提交 bb546cf1 编写于 作者: H hedaoyuan

Bug fix.

上级 659f2f71
......@@ -75,8 +75,6 @@ class GemmConv2DKernel : public framework::OpKernel {
framework::DDim output_matrix_shape = {output_channels,
output_height * output_width};
auto device_context = context.device_context();
// convolution operator: im2col + gemm
int in_step = input_channels / groups;
int out_step = output_channels / groups;
......@@ -87,13 +85,13 @@ class GemmConv2DKernel : public framework::OpKernel {
// im2col
Tensor in_slice = in_batch.Slice<T>(g * in_step, (g + 1) * in_step);
im2col(in_slice, col, strides[0], strides[1], paddings[0], paddings[1],
device_context);
context.device_context());
// gemm
Tensor out_slice = out_batch.Slice<T>(g * out_step, (g + 1) * out_step);
Tensor filter_slice = filter.Slice<T>(g * out_step, (g + 1) * out_step);
math::matmul<Place, T>(device_context, filter_slice, false, col_matrix,
false, T(1.0), &out_slice, T(0.0));
math::matmul<Place, T>(context.device_context(), filter_slice, false,
col_matrix, false, T(1.0), &out_slice, T(0.0));
}
}
}
......@@ -159,8 +157,6 @@ class GemmConvGrad2DKernel : public framework::OpKernel {
filter.numel() / filter.dims()[0]};
filter.Resize(filter_matrix_shape);
auto device_context = context.device_context();
// convolution backward input operator: gemm + col2im
// convolution backward weight operator: im2col + gemm
int in_step = input_channels / groups;
......@@ -182,7 +178,7 @@ class GemmConvGrad2DKernel : public framework::OpKernel {
out_grad_batch.Slice<T>(g * out_step, (g + 1) * out_step);
Tensor filter_slice =
filter.Slice<T>(g * out_step, (g + 1) * out_step);
math::matmul<Place, T>(device_context, filter_slice, true,
math::matmul<Place, T>(context.device_context(), filter_slice, true,
out_grad_slice, false, T(1.0), &col_matrix,
T(0.0));
......@@ -190,7 +186,7 @@ class GemmConvGrad2DKernel : public framework::OpKernel {
Tensor in_grad_slice =
in_grad_batch.Slice<T>(g * in_step, (g + 1) * in_step);
col2im(in_grad_slice, col, strides[0], strides[1], paddings[0],
paddings[1], device_context);
paddings[1], context.device_context());
}
}
}
......@@ -212,14 +208,14 @@ class GemmConvGrad2DKernel : public framework::OpKernel {
out_grad_batch.Slice<T>(g * out_step, (g + 1) * out_step);
Tensor in_slice = in_batch.Slice<T>(g * in_step, (g + 1) * in_step);
im2col(in_slice, col, strides[0], strides[1], paddings[0],
paddings[1], device_context);
paddings[1], context.device_context());
// gemm
Tensor filter_grad_slice =
filter_grad_.Slice<T>(g * out_step, (g + 1) * out_step);
math::matmul<Place, T>(device_context, out_grad_slice, false,
col_matrix, true, T(1.0), &filter_grad_slice,
T(1.0));
math::matmul<Place, T>(context.device_context(), out_grad_slice,
false, col_matrix, true, T(1.0),
&filter_grad_slice, T(1.0));
}
}
}
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册