Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
baae7e4f
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
baae7e4f
编写于
9月 23, 2018
作者:
N
nhzlx
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Paddle
into add_ut_for_trt
上级
27633216
a8f66365
变更
21
隐藏空白更改
内联
并排
Showing
21 changed file
with
759 addition
and
126 deletion
+759
-126
paddle/fluid/API.spec
paddle/fluid/API.spec
+33
-33
paddle/fluid/framework/details/reference_count_op_handle.h
paddle/fluid/framework/details/reference_count_op_handle.h
+28
-13
paddle/fluid/framework/details/reference_count_pass.cc
paddle/fluid/framework/details/reference_count_pass.cc
+64
-11
paddle/fluid/framework/op_desc.cc
paddle/fluid/framework/op_desc.cc
+5
-0
paddle/fluid/framework/shape_inference.cc
paddle/fluid/framework/shape_inference.cc
+10
-0
paddle/fluid/framework/shape_inference.h
paddle/fluid/framework/shape_inference.h
+2
-0
paddle/fluid/inference/api/api_impl.h
paddle/fluid/inference/api/api_impl.h
+1
-2
paddle/fluid/inference/tests/api/tester_helper.h
paddle/fluid/inference/tests/api/tester_helper.h
+13
-11
paddle/fluid/operators/adam_op.h
paddle/fluid/operators/adam_op.h
+31
-13
paddle/fluid/operators/concat_op.cc
paddle/fluid/operators/concat_op.cc
+14
-2
paddle/fluid/operators/scale_op.cc
paddle/fluid/operators/scale_op.cc
+8
-2
python/paddle/fluid/clip.py
python/paddle/fluid/clip.py
+1
-1
python/paddle/fluid/framework.py
python/paddle/fluid/framework.py
+2
-1
python/paddle/fluid/layers/layer_function_generator.py
python/paddle/fluid/layers/layer_function_generator.py
+35
-2
python/paddle/fluid/layers/learning_rate_scheduler.py
python/paddle/fluid/layers/learning_rate_scheduler.py
+2
-2
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+332
-3
python/paddle/fluid/layers/ops.py
python/paddle/fluid/layers/ops.py
+14
-21
python/paddle/fluid/tests/unittests/test_dist_se_resnext.py
python/paddle/fluid/tests/unittests/test_dist_se_resnext.py
+8
-7
python/paddle/fluid/tests/unittests/test_dist_train.py
python/paddle/fluid/tests/unittests/test_dist_train.py
+2
-1
python/paddle/fluid/tests/unittests/test_layers.py
python/paddle/fluid/tests/unittests/test_layers.py
+152
-0
python/paddle/fluid/tests/unittests/test_program_code.py
python/paddle/fluid/tests/unittests/test_program_code.py
+2
-1
未找到文件。
paddle/fluid/API.spec
浏览文件 @
baae7e4f
...
...
@@ -160,7 +160,16 @@ paddle.fluid.layers.relu ArgSpec(args=['x', 'name'], varargs=None, keywords=None
paddle.fluid.layers.log ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.crop ArgSpec(args=['x', 'shape', 'offsets', 'name'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.layers.rank_loss ArgSpec(args=['label', 'left', 'right', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.elu ArgSpec(args=['x', 'alpha', 'name'], varargs=None, keywords=None, defaults=(1.0, None))
paddle.fluid.layers.relu6 ArgSpec(args=['x', 'threshold', 'name'], varargs=None, keywords=None, defaults=(6.0, None))
paddle.fluid.layers.pow ArgSpec(args=['x', 'factor', 'name'], varargs=None, keywords=None, defaults=(1.0, None))
paddle.fluid.layers.stanh ArgSpec(args=['x', 'scale_a', 'scale_b', 'name'], varargs=None, keywords=None, defaults=(0.6666666666666666, 1.7159, None))
paddle.fluid.layers.hard_sigmoid ArgSpec(args=['x', 'slope', 'offset', 'name'], varargs=None, keywords=None, defaults=(0.2, 0.5, None))
paddle.fluid.layers.swish ArgSpec(args=['x', 'beta', 'name'], varargs=None, keywords=None, defaults=(1.0, None))
paddle.fluid.layers.prelu ArgSpec(args=['x', 'mode', 'param_attr', 'name'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.layers.brelu ArgSpec(args=['x', 't_min', 't_max', 'name'], varargs=None, keywords=None, defaults=(0.0, 24.0, None))
paddle.fluid.layers.leaky_relu ArgSpec(args=['x', 'alpha', 'name'], varargs=None, keywords=None, defaults=(0.02, None))
paddle.fluid.layers.soft_relu ArgSpec(args=['x', 'threshold', 'name'], varargs=None, keywords=None, defaults=(40.0, None))
paddle.fluid.layers.flatten ArgSpec(args=['x', 'axis', 'name'], varargs=None, keywords=None, defaults=(1, None))
paddle.fluid.layers.sequence_mask ArgSpec(args=['x', 'maxlen', 'dtype', 'name'], varargs=None, keywords=None, defaults=(None, 'int64', None))
paddle.fluid.layers.stack ArgSpec(args=['x', 'axis'], varargs=None, keywords=None, defaults=(0,))
...
...
@@ -169,6 +178,14 @@ paddle.fluid.layers.unstack ArgSpec(args=['x', 'axis', 'num'], varargs=None, key
paddle.fluid.layers.sequence_enumerate ArgSpec(args=['input', 'win_size', 'pad_value', 'name'], varargs=None, keywords=None, defaults=(0, None))
paddle.fluid.layers.expand ArgSpec(args=['x', 'expand_times', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.sequence_concat ArgSpec(args=['input', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.scale ArgSpec(args=['x', 'scale', 'bias', 'bias_after_scale', 'act', 'name'], varargs=None, keywords=None, defaults=(1.0, 0.0, True, None, None))
paddle.fluid.layers.elementwise_add ArgSpec(args=['x', 'y', 'axis', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, False, None, None))
paddle.fluid.layers.elementwise_div ArgSpec(args=['x', 'y', 'axis', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, False, None, None))
paddle.fluid.layers.elementwise_sub ArgSpec(args=['x', 'y', 'axis', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, False, None, None))
paddle.fluid.layers.elementwise_mul ArgSpec(args=['x', 'y', 'axis', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, False, None, None))
paddle.fluid.layers.elementwise_max ArgSpec(args=['x', 'y', 'axis', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, False, None, None))
paddle.fluid.layers.elementwise_min ArgSpec(args=['x', 'y', 'axis', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, False, None, None))
paddle.fluid.layers.elementwise_pow ArgSpec(args=['x', 'y', 'axis', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, False, None, None))
paddle.fluid.layers.data ArgSpec(args=['name', 'shape', 'append_batch_size', 'dtype', 'lod_level', 'type', 'stop_gradient'], varargs=None, keywords=None, defaults=(True, 'float32', 0, VarType.LOD_TENSOR, True))
paddle.fluid.layers.open_files ArgSpec(args=['filenames', 'shapes', 'lod_levels', 'dtypes', 'thread_num', 'buffer_size', 'pass_num', 'is_test'], varargs=None, keywords=None, defaults=(None, None, 1, None))
paddle.fluid.layers.read_file ArgSpec(args=['reader'], varargs=None, keywords=None, defaults=None)
...
...
@@ -233,15 +250,7 @@ paddle.fluid.layers.Print ArgSpec(args=['input', 'first_n', 'message', 'summariz
paddle.fluid.layers.is_empty ArgSpec(args=['x', 'cond'], varargs=None, keywords='ignored', defaults=(None,))
paddle.fluid.layers.mean ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.mul ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.scale ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.sigmoid_cross_entropy_with_logits ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.elementwise_add ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.elementwise_div ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.elementwise_sub ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.elementwise_mul ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.elementwise_max ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.elementwise_min ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.elementwise_pow ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.clip ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.clip_by_norm ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.logical_and ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
...
...
@@ -256,32 +265,23 @@ paddle.fluid.layers.sum ArgSpec(args=[], varargs='args', keywords='kwargs', defa
paddle.fluid.layers.slice ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.shape ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.maxout ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.sigmoid ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.logsigmoid ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.exp ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.tanh ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.tanh_shrink ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.softshrink ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.sqrt ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.abs ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.ceil ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.floor ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.cos ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.sin ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.round ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.reciprocal ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.square ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.softplus ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.softsign ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.brelu ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.leaky_relu ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.soft_relu ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.elu ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.relu6 ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.pow ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.stanh ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.hard_sigmoid ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.swish ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.sigmoid ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.logsigmoid ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.exp ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.tanh ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.tanh_shrink ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.sqrt ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.abs ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.ceil ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.floor ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.cos ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.sin ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.round ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.reciprocal ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.square ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.softplus ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.softsign ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.uniform_random ArgSpec(args=['shape', 'dtype', 'min', 'max', 'seed'], varargs=None, keywords=None, defaults=(None, None, None, None))
paddle.fluid.layers.hard_shrink ArgSpec(args=['x', 'threshold'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.cumsum ArgSpec(args=['x', 'axis', 'exclusive', 'reverse'], varargs=None, keywords=None, defaults=(None, None, None))
...
...
paddle/fluid/framework/details/reference_count_op_handle.h
浏览文件 @
baae7e4f
...
...
@@ -22,6 +22,7 @@
#include "paddle/fluid/framework/details/op_handle_base.h"
#include "paddle/fluid/framework/garbage_collector.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"
namespace
paddle
{
...
...
@@ -46,17 +47,15 @@ class ReferenceCountOpHandle : public OpHandleBase {
const
std
::
vector
<
std
::
string
>
&
var_names
,
GarbageCollector
<
Tensor
>
*
gc
,
AtomicReferenceCountMap
*
ref_cnts
)
:
OpHandleBase
(
node
),
scope_
(
scope
),
var_names_
(
var_names
),
gc_
(
gc
),
ref_cnts_
(
ref_cnts
)
{
:
OpHandleBase
(
node
),
scope_
(
scope
),
gc_
(
gc
),
ref_cnts_
(
ref_cnts
)
{
dev_ctx_
=
static_cast
<
platform
::
CUDADeviceContext
*>
(
platform
::
DeviceContextPool
::
Instance
().
Get
(
place
));
if
(
IsStreamGarabageCollector
())
{
PADDLE_ENFORCE
(
cudaSetDevice
(
place
.
device
));
PADDLE_ENFORCE
(
cudaEventCreateWithFlags
(
&
event_
,
cudaEventDisableTiming
));
}
for
(
auto
&
name
:
var_names
)
AddVar
(
name
);
}
~
ReferenceCountOpHandle
()
{
...
...
@@ -69,19 +68,35 @@ class ReferenceCountOpHandle : public OpHandleBase {
std
::
string
Name
()
const
override
{
return
"reference_count"
;
}
void
AddVar
(
const
std
::
string
&
name
)
{
auto
it
=
var_names_
.
find
(
name
);
if
(
it
!=
var_names_
.
end
())
++
(
it
->
second
);
else
var_names_
[
name
]
=
1
;
}
protected:
void
RunImpl
()
override
{
auto
*
exec_scope
=
scope_
->
FindVar
(
kLocalExecScopeName
)
->
Get
<
Scope
*>
();
std
::
vector
<
LoDTensor
*>
tensors
;
for
(
auto
&
name
:
var_names_
)
{
std
::
vector
<
Tensor
*>
tensors
;
for
(
auto
&
pair
:
var_names_
)
{
auto
&
name
=
pair
.
first
;
auto
it
=
ref_cnts_
->
find
(
name
);
if
(
it
==
ref_cnts_
->
end
())
continue
;
auto
*
var
=
exec_scope
->
FindVar
(
name
);
if
(
var
==
nullptr
||
!
var
->
IsType
<
LoDTensor
>
())
continue
;
if
(
it
->
second
.
fetch_sub
(
1
)
<=
1
)
{
tensors
.
emplace_back
(
var
->
GetMutable
<
LoDTensor
>
());
if
(
var
==
nullptr
)
continue
;
if
(
var
->
IsType
<
LoDTensor
>
())
{
if
(
it
->
second
.
fetch_sub
(
pair
.
second
)
<=
pair
.
second
)
{
tensors
.
emplace_back
(
var
->
GetMutable
<
LoDTensor
>
());
}
}
else
if
(
var
->
IsType
<
SelectedRows
>
())
{
if
(
it
->
second
.
fetch_sub
(
pair
.
second
)
<=
pair
.
second
)
{
tensors
.
emplace_back
(
var
->
GetMutable
<
SelectedRows
>
()
->
mutable_value
());
}
}
}
...
...
@@ -91,7 +106,7 @@ class ReferenceCountOpHandle : public OpHandleBase {
}
private:
void
ClearTensors
(
const
std
::
vector
<
LoD
Tensor
*>
&
tensors
)
{
void
ClearTensors
(
const
std
::
vector
<
Tensor
*>
&
tensors
)
{
auto
*
gc
=
dynamic_cast
<
StreamGarbageCollector
<
Tensor
>
*>
(
gc_
);
if
(
gc
!=
nullptr
)
{
auto
compute_stream
=
dev_ctx_
->
stream
();
...
...
@@ -112,7 +127,7 @@ class ReferenceCountOpHandle : public OpHandleBase {
const
Scope
*
scope_
;
platform
::
CUDADeviceContext
*
dev_ctx_
;
std
::
vector
<
std
::
string
>
var_names_
;
std
::
unordered_map
<
std
::
string
,
int
>
var_names_
;
GarbageCollector
<
Tensor
>
*
gc_
;
// not own
AtomicReferenceCountMap
*
ref_cnts_
;
// not own
cudaEvent_t
event_
;
...
...
paddle/fluid/framework/details/reference_count_pass.cc
浏览文件 @
baae7e4f
...
...
@@ -12,6 +12,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include <queue>
#include <string>
#include <vector>
...
...
@@ -23,6 +24,25 @@ namespace paddle {
namespace
framework
{
namespace
details
{
static
ComputationOpHandle
*
FindNextComputationOpHandle
(
VarHandle
*
var_in
)
{
std
::
queue
<
VarHandleBase
*>
queue
;
queue
.
push
(
var_in
);
do
{
auto
*
var
=
queue
.
front
();
queue
.
pop
();
for
(
auto
*
op
:
var
->
PendingOps
())
{
auto
*
compute_op
=
dynamic_cast
<
ComputationOpHandle
*>
(
op
);
if
(
compute_op
!=
nullptr
&&
compute_op
->
GetPlace
()
==
var_in
->
place_
)
{
return
compute_op
;
}
for
(
auto
*
out_var
:
op
->
Outputs
())
{
queue
.
push
(
out_var
);
}
}
}
while
(
!
queue
.
empty
());
return
nullptr
;
}
std
::
unique_ptr
<
ir
::
Graph
>
ReferenceCountPass
::
ApplyImpl
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
{
auto
&
ref_cnts
=
Get
<
DeviceReferenceCountMap
>
(
kGlobalReferenceCount
);
...
...
@@ -34,6 +54,9 @@ std::unique_ptr<ir::Graph> ReferenceCountPass::ApplyImpl(
// Step 2: Find all variables in non-computation ops which refers to variables
// in computation ops
std
::
unordered_set
<
std
::
string
>
names
;
std
::
unordered_map
<
OpHandleBase
*
,
std
::
unique_ptr
<
ReferenceCountOpHandle
>>
compute_ref_cnt_map
;
auto
get_ref_cnts_from_compute_op
=
[
&
](
const
std
::
unique_ptr
<
OpHandleBase
>
&
op
,
const
std
::
vector
<
VarHandleBase
*>
&
vars
)
{
...
...
@@ -54,15 +77,18 @@ std::unique_ptr<ir::Graph> ReferenceCountPass::ApplyImpl(
VarDesc
*
var_desc
=
var_handle
->
Node
()
->
Var
();
auto
var_name
=
var_handle
->
Node
()
->
Name
();
// This is w
ie
rd but there is really some variables without var_desc
// This is w
ei
rd but there is really some variables without var_desc
// in computation_op
if
(
var_desc
==
nullptr
)
{
if
(
compute_op
->
Node
()
->
Op
()
->
Block
()
->
FindVar
(
var_name
)
==
nullptr
)
continue
;
}
else
{
if
(
var_desc
->
Persistable
()
||
var_desc
->
Proto
()
->
type
().
type
()
!=
proto
::
VarType
::
LOD_TENSOR
)
if
(
var_desc
->
Persistable
())
continue
;
auto
var_type
=
var_desc
->
Proto
()
->
type
().
type
();
if
(
var_type
!=
proto
::
VarType
::
LOD_TENSOR
&&
var_type
!=
proto
::
VarType
::
SELECTED_ROWS
)
{
continue
;
}
}
// compute op only runs in one device
...
...
@@ -93,12 +119,33 @@ std::unique_ptr<ir::Graph> ReferenceCountPass::ApplyImpl(
if
(
ref_cnts
.
count
(
place
.
device
)
&&
ref_cnts
[
place
.
device
]
->
count
(
var_name
))
{
++
(
*
ref_cnts
[
place
.
device
])[
var_name
];
auto
*
next_compute_op
=
FindNextComputationOpHandle
(
var_handle
);
if
(
next_compute_op
!=
nullptr
)
{
if
(
compute_ref_cnt_map
.
count
(
next_compute_op
))
{
compute_ref_cnt_map
[
next_compute_op
]
->
AddVar
(
var_name
);
VLOG
(
5
)
<<
"Add reference count of "
<<
var_name
<<
" to Operator "
<<
next_compute_op
->
Name
();
}
else
{
// Create new reference_count_op_handle
ir
::
Node
*
ref_cnt_node
=
graph
->
CreateEmptyNode
(
"reference_count"
,
ir
::
Node
::
Type
::
kOperation
);
auto
*
ref_cnt_handle
=
new
ReferenceCountOpHandle
(
ref_cnt_node
,
next_compute_op
->
GetScope
(),
place
,
{
var_name
},
gcs
[
place
.
device
].
get
(),
cur_ref_cnts
[
place
.
device
].
get
());
if
(
next_compute_op
->
Outputs
().
empty
())
{
auto
*
dep_var
=
new
DummyVarHandle
(
graph
->
CreateControlDepVar
());
next_compute_op
->
AddOutput
(
dep_var
);
graph
->
Get
<
GraphDepVars
>
(
kGraphDepVars
).
emplace
(
dep_var
);
}
ref_cnt_handle
->
AddInput
(
next_compute_op
->
Outputs
().
front
());
compute_ref_cnt_map
[
next_compute_op
].
reset
(
ref_cnt_handle
);
}
}
}
}
};
std
::
unordered_map
<
OpHandleBase
*
,
ReferenceCountOpHandle
*>
compute_ref_cnt_map
;
auto
&
all_ops
=
graph
->
Get
<
GraphOps
>
(
kGraphOps
);
for
(
auto
&
op
:
all_ops
)
{
auto
in_var_names
=
get_ref_cnts_from_compute_op
(
op
,
op
->
Inputs
());
...
...
@@ -113,11 +160,13 @@ std::unique_ptr<ir::Graph> ReferenceCountPass::ApplyImpl(
auto
*
ref_cnt_handle
=
new
ReferenceCountOpHandle
(
ref_cnt_node
,
compute_op
->
GetScope
(),
place
,
in_var_names
,
gcs
[
place
.
device
].
get
(),
cur_ref_cnts
[
place
.
device
].
get
());
auto
*
dep_var
=
new
DummyVarHandle
(
graph
->
CreateControlDepVar
());
compute_op
->
AddOutput
(
dep_var
);
ref_cnt_handle
->
AddInput
(
dep_var
);
graph
->
Get
<
GraphDepVars
>
(
kGraphDepVars
).
emplace
(
dep_var
);
compute_ref_cnt_map
[
compute_op
]
=
ref_cnt_handle
;
if
(
compute_op
->
Outputs
().
empty
())
{
auto
*
dep_var
=
new
DummyVarHandle
(
graph
->
CreateControlDepVar
());
compute_op
->
AddOutput
(
dep_var
);
graph
->
Get
<
GraphDepVars
>
(
kGraphDepVars
).
emplace
(
dep_var
);
}
ref_cnt_handle
->
AddInput
(
compute_op
->
Outputs
().
front
());
compute_ref_cnt_map
[
compute_op
].
reset
(
ref_cnt_handle
);
}
for
(
auto
&
op
:
all_ops
)
{
...
...
@@ -131,7 +180,11 @@ std::unique_ptr<ir::Graph> ReferenceCountPass::ApplyImpl(
new_all_ops
.
emplace_back
(
std
::
move
(
op
));
auto
it
=
compute_ref_cnt_map
.
find
(
new_all_ops
.
back
().
get
());
if
(
it
!=
compute_ref_cnt_map
.
end
())
{
new_all_ops
.
emplace_back
(
it
->
second
);
// Add LeafNode to ReferenceCountOpHandle
auto
*
dummy_leaf
=
new
DummyVarHandle
(
graph
->
CreateControlDepVar
());
graph
->
Get
<
GraphDepVars
>
(
kGraphDepVars
).
emplace
(
dummy_leaf
);
it
->
second
->
AddOutput
(
dummy_leaf
);
new_all_ops
.
emplace_back
(
std
::
move
(
it
->
second
));
}
}
...
...
paddle/fluid/framework/op_desc.cc
浏览文件 @
baae7e4f
...
...
@@ -54,6 +54,10 @@ class CompileTimeInferShapeContext : public InferShapeContext {
size_t
j
=
0
)
const
override
{
PADDLE_ENFORCE_LT
(
i
,
Inputs
(
in
).
size
());
PADDLE_ENFORCE_LT
(
j
,
Outputs
(
out
).
size
());
PADDLE_ENFORCE
(
Inputs
(
in
)[
i
]
!=
framework
::
kEmptyVarName
,
"The %s[%d] is @EMPTY@"
,
in
,
i
);
PADDLE_ENFORCE
(
Outputs
(
out
)[
j
]
!=
framework
::
kEmptyVarName
,
"The %s[%d] is @EMPTY@"
,
out
,
j
);
auto
*
in_var
=
block_
.
FindVarRecursive
(
Inputs
(
in
)[
i
]);
auto
*
out_var
=
block_
.
FindVarRecursive
(
Outputs
(
out
)[
j
]);
if
(
in_var
->
GetType
()
!=
proto
::
VarType
::
LOD_TENSOR
)
{
...
...
@@ -63,6 +67,7 @@ class CompileTimeInferShapeContext : public InferShapeContext {
PADDLE_ENFORCE_EQ
(
in_var
->
GetType
(),
proto
::
VarType
::
LOD_TENSOR
,
"The %d-th output of Output(%s) must be LoDTensor."
,
j
,
out
);
out_var
->
SetLoDLevel
(
in_var
->
GetLoDLevel
());
}
...
...
paddle/fluid/framework/shape_inference.cc
浏览文件 @
baae7e4f
...
...
@@ -46,6 +46,16 @@ std::vector<DDim> InferShapeContext::GetReaderDims(
return
this
->
GetRepeatedDims
(
arg_names
[
0
]);
}
void
InferShapeContext
::
ShareLoDs
(
const
std
::
string
&
in
,
const
std
::
string
&
out
)
const
{
PADDLE_ENFORCE_EQ
(
Inputs
(
in
).
size
(),
Outputs
(
out
).
size
(),
"The number of arguments in %s and %s is not equal."
,
in
,
out
);
for
(
size_t
i
=
0
;
i
<
in
.
size
();
++
i
)
{
ShareLoD
(
in
,
out
,
i
,
i
);
}
}
DDim
InferShapeContext
::
GetInputsElementDim
(
const
std
::
string
&
name
,
int
idx
)
const
{
const
std
::
vector
<
std
::
string
>
&
names
=
Inputs
(
name
);
...
...
paddle/fluid/framework/shape_inference.h
浏览文件 @
baae7e4f
...
...
@@ -56,6 +56,8 @@ class InferShapeContext {
virtual
const
std
::
vector
<
std
::
string
>
&
Outputs
(
const
std
::
string
&
name
)
const
=
0
;
void
ShareLoDs
(
const
std
::
string
&
in
,
const
std
::
string
&
out
)
const
;
virtual
void
ShareLoD
(
const
std
::
string
&
in
,
const
std
::
string
&
out
,
size_t
i
=
0
,
size_t
j
=
0
)
const
=
0
;
...
...
paddle/fluid/inference/api/api_impl.h
浏览文件 @
baae7e4f
...
...
@@ -20,10 +20,9 @@
#include <string>
#include <vector>
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#include "paddle/fluid/framework/ddim.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#include "paddle/fluid/inference/io.h"
#include "paddle/fluid/platform/init.h"
#include "paddle/fluid/platform/profiler.h"
...
...
paddle/fluid/inference/tests/api/tester_helper.h
浏览文件 @
baae7e4f
...
...
@@ -74,8 +74,8 @@ void CompareResult(const std::vector<PaddleTensor> &outputs,
}
}
std
::
unique_ptr
<
PaddlePredictor
>
GetPrediction
(
AnalysisConfig
config
,
bool
use_analysis
=
true
)
{
std
::
unique_ptr
<
PaddlePredictor
>
CreateTestPredictor
(
const
AnalysisConfig
&
config
,
bool
use_analysis
=
true
)
{
if
(
use_analysis
)
{
return
CreatePaddlePredictor
<
AnalysisConfig
,
PaddleEngineKind
::
kAnalysis
>
(
config
);
...
...
@@ -92,7 +92,7 @@ size_t GetSize(const PaddleTensor &out) {
std
::
unordered_map
<
std
::
string
,
int
>
GetFuseStatis
(
AnalysisConfig
config
,
int
*
num_ops
)
{
auto
predictor
=
GetPrediction
(
config
);
auto
predictor
=
CreateTestPredictor
(
config
);
AnalysisPredictor
*
analysis_predictor
=
dynamic_cast
<
AnalysisPredictor
*>
(
predictor
.
get
());
auto
&
fuse_statis
=
analysis_predictor
->
analysis_argument
()
...
...
@@ -113,11 +113,12 @@ std::unordered_map<std::string, int> GetFuseStatis(AnalysisConfig config,
}
void
TestOneThreadPrediction
(
AnalysisConfig
config
,
const
std
::
vector
<
std
::
vector
<
PaddleTensor
>>
inputs
,
const
AnalysisConfig
&
config
,
const
std
::
vector
<
std
::
vector
<
PaddleTensor
>>
&
inputs
,
std
::
vector
<
PaddleTensor
>
*
outputs
,
bool
use_analysis
=
true
)
{
int
batch_size
=
FLAGS_batch_size
;
int
num_times
=
FLAGS_repeat
;
auto
predictor
=
GetPrediction
(
config
,
use_analysis
);
auto
predictor
=
CreateTestPredictor
(
config
,
use_analysis
);
Timer
timer
;
timer
.
tic
();
for
(
int
i
=
0
;
i
<
num_times
;
i
++
)
{
...
...
@@ -130,7 +131,8 @@ void TestOneThreadPrediction(
}
void
TestMultiThreadPrediction
(
AnalysisConfig
config
,
const
std
::
vector
<
std
::
vector
<
PaddleTensor
>>
inputs
,
const
AnalysisConfig
&
config
,
const
std
::
vector
<
std
::
vector
<
PaddleTensor
>>
&
inputs
,
std
::
vector
<
PaddleTensor
>
*
outputs
,
int
num_threads
,
bool
use_analysis
=
true
)
{
int
batch_size
=
FLAGS_batch_size
;
...
...
@@ -140,7 +142,7 @@ void TestMultiThreadPrediction(
// TODO(yanchunwei): Bug here, the analyzer phase can't be parallelled
// because AttentionLSTM's hard code nodeid will be damanged.
for
(
int
tid
=
0
;
tid
<
num_threads
;
++
tid
)
{
predictors
.
emplace_back
(
GetPrediction
(
config
,
use_analysis
));
predictors
.
emplace_back
(
CreateTestPredictor
(
config
,
use_analysis
));
}
for
(
int
tid
=
0
;
tid
<
num_threads
;
++
tid
)
{
threads
.
emplace_back
([
&
,
tid
]()
{
...
...
@@ -164,8 +166,8 @@ void TestMultiThreadPrediction(
}
}
void
TestPrediction
(
AnalysisConfig
config
,
const
std
::
vector
<
std
::
vector
<
PaddleTensor
>>
inputs
,
void
TestPrediction
(
const
AnalysisConfig
&
config
,
const
std
::
vector
<
std
::
vector
<
PaddleTensor
>>
&
inputs
,
std
::
vector
<
PaddleTensor
>
*
outputs
,
int
num_threads
,
bool
use_analysis
=
FLAGS_use_analysis
)
{
LOG
(
INFO
)
<<
"use_analysis: "
<<
use_analysis
;
...
...
@@ -178,8 +180,8 @@ void TestPrediction(AnalysisConfig config,
}
void
CompareNativeAndAnalysis
(
AnalysisConfig
config
,
const
std
::
vector
<
std
::
vector
<
PaddleTensor
>>
inputs
)
{
const
AnalysisConfig
&
config
,
const
std
::
vector
<
std
::
vector
<
PaddleTensor
>>
&
inputs
)
{
std
::
vector
<
PaddleTensor
>
native_outputs
,
analysis_outputs
;
TestOneThreadPrediction
(
config
,
inputs
,
&
native_outputs
,
false
);
TestOneThreadPrediction
(
config
,
inputs
,
&
analysis_outputs
,
true
);
...
...
paddle/fluid/operators/adam_op.h
浏览文件 @
baae7e4f
...
...
@@ -15,6 +15,7 @@ limitations under the License. */
#pragma once
#include <math.h> // for sqrt in CPU and CUDA
#include <Eigen/Dense>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/detail/safe_ref.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h"
...
...
@@ -306,26 +307,43 @@ class AdamOpKernel : public framework::OpKernel<T> {
VLOG
(
3
)
<<
"grad row size is 0!!"
;
return
;
}
// merge duplicated rows if any.
// The rows of grad_merge have been sorted inside MergeAdd functor
scatter
::
MergeAdd
<
DeviceContext
,
T
>
merge_func
;
auto
&
grad_merge
=
*
(
ctx
.
scope
()
.
NewScope
()
.
Var
(
"sparse_adam_grad_merge"
)
->
GetMutable
<
framework
::
SelectedRows
>
());
merge_func
(
ctx
.
template
device_context
<
DeviceContext
>(),
grad
,
&
grad_merge
);
std
::
vector
<
int64_t
>
cpu_rows
(
grad
.
rows
().
begin
(),
grad
.
rows
().
end
());
bool
is_strict_sorted
=
true
;
for
(
size_t
i
=
1
;
i
<
cpu_rows
.
size
();
++
i
)
{
if
(
cpu_rows
[
i
-
1
]
>=
cpu_rows
[
i
])
{
is_strict_sorted
=
false
;
break
;
}
}
const
framework
::
SelectedRows
*
grad_merge_ptr
;
if
(
is_strict_sorted
)
{
grad_merge_ptr
=
&
grad
;
}
else
{
// merge duplicated rows if any.
// The rows of grad_merge have been sorted inside MergeAdd functor
scatter
::
MergeAdd
<
DeviceContext
,
T
>
merge_func
;
auto
*
grad_merge_var
=
const_cast
<
framework
::
Scope
&>
(
ctx
.
scope
())
.
Var
()
->
GetMutable
<
framework
::
SelectedRows
>
();
merge_func
(
ctx
.
template
device_context
<
DeviceContext
>(),
grad
,
grad_merge_var
);
grad_merge_ptr
=
grad_merge_var
;
}
auto
&
grad_merge
=
*
grad_merge_ptr
;
auto
&
grad_tensor
=
grad_merge
.
value
();
const
T
*
grad_data
=
grad_tensor
.
template
data
<
T
>();
int64_t
*
rows
=
nullptr
;
// When compiled without CUDA, the CUDA
Mutable
Data() interface should not be
const
int64_t
*
rows
=
nullptr
;
// When compiled without CUDA, the CUDAData() interface should not be
// provided.
#if defined(PADDLE_WITH_CUDA)
if
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()))
{
rows
=
grad_merge
.
mutable_rows
()
->
CUDAMutable
Data
(
ctx
.
GetPlace
());
rows
=
grad_merge
.
rows
().
CUDA
Data
(
ctx
.
GetPlace
());
}
else
{
#endif
rows
=
grad_merge
.
mutable_rows
()
->
data
();
rows
=
grad_merge
.
rows
().
data
();
#if defined(PADDLE_WITH_CUDA)
}
...
...
paddle/fluid/operators/concat_op.cc
浏览文件 @
baae7e4f
...
...
@@ -94,8 +94,20 @@ class ConcatOpGrad : public framework::OperatorWithKernel {
:
OperatorWithKernel
(
type
,
inputs
,
outputs
,
attrs
)
{}
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
ctx
->
SetOutputsDim
(
framework
::
GradVarName
(
"X"
),
ctx
->
GetInputsDim
(
"X"
));
ctx
->
ShareLoD
(
"X"
,
framework
::
GradVarName
(
"X"
));
auto
in_x
=
"X"
;
auto
out_x_g_n
=
framework
::
GradVarName
(
in_x
);
ctx
->
SetOutputsDim
(
out_x_g_n
,
ctx
->
GetInputsDim
(
in_x
));
auto
&
in_names
=
ctx
->
Inputs
(
in_x
);
auto
&
out_names
=
ctx
->
Outputs
(
out_x_g_n
);
PADDLE_ENFORCE_EQ
(
in_names
.
size
(),
out_names
.
size
(),
"The number of arguments in %s[%d] and %s[%d] is not equal."
,
in_x
,
in_names
.
size
(),
out_x_g_n
,
out_names
.
size
());
for
(
size_t
i
=
0
;
i
<
in_names
.
size
();
++
i
)
{
if
(
out_names
[
i
]
!=
framework
::
kEmptyVarName
)
{
ctx
->
ShareLoD
(
in_x
,
out_x_g_n
,
i
,
i
);
}
}
}
};
...
...
paddle/fluid/operators/scale_op.cc
浏览文件 @
baae7e4f
...
...
@@ -46,9 +46,15 @@ class ScaleOpMaker : public framework::OpProtoAndCheckerMaker {
AddComment
(
R"DOC(
**Scale operator**
Multiply the input tensor with a float scalar to scale
the input tensor.
Apply scaling and bias addition to
the input tensor.
$$Out = scale*X$$
if bias_after_scale=True:
$$Out = scale*X + bias$$
else:
$$Out = scale*(X + bias)$$
)DOC"
);
AddAttr
<
float
>
(
"scale"
,
"The scaling factor of the scale operator."
)
.
SetDefault
(
1.0
);
...
...
python/paddle/fluid/clip.py
浏览文件 @
baae7e4f
...
...
@@ -280,7 +280,7 @@ class GradientClipByGlobalNorm(BaseGradientClipAttr):
group_scale_name
=
self
.
group_name
+
"_scale"
if
group_scale_name
not
in
self
.
context
:
group_norm_var
=
layers
.
sums
(
input
=
self
.
context
[
self
.
group_name
])
layers
.
sqrt
(
x
=
group_norm_var
,
out
=
group_norm_var
)
group_norm_var
=
layers
.
sqrt
(
x
=
group_norm_var
)
clip_var
=
self
.
context
[
self
.
group_name
+
"_clip"
]
group_scale_var
=
layers
.
elementwise_div
(
x
=
clip_var
,
...
...
python/paddle/fluid/framework.py
浏览文件 @
baae7e4f
...
...
@@ -489,7 +489,8 @@ class OpProtoHolder(object):
def
generated_op_attr_names
():
return
{
core
.
op_proto_and_checker_maker
.
kOpRoleAttrName
(),
core
.
op_proto_and_checker_maker
.
kOpRoleVarAttrName
()
core
.
op_proto_and_checker_maker
.
kOpRoleVarAttrName
(),
core
.
op_proto_and_checker_maker
.
kOpNameScopeAttrName
()
}
...
...
python/paddle/fluid/layers/layer_function_generator.py
浏览文件 @
baae7e4f
...
...
@@ -23,7 +23,10 @@ from ..proto import framework_pb2
from
..framework
import
OpProtoHolder
,
Variable
from
..layer_helper
import
LayerHelper
__all__
=
[
'deprecated'
,
'generate_layer_fn'
,
'autodoc'
,
'templatedoc'
]
__all__
=
[
'deprecated'
,
'generate_layer_fn'
,
'generate_layer_fn_noattr'
,
'autodoc'
,
'templatedoc'
]
def
_convert_
(
name
):
...
...
@@ -58,7 +61,7 @@ def escape_math(text):
_two_dollar_pattern_
.
sub
(
r
"!!\1!!"
,
text
)))
def
_generate_doc_string_
(
op_proto
):
def
_generate_doc_string_
(
op_proto
,
additional_args_lines
=
None
):
"""
Generate docstring by OpProto
...
...
@@ -98,6 +101,13 @@ def _generate_doc_string_(op_proto):
buf
.
write
(
escape_math
(
each_attr
.
comment
))
buf
.
write
(
'
\n
'
)
if
additional_args_lines
is
not
None
:
for
line
in
additional_args_lines
:
line
=
line
.
strip
()
buf
.
write
(
' '
)
buf
.
write
(
line
)
buf
.
write
(
'
\n
'
)
if
len
(
op_proto
.
outputs
)
!=
0
:
buf
.
write
(
'
\n
Returns:
\n
'
)
buf
.
write
(
' '
)
...
...
@@ -205,6 +215,29 @@ def generate_layer_fn(op_type):
return
func
def
generate_layer_fn_noattr
(
op_type
):
"""Register the Python layer for an Operator without Attribute.
Args:
op_type: The name of the operator to be created.
This function takes in the operator type (sigmoid, exp , tanh etc) and
creates the operator functionality.
"""
op_proto
=
OpProtoHolder
.
instance
().
get_op_proto
(
op_type
)
def
func
(
x
,
name
=
None
):
helper
=
LayerHelper
(
op_type
,
**
locals
())
output
=
helper
.
create_tmp_variable
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
op_type
,
inputs
=
{
"X"
:
x
},
outputs
=
{
"Out"
:
output
})
return
output
func
.
__name__
=
op_type
func
.
__doc__
=
_generate_doc_string_
(
op_proto
)
return
func
def
deprecated
(
func_or_class
):
"""
Deprecated warning decorator. It will result a warning message.
...
...
python/paddle/fluid/layers/learning_rate_scheduler.py
浏览文件 @
baae7e4f
...
...
@@ -68,7 +68,7 @@ def noam_decay(d_model, warmup_steps):
a
=
global_step
**-
0.5
b
=
(
warmup_steps
**-
1.5
)
*
global_step
lr_value
=
(
d_model
**-
0.5
)
*
ops
.
elementwise_min
(
a
,
b
)
lr_value
=
(
d_model
**-
0.5
)
*
nn
.
elementwise_min
(
a
,
b
)
return
lr_value
...
...
@@ -241,7 +241,7 @@ def polynomial_decay(learning_rate,
else
:
decay_steps_var
=
tensor
.
fill_constant
(
shape
=
[
1
],
dtype
=
'float32'
,
value
=
float
(
decay_steps
))
global_step
=
ops
.
elementwise_min
(
x
=
global_step
,
y
=
decay_steps_var
)
global_step
=
nn
.
elementwise_min
(
x
=
global_step
,
y
=
decay_steps_var
)
decayed_lr
=
(
learning_rate
-
end_learning_rate
)
*
\
((
1
-
global_step
/
decay_steps
)
**
power
)
+
end_learning_rate
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
baae7e4f
...
...
@@ -20,9 +20,9 @@ from __future__ import print_function
import
numpy
as
np
from
..layer_helper
import
LayerHelper
from
..initializer
import
Normal
,
Constant
from
..framework
import
Variable
from
..framework
import
Variable
,
OpProtoHolder
from
..param_attr
import
ParamAttr
from
.layer_function_generator
import
autodoc
,
templatedoc
from
.layer_function_generator
import
autodoc
,
templatedoc
,
_generate_doc_string_
from
.tensor
import
concat
from
.
import
utils
from
..
import
unique_name
...
...
@@ -107,7 +107,16 @@ __all__ = [
'log'
,
'crop'
,
'rank_loss'
,
'elu'
,
'relu6'
,
'pow'
,
'stanh'
,
'hard_sigmoid'
,
'swish'
,
'prelu'
,
'brelu'
,
'leaky_relu'
,
'soft_relu'
,
'flatten'
,
'sequence_mask'
,
'stack'
,
...
...
@@ -116,6 +125,14 @@ __all__ = [
'sequence_enumerate'
,
'expand'
,
'sequence_concat'
,
'scale'
,
'elementwise_add'
,
'elementwise_div'
,
'elementwise_sub'
,
'elementwise_mul'
,
'elementwise_max'
,
'elementwise_min'
,
'elementwise_pow'
,
]
...
...
@@ -3605,7 +3622,7 @@ def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
attrs
=
{
'transpose_X'
:
transpose_x
,
'transpose_Y'
:
transpose_y
,
'alpha'
:
alpha
,
'alpha'
:
float
(
alpha
)
,
})
return
out
...
...
@@ -5895,6 +5912,148 @@ def pad2d(input,
return
out
@
templatedoc
()
def
elu
(
x
,
alpha
=
1.0
,
name
=
None
):
"""
${comment}
Args:
x(${x_type}): ${x_comment}
alpha(${alpha_type}|1.0): ${alpha_comment}
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
output(${out_type}): ${out_comment}
"""
helper
=
LayerHelper
(
'elu'
,
**
locals
())
out
=
helper
.
create_tmp_variable
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
'elu'
,
inputs
=
{
'X'
:
x
},
outputs
=
{
'Out'
:
out
},
attrs
=
{
'alpha'
:
alpha
})
return
out
@
templatedoc
()
def
relu6
(
x
,
threshold
=
6.0
,
name
=
None
):
"""
${comment}
Args:
x(${x_type}): ${x_comment}
threshold(${threshold_type}|6.0): ${threshold_comment}
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
output(${out_type}): ${out_comment}
"""
helper
=
LayerHelper
(
'relu6'
,
**
locals
())
out
=
helper
.
create_tmp_variable
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
'relu6'
,
inputs
=
{
'X'
:
x
},
outputs
=
{
'Out'
:
out
},
attrs
=
{
'threshold'
:
threshold
})
return
out
@
templatedoc
()
def
pow
(
x
,
factor
=
1.0
,
name
=
None
):
"""
${comment}
Args:
x(${x_type}): ${x_comment}
factor(${factor_type}|1.0): ${factor_comment}
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
output(${out_type}): ${out_comment}
"""
helper
=
LayerHelper
(
'pow'
,
**
locals
())
out
=
helper
.
create_tmp_variable
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
'pow'
,
inputs
=
{
'X'
:
x
},
outputs
=
{
'Out'
:
out
},
attrs
=
{
'factor'
:
factor
})
return
out
@
templatedoc
()
def
stanh
(
x
,
scale_a
=
2.0
/
3.0
,
scale_b
=
1.7159
,
name
=
None
):
"""
${comment}
Args:
x(${x_type}): ${x_comment}
scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
output(${out_type}): ${out_comment}
"""
helper
=
LayerHelper
(
'stanh'
,
**
locals
())
out
=
helper
.
create_tmp_variable
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
'stanh'
,
inputs
=
{
'X'
:
x
},
outputs
=
{
'Out'
:
out
},
attrs
=
{
'scale_a'
:
scale_a
,
'scale_b'
:
scale_b
})
return
out
@
templatedoc
()
def
hard_sigmoid
(
x
,
slope
=
0.2
,
offset
=
0.5
,
name
=
None
):
"""
${comment}
Args:
x(${x_type}): ${x_comment}
slope(${slope_type}|0.2): ${slope_comment}
offset(${offset_type}|0.5): ${offset_comment}
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
output(${out_type}): ${out_comment}
"""
helper
=
LayerHelper
(
'hard_sigmoid'
,
**
locals
())
out
=
helper
.
create_tmp_variable
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
'hard_sigmoid'
,
inputs
=
{
'X'
:
x
},
outputs
=
{
'Out'
:
out
},
attrs
=
{
'slope'
:
slope
,
'offset'
:
offset
})
return
out
@
templatedoc
()
def
swish
(
x
,
beta
=
1.0
,
name
=
None
):
"""
${comment}
Args:
x(${x_type}): ${x_comment}
beta(${beta_type}|1.0): ${beta_comment}
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
output(${out_type}): ${out_comment}
"""
helper
=
LayerHelper
(
'swish'
,
**
locals
())
out
=
helper
.
create_tmp_variable
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
'swish'
,
inputs
=
{
'X'
:
x
},
outputs
=
{
'Out'
:
out
},
attrs
=
{
'slope'
:
beta
})
return
out
def
prelu
(
x
,
mode
,
param_attr
=
None
,
name
=
None
):
"""
Equation:
...
...
@@ -5948,6 +6107,74 @@ def prelu(x, mode, param_attr=None, name=None):
return
out
@
templatedoc
()
def
brelu
(
x
,
t_min
=
0.0
,
t_max
=
24.0
,
name
=
None
):
"""
${comment}
Args:
x(${x_type}): ${x_comment}
t_min(${t_min_type}|0.0): ${t_min_comment}
t_max(${t_max_type}|24.0): ${t_max_comment}
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
output(${out_type}): ${out_comment}
"""
helper
=
LayerHelper
(
'brelu'
,
**
locals
())
out
=
helper
.
create_tmp_variable
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
'brelu'
,
inputs
=
{
'X'
:
x
},
outputs
=
{
'Out'
:
out
},
attrs
=
{
't_min'
:
t_min
,
't_max'
:
t_max
})
return
out
@
templatedoc
()
def
leaky_relu
(
x
,
alpha
=
0.02
,
name
=
None
):
"""
${comment}
Args:
x(${x_type}): ${x_comment}
alpha(${alpha_type}|0.02): ${alpha_comment}
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
output(${out_type}): ${out_comment}
"""
helper
=
LayerHelper
(
'leaky_relu'
,
**
locals
())
out
=
helper
.
create_tmp_variable
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
'leaky_relu'
,
inputs
=
{
'X'
:
x
},
outputs
=
{
'Out'
:
out
},
attrs
=
{
'alpha'
:
alpha
})
return
out
@
templatedoc
()
def
soft_relu
(
x
,
threshold
=
40.0
,
name
=
None
):
"""
${comment}
Args:
x(${x_type}): ${x_comment}
threshold(${threshold_type}|40.0): ${threshold_comment}
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
output(${out_type}): ${out_comment}
"""
helper
=
LayerHelper
(
'soft_relu'
,
**
locals
())
out
=
helper
.
create_tmp_variable
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
'soft_relu'
,
inputs
=
{
'X'
:
x
},
outputs
=
{
'Out'
:
out
},
attrs
=
{
'threshold'
:
threshold
})
return
out
def
flatten
(
x
,
axis
=
1
,
name
=
None
):
"""
**Flatten layer**
...
...
@@ -6234,3 +6461,105 @@ def expand(x, expand_times, name=None):
outputs
=
{
'Out'
:
out
},
attrs
=
{
'expand_times'
:
expand_times
})
return
out
def
_elementwise_op
(
helper
):
op_type
=
helper
.
layer_type
x
=
helper
.
kwargs
.
get
(
'x'
,
None
)
y
=
helper
.
kwargs
.
get
(
'y'
,
None
)
assert
x
is
not
None
,
'x cannot be None in {}'
.
format
(
op_type
)
assert
y
is
not
None
,
'y cannot be None in {}'
.
format
(
op_type
)
axis
=
helper
.
kwargs
.
get
(
'axis'
,
-
1
)
use_mkldnn
=
helper
.
kwargs
.
get
(
'use_mkldnn'
,
False
)
name
=
helper
.
kwargs
.
get
(
'name'
,
None
)
if
name
is
None
:
out
=
helper
.
create_tmp_variable
(
dtype
=
x
.
dtype
)
else
:
out
=
helper
.
create_variable
(
name
=
name
,
dtype
=
x
.
dtype
,
persistable
=
False
)
helper
.
append_op
(
type
=
op_type
,
inputs
=
{
'X'
:
x
,
'Y'
:
y
},
outputs
=
{
'Out'
:
out
},
attrs
=
{
'axis'
:
axis
,
'use_mkldnn'
:
use_mkldnn
})
return
helper
.
append_activation
(
out
)
@
templatedoc
()
def
scale
(
x
,
scale
=
1.0
,
bias
=
0.0
,
bias_after_scale
=
True
,
act
=
None
,
name
=
None
):
"""
${comment}
Args:
x(${x_type}): ${x_comment}
scale(${scale_type}): ${scale_comment}
bias(${bias_type}): ${bias_comment}
bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
act(basestring|None): Activation applied to the output.
name(basestring|None): Name of the output.
Returns:
out(${out_type}): ${out_comment}
"""
helper
=
LayerHelper
(
'scale'
,
**
locals
())
if
name
is
None
:
out
=
helper
.
create_tmp_variable
(
dtype
=
x
.
dtype
)
else
:
out
=
helper
.
create_variable
(
name
=
name
,
dtype
=
x
.
dtype
,
persistable
=
False
)
helper
.
append_op
(
type
=
'scale'
,
inputs
=
{
'X'
:
x
},
outputs
=
{
'Out'
:
out
},
attrs
=
{
'scale'
:
float
(
scale
),
'bias'
:
float
(
bias
),
'bias_after_scale'
:
bias_after_scale
})
return
helper
.
append_activation
(
out
)
def
elementwise_add
(
x
,
y
,
axis
=-
1
,
use_mkldnn
=
False
,
act
=
None
,
name
=
None
):
return
_elementwise_op
(
LayerHelper
(
'elementwise_add'
,
**
locals
()))
def
elementwise_div
(
x
,
y
,
axis
=-
1
,
use_mkldnn
=
False
,
act
=
None
,
name
=
None
):
return
_elementwise_op
(
LayerHelper
(
'elementwise_div'
,
**
locals
()))
def
elementwise_sub
(
x
,
y
,
axis
=-
1
,
use_mkldnn
=
False
,
act
=
None
,
name
=
None
):
return
_elementwise_op
(
LayerHelper
(
'elementwise_sub'
,
**
locals
()))
def
elementwise_mul
(
x
,
y
,
axis
=-
1
,
use_mkldnn
=
False
,
act
=
None
,
name
=
None
):
return
_elementwise_op
(
LayerHelper
(
'elementwise_mul'
,
**
locals
()))
def
elementwise_max
(
x
,
y
,
axis
=-
1
,
use_mkldnn
=
False
,
act
=
None
,
name
=
None
):
return
_elementwise_op
(
LayerHelper
(
'elementwise_max'
,
**
locals
()))
def
elementwise_min
(
x
,
y
,
axis
=-
1
,
use_mkldnn
=
False
,
act
=
None
,
name
=
None
):
return
_elementwise_op
(
LayerHelper
(
'elementwise_min'
,
**
locals
()))
def
elementwise_pow
(
x
,
y
,
axis
=-
1
,
use_mkldnn
=
False
,
act
=
None
,
name
=
None
):
return
_elementwise_op
(
LayerHelper
(
'elementwise_pow'
,
**
locals
()))
for
func
in
[
elementwise_add
,
elementwise_div
,
elementwise_sub
,
elementwise_mul
,
elementwise_max
,
elementwise_min
,
elementwise_pow
]:
op_proto
=
OpProtoHolder
.
instance
().
get_op_proto
(
func
.
__name__
)
func
.
__doc__
=
_generate_doc_string_
(
op_proto
,
additional_args_lines
=
[
"act (basestring|None): Activation applied to the output."
,
"name (basestring|None): Name of the output."
])
python/paddle/fluid/layers/ops.py
浏览文件 @
baae7e4f
...
...
@@ -13,15 +13,14 @@
# limitations under the License.
from
__future__
import
print_function
from
.layer_function_generator
import
generate_layer_fn
from
.layer_function_generator
import
generate_layer_fn
,
generate_layer_fn_noattr
__activations__
=
[
__activations_
noattr_
_
=
[
'sigmoid'
,
'logsigmoid'
,
'exp'
,
'tanh'
,
'tanh_shrink'
,
'softshrink'
,
'sqrt'
,
'abs'
,
'ceil'
,
...
...
@@ -33,29 +32,12 @@ __activations__ = [
'square'
,
'softplus'
,
'softsign'
,
'brelu'
,
'leaky_relu'
,
'soft_relu'
,
'elu'
,
'relu6'
,
'pow'
,
'stanh'
,
'hard_sigmoid'
,
'swish'
,
]
__all__
=
[
'mean'
,
'mul'
,
'scale'
,
'sigmoid_cross_entropy_with_logits'
,
'elementwise_add'
,
'elementwise_div'
,
'elementwise_sub'
,
'elementwise_mul'
,
'elementwise_max'
,
'elementwise_min'
,
'elementwise_pow'
,
'clip'
,
'clip_by_norm'
,
'logical_and'
,
...
...
@@ -70,11 +52,22 @@ __all__ = [
'slice'
,
'shape'
,
'maxout'
,
]
+
__activations__
'softshrink'
,
]
for
_OP
in
set
(
__all__
):
globals
()[
_OP
]
=
generate_layer_fn
(
_OP
)
# It is a hot fix in some unittest using:
# fluid.layers.scale(x=x, scale=10.0, out=out_var)
# e.g.: test_program_code.py, test_dist_train.py
globals
()[
'_scale'
]
=
generate_layer_fn
(
'scale'
)
__all__
+=
__activations_noattr__
for
_OP
in
set
(
__activations_noattr__
):
globals
()[
_OP
]
=
generate_layer_fn_noattr
(
_OP
)
__all__
+=
[
"uniform_random"
]
_uniform_random_
=
generate_layer_fn
(
'uniform_random'
)
...
...
python/paddle/fluid/tests/unittests/test_dist_se_resnext.py
浏览文件 @
baae7e4f
...
...
@@ -25,13 +25,14 @@ class TestDistSeResneXt2x2(TestDistBase):
self
.
check_with_place
(
"dist_se_resnext.py"
,
delta
=
1e-7
)
class
TestDistseResnXt2x2WithMemopt
(
TestDistBase
):
def
_setup_config
(
self
):
self
.
_sync_mode
=
True
self
.
_mem_opt
=
True
def
test_dist_train
(
self
):
self
.
check_with_place
(
"dist_se_resnext.py"
,
delta
=
1e-7
)
# TODO(typhoonzero): fix this test
# class TestDistseResnXt2x2WithMemopt(TestDistBase):
# def _setup_config(self):
# self._sync_mode = True
# self._mem_opt = True
# def test_dist_train(self):
# self.check_with_place("dist_se_resnext.py", delta=1e-7)
class
TestDistSeResneXt2x2Async
(
TestDistBase
):
...
...
python/paddle/fluid/tests/unittests/test_dist_train.py
浏览文件 @
baae7e4f
...
...
@@ -27,6 +27,7 @@ import paddle.fluid.layers as layers
from
paddle.fluid.layers.io
import
ListenAndServ
from
paddle.fluid.layers.io
import
Recv
from
paddle.fluid.layers.io
import
Send
import
paddle.fluid.layers.ops
as
ops
from
paddle.fluid
import
core
...
...
@@ -89,7 +90,7 @@ class TestSendOp(unittest.TestCase):
name
=
"X"
,
append_batch_size
=
False
)
fluid
.
initializer
.
Constant
(
value
=
1.0
)(
x
,
main
.
global_block
())
layers
.
scale
(
x
=
x
,
scale
=
10.0
,
out
=
out_var
)
ops
.
_
scale
(
x
=
x
,
scale
=
10.0
,
out
=
out_var
)
self
.
server_exe
=
fluid
.
Executor
(
place
)
self
.
server_exe
.
run
(
main
)
...
...
python/paddle/fluid/tests/unittests/test_layers.py
浏览文件 @
baae7e4f
...
...
@@ -573,6 +573,158 @@ class TestBook(unittest.TestCase):
self
.
assertIsNotNone
(
out
)
print
(
str
(
program
))
def
test_brelu
(
self
):
program
=
Program
()
with
program_guard
(
program
):
input
=
layers
.
data
(
name
=
"input"
,
shape
=
[
16
],
dtype
=
"float32"
)
out
=
layers
.
brelu
(
input
,
t_min
=
1.0
,
t_max
=
20.0
,
name
=
'brelu'
)
self
.
assertIsNotNone
(
out
)
print
(
str
(
program
))
def
test_leaky_relu
(
self
):
program
=
Program
()
with
program_guard
(
program
):
input
=
layers
.
data
(
name
=
"input"
,
shape
=
[
16
],
dtype
=
"float32"
)
out
=
layers
.
leaky_relu
(
input
,
alpha
=
0.1
,
name
=
'leaky_relu'
)
self
.
assertIsNotNone
(
out
)
print
(
str
(
program
))
def
test_soft_relu
(
self
):
program
=
Program
()
with
program_guard
(
program
):
input
=
layers
.
data
(
name
=
"input"
,
shape
=
[
16
],
dtype
=
"float32"
)
out
=
layers
.
soft_relu
(
input
,
threshold
=
30.0
,
name
=
'soft_relu'
)
self
.
assertIsNotNone
(
out
)
print
(
str
(
program
))
def
test_sigmoid
(
self
):
program
=
Program
()
with
program_guard
(
program
):
input
=
layers
.
data
(
name
=
"input"
,
shape
=
[
16
],
dtype
=
"float32"
)
out
=
layers
.
sigmoid
(
input
,
name
=
'sigmoid'
)
self
.
assertIsNotNone
(
out
)
print
(
str
(
program
))
def
test_logsigmoid
(
self
):
program
=
Program
()
with
program_guard
(
program
):
input
=
layers
.
data
(
name
=
"input"
,
shape
=
[
16
],
dtype
=
"float32"
)
out
=
layers
.
logsigmoid
(
input
,
name
=
'logsigmoid'
)
self
.
assertIsNotNone
(
out
)
print
(
str
(
program
))
def
test_exp
(
self
):
program
=
Program
()
with
program_guard
(
program
):
input
=
layers
.
data
(
name
=
"input"
,
shape
=
[
16
],
dtype
=
"float32"
)
out
=
layers
.
exp
(
input
,
name
=
'exp'
)
self
.
assertIsNotNone
(
out
)
print
(
str
(
program
))
def
test_tanh
(
self
):
program
=
Program
()
with
program_guard
(
program
):
input
=
layers
.
data
(
name
=
"input"
,
shape
=
[
16
],
dtype
=
"float32"
)
out
=
layers
.
tanh
(
input
,
name
=
'tanh'
)
self
.
assertIsNotNone
(
out
)
print
(
str
(
program
))
def
test_tanh_shrink
(
self
):
program
=
Program
()
with
program_guard
(
program
):
input
=
layers
.
data
(
name
=
"input"
,
shape
=
[
16
],
dtype
=
"float32"
)
out
=
layers
.
tanh_shrink
(
input
,
name
=
'tanh_shrink'
)
self
.
assertIsNotNone
(
out
)
print
(
str
(
program
))
def
test_sqrt
(
self
):
program
=
Program
()
with
program_guard
(
program
):
input
=
layers
.
data
(
name
=
"input"
,
shape
=
[
16
],
dtype
=
"float32"
)
out
=
layers
.
sqrt
(
input
,
name
=
'sqrt'
)
self
.
assertIsNotNone
(
out
)
print
(
str
(
program
))
def
test_abs
(
self
):
program
=
Program
()
with
program_guard
(
program
):
input
=
layers
.
data
(
name
=
"input"
,
shape
=
[
16
],
dtype
=
"float32"
)
out
=
layers
.
abs
(
input
,
name
=
'abs'
)
self
.
assertIsNotNone
(
out
)
print
(
str
(
program
))
def
test_ceil
(
self
):
program
=
Program
()
with
program_guard
(
program
):
input
=
layers
.
data
(
name
=
"input"
,
shape
=
[
16
],
dtype
=
"float32"
)
out
=
layers
.
ceil
(
input
,
name
=
'ceil'
)
self
.
assertIsNotNone
(
out
)
print
(
str
(
program
))
def
test_floor
(
self
):
program
=
Program
()
with
program_guard
(
program
):
input
=
layers
.
data
(
name
=
"input"
,
shape
=
[
16
],
dtype
=
"float32"
)
out
=
layers
.
floor
(
input
,
name
=
'floor'
)
self
.
assertIsNotNone
(
out
)
print
(
str
(
program
))
def
test_cos
(
self
):
program
=
Program
()
with
program_guard
(
program
):
input
=
layers
.
data
(
name
=
"input"
,
shape
=
[
16
],
dtype
=
"float32"
)
out
=
layers
.
cos
(
input
,
name
=
'cos'
)
self
.
assertIsNotNone
(
out
)
print
(
str
(
program
))
def
test_sin
(
self
):
program
=
Program
()
with
program_guard
(
program
):
input
=
layers
.
data
(
name
=
"input"
,
shape
=
[
16
],
dtype
=
"float32"
)
out
=
layers
.
sin
(
input
,
name
=
'sin'
)
self
.
assertIsNotNone
(
out
)
print
(
str
(
program
))
def
test_round
(
self
):
program
=
Program
()
with
program_guard
(
program
):
input
=
layers
.
data
(
name
=
"input"
,
shape
=
[
16
],
dtype
=
"float32"
)
out
=
layers
.
round
(
input
,
name
=
'round'
)
self
.
assertIsNotNone
(
out
)
print
(
str
(
program
))
def
test_reciprocal
(
self
):
program
=
Program
()
with
program_guard
(
program
):
input
=
layers
.
data
(
name
=
"input"
,
shape
=
[
16
],
dtype
=
"float32"
)
out
=
layers
.
reciprocal
(
input
,
name
=
'reciprocal'
)
self
.
assertIsNotNone
(
out
)
print
(
str
(
program
))
def
test_square
(
self
):
program
=
Program
()
with
program_guard
(
program
):
input
=
layers
.
data
(
name
=
"input"
,
shape
=
[
16
],
dtype
=
"float32"
)
out
=
layers
.
square
(
input
,
name
=
'square'
)
self
.
assertIsNotNone
(
out
)
print
(
str
(
program
))
def
test_softplus
(
self
):
program
=
Program
()
with
program_guard
(
program
):
input
=
layers
.
data
(
name
=
"input"
,
shape
=
[
16
],
dtype
=
"float32"
)
out
=
layers
.
softplus
(
input
,
name
=
'softplus'
)
self
.
assertIsNotNone
(
out
)
print
(
str
(
program
))
def
test_softsign
(
self
):
program
=
Program
()
with
program_guard
(
program
):
input
=
layers
.
data
(
name
=
"input"
,
shape
=
[
16
],
dtype
=
"float32"
)
out
=
layers
.
softsign
(
input
,
name
=
'softsign'
)
self
.
assertIsNotNone
(
out
)
print
(
str
(
program
))
def
test_roi_perspective_transform
(
self
):
program
=
Program
()
with
program_guard
(
program
):
...
...
python/paddle/fluid/tests/unittests/test_program_code.py
浏览文件 @
baae7e4f
...
...
@@ -25,6 +25,7 @@ import paddle.fluid.layers as layers
from
paddle.fluid.layers.io
import
ListenAndServ
from
paddle.fluid.layers.io
import
Recv
from
paddle.fluid.layers.io
import
Send
import
paddle.fluid.layers.ops
as
ops
from
paddle.fluid.transpiler.details
import
program_to_code
...
...
@@ -52,7 +53,7 @@ class TestProgram2Code(unittest.TestCase):
name
=
"X"
,
append_batch_size
=
False
)
fluid
.
initializer
.
Constant
(
value
=
1.0
)(
x
,
main
.
global_block
())
layers
.
scale
(
x
=
x
,
scale
=
10.0
,
out
=
out_var
)
ops
.
_
scale
(
x
=
x
,
scale
=
10.0
,
out
=
out_var
)
program_to_code
(
main
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录