
self._sync_mode = True
self._use_reduce = False
self._use_reader_alloc = False
self._nccl2_mode = True
self._nccl2_reduce_layer = True
self._use_fleet_api = True
self._use_fleet_api_20 = True
def test_dist_train(self):
import paddle.fluid as fluid
if fluid.core.is_compiled_with_cuda():
self.check_with_place(
"dist_fleet_raw_program_optimizer.py",
delta=1e-5,
check_error_log=True,
log_name=flag_name)
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import paddle
import os
paddle.enable_static()
class TestFleetMetaOptimizer(unittest.TestCase):
def setUp(self):
os.environ["PADDLE_TRAINER_ID"] = "1"
os.environ[
"PADDLE_TRAINER_ENDPOINTS"] = "127.0.0.1:36001,127.0.0.1:36002"
def test_pipeline_optimizer(self):
import paddle.distributed.fleet as fleet
import paddle.distributed.fleet.base.role_maker as role_maker
role = role_maker.PaddleCloudRoleMaker(is_collective=True)
fleet.init(role)
input_x = paddle.fluid.layers.data(
name="x", shape=[32], dtype='float32')
input_y = paddle.fluid.layers.data(name="y", shape=[1], dtype='int64')
fc_1 = paddle.fluid.layers.fc(input=input_x, size=64, act='tanh')
fc_2 = paddle.fluid.layers.fc(input=fc_1, size=64, act='tanh')
prediction = paddle.fluid.layers.fc(input=[fc_2], size=2, act='softmax')
cost = paddle.fluid.layers.cross_entropy(
input=prediction, label=input_y)
avg_cost = paddle.fluid.layers.mean(x=cost)
strategy = paddle.distributed.fleet.DistributedStrategy()
strategy.without_graph_optimization = True
optimizer = paddle.fluid.optimizer.Adam(0.01)
optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
optimizer.minimize(avg_cost)
if __name__ == "__main__":
unittest.main()
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.distributed.fleet as fleet
import numpy as np
import os
class TestRawProgramOptimizer(unittest.TestCase):
def setUp(self):
os.environ["PADDLE_TRAINER_ID"] = "0"
os.environ["PADDLE_TRAINER_ENDPOINTS"] = "127.0.0.1:36001"
def mlp(self, input_x, input_y, hid_dim=128, label_dim=2):
fc_1 = paddle.static.nn.fc(x=input_x, size=hid_dim, activation='tanh')
fc_2 = paddle.static.nn.fc(x=fc_1, size=hid_dim, activation='tanh')
prediction = paddle.static.nn.fc(x=[fc_2],
size=label_dim,
activation='softmax')
cost = paddle.nn.functional.cross_entropy(
input=prediction, label=input_y)
avg_cost = paddle.mean(x=cost)
return avg_cost
def gen_data(self):
return {
"x": np.random.random(size=(128, 32)).astype('float32'),
"y": np.random.randint(
2, size=(128, 1)).astype('int64')
}
def test_single_gpu(self):
paddle.enable_static()
fleet.init(is_collective=True)
sharding_program = paddle.static.Program()
sharding_startup_program = paddle.static.Program()
strategy = fleet.DistributedStrategy()
strategy.without_graph_optimization = True
with fluid.program_guard(sharding_program, sharding_startup_program):
with fluid.unique_name.guard():
input_x = paddle.static.data(
name="x", shape=[None, 32], dtype='float32')
input_y = paddle.static.data(
name="y", shape=[None, 1], dtype='int64')
cost = self.mlp(input_x=input_x, input_y=input_y)
output_name = cost.name
optimizer = fleet.distributed_optimizer(fluid.optimizer.Adam(),
strategy)
optimizer.minimize(cost)
trainer_id = fleet.worker_index()
exe = paddle.static.Executor(paddle.CUDAPlace(trainer_id))
rank = fleet.worker_index()
exe.run(sharding_startup_program)
exe.run(program=sharding_program, feed=self.gen_data())
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册