未验证 提交 bb51d6dc 编写于 作者: B baoachun 提交者: GitHub

update mkldnn conv_concat_relu_mkldnn_fuse_pass ut (#37606)

* update mkldnn conv_concat_relu_mkldnn_fuse_pass ut

* update conv_concat_relu_mkldnn_fuse_pass ut

* restrict conv2d data_format in conv_concat_relu_mkldnn_fuse_pass
上级 e78eb3f4
......@@ -59,7 +59,7 @@ ConvConcatReLUFusePass::ConvConcatReLUFusePass() {
.IsType<std::vector<int>>()
.End()
.AddAttr("data_format")
.IsStringIn({"NCHW", "NHWC", "AnyLayout"})
.IsStringIn({"NCHW"})
.End();
AddOpCompat(OpCompat("concat"))
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......@@ -12,80 +12,147 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
from auto_scan_test import PassAutoScanTest, SkipReasons
from program_config import TensorConfig, ProgramConfig
import numpy as np
from inference_pass_test import InferencePassTest
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid.core import AnalysisConfig
from paddle.fluid.core import PassVersionChecker
class ConvConcatReluMkldnnFusePassTest_0(InferencePassTest):
def setUp(self):
self.set_params()
with fluid.program_guard(self.main_program, self.startup_program):
data_1 = fluid.data(
name="data_1", shape=[-1, 3, 100, 100], dtype="float32")
data_2 = fluid.data(
name="data_2", shape=[-1, 3, 100, 100], dtype="float32")
conv_1 = fluid.layers.conv2d(
data_1,
num_filters=self.conv1_num_filters,
filter_size=self.conv1_filter_size,
padding=self.conv1_padding,
bias_attr=self.conv1_bias_attr)
conv_2 = fluid.layers.conv2d(
data_2,
num_filters=self.conv2_num_filters,
filter_size=self.conv2_filter_size,
padding=self.conv2_padding,
bias_attr=self.conv2_bias_attr)
concat = fluid.layers.concat(
[conv_1, conv_2], axis=self.concat_axis)
out = fluid.layers.relu(concat)
self.feeds = {
"data_1": np.random.random((1, 3, 100, 100)).astype("float32"),
"data_2": np.random.random((1, 3, 100, 100)).astype("float32")
}
self.fetch_list = [out]
self.enable_mkldnn = True
def set_params(self):
self.conv1_num_filters = 3
self.conv1_filter_size = 3
self.conv1_padding = 0
self.conv1_bias_attr = False
self.conv2_num_filters = 3
self.conv2_filter_size = 3
self.conv2_padding = 0
self.conv2_bias_attr = False
self.concat_axis = 0
self.pass_name = "conv_concat_relu_mkldnn_fuse_pass"
def test_check_output(self):
use_gpu = False
self.check_output_with_option(use_gpu)
def test_pass_compatible(self):
self.assertTrue(PassVersionChecker.IsCompatible(self.pass_name))
class ConvConcatReluMkldnnFusePassTest_1(ConvConcatReluMkldnnFusePassTest_0):
def set_params(self):
self.conv1_num_filters = 3
self.conv1_filter_size = 3
self.conv1_padding = 0
self.conv1_bias_attr = False
self.conv2_num_filters = 5
self.conv2_filter_size = 5
self.conv2_padding = 1
self.conv2_bias_attr = True
self.concat_axis = 1
self.pass_name = "conv_concat_relu_mkldnn_fuse_pass"
import paddle.inference as paddle_infer
from functools import partial
from typing import Optional, List, Callable, Dict, Any, Set
import unittest
import hypothesis
from hypothesis import given, settings, seed, example, assume
import hypothesis.strategies as st
class TestConvConcatReluMkldnnFusePass(PassAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool:
attrs = [
program_config.ops[i].attrs
for i in range(len(program_config.ops))
]
# If the problem has been fixed, the judgment
# needs to be deleted!!!
if attrs[0]['data_format'] == "NHWC":
return False
return True
def sample_program_config(self, draw):
data_format = draw(st.sampled_from(["NCHW", "NHWC"]))
dilations = draw(st.sampled_from([[1, 1], [2, 2], [1, 2]]))
padding_algorithm = draw(st.sampled_from(["EXPLICIT", "SAME", "VALID"]))
groups = draw(st.sampled_from([1, 2, 4]))
paddings = draw(st.sampled_from([[0, 3], [1, 2, 3, 4]]))
strides = draw(st.sampled_from([[1, 1], [2, 2], [1, 2]]))
axis = draw(st.sampled_from([0]))
batch_size = draw(st.integers(min_value=1, max_value=4))
def generate_input(attrs):
if attrs[0]['data_format'] == "NCHW":
return np.random.random(
[attrs[2]['batch_size'], 48, 64, 64]).astype(np.float32)
else:
return np.random.random(
[attrs[2]['batch_size'], 64, 64, 48]).astype(np.float32)
def generate_weight():
return np.random.random(
[16, int(48 / groups), 3, 3]).astype(np.float32)
attrs = [{
"data_format": data_format,
"dilations": dilations,
"padding_algorithm": padding_algorithm,
"groups": groups,
"paddings": paddings,
"strides": strides
}, {
"axis": axis
}, {
'batch_size': batch_size
}]
ops_config = [{
"op_type": "conv2d",
"op_inputs": {
"Input": ["input_data1"],
"Filter": ["input_weight"]
},
"op_outputs": {
"Output": ["conv1_output"]
},
"op_attrs": {
"data_format": attrs[0]['data_format'],
"dilations": attrs[0]['dilations'],
"padding_algorithm": attrs[0]['padding_algorithm'],
"groups": attrs[0]['groups'],
"paddings": attrs[0]['paddings'],
"strides": attrs[0]['strides']
}
}, {
"op_type": "conv2d",
"op_inputs": {
"Input": ["input_data2"],
"Filter": ["input_weight"]
},
"op_outputs": {
"Output": ["conv2_output"]
},
"op_attrs": {
"data_format": attrs[0]['data_format'],
"dilations": attrs[0]['dilations'],
"padding_algorithm": attrs[0]['padding_algorithm'],
"groups": attrs[0]['groups'],
"paddings": attrs[0]['paddings'],
"strides": attrs[0]['strides']
}
}, {
"op_type": "concat",
"op_inputs": {
"X": ["conv1_output", "conv2_output"]
},
"op_outputs": {
"Out": ["concat_output"]
},
"op_attrs": {
'axis': attrs[1]['axis']
}
}, {
"op_type": "relu",
"op_inputs": {
"X": ["concat_output"]
},
"op_outputs": {
"Out": ["relu_output"]
},
"op_attrs": {}
}]
ops = self.generate_op_config(ops_config)
program_config = ProgramConfig(
ops=ops,
weights={
"input_weight": TensorConfig(data_gen=partial(generate_weight))
},
inputs={
"input_data1":
TensorConfig(data_gen=partial(generate_input, attrs)),
"input_data2":
TensorConfig(data_gen=partial(generate_input, attrs))
},
outputs=["relu_output"])
return program_config
def sample_predictor_configs(self, program_config):
config = self.create_inference_config(use_mkldnn=True)
yield config, ["conv2d", "conv2d", "concat"], (1e-5, 1e-5)
def test(self):
self.run_and_statis(
quant=False, passes=["conv_concat_relu_mkldnn_fuse_pass"])
if __name__ == "__main__":
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册