未验证 提交 b556b0f1 编写于 作者: G GaoWei8 提交者: GitHub

[Cherry-Pick] [2.0-beta] add paddle.where interface and error enhancement (#23972)

上级 2c8a9181
......@@ -47,13 +47,13 @@ static inline framework::DDim ComputeAndCheckShape(
is_runtime || (out_dims[j] > 0 && inputs_dims[i][j] > 0);
if (check_shape) {
// check all shape in run time
PADDLE_ENFORCE_EQ(
inputs_dims[0][j], inputs_dims[i][j],
platform::errors::InvalidArgument(
"The shape of input[%d] must be equal to input[0]. "
"But received input[0]'s shape = "
"[%s], input[%d]'s shape = [%s].",
i, inputs_dims[0], i, inputs_dims[i]));
PADDLE_ENFORCE_EQ(inputs_dims[0][j], inputs_dims[i][j],
platform::errors::InvalidArgument(
"The %d-th dimension of input[0] and input[%d] "
"is expected to be equal."
"But received input[0]'s shape = "
"[%s], input[%d]'s shape = [%s].",
j, i, inputs_dims[0], i, inputs_dims[i]));
}
}
}
......@@ -79,9 +79,9 @@ class ConcatKernel : public framework::OpKernel<T> {
void Compute(const framework::ExecutionContext& ctx) const override {
auto ins = ctx.MultiInput<framework::LoDTensor>("X");
framework::LoDTensor* out = ctx.Output<framework::LoDTensor>("Out");
PADDLE_ENFORCE_NOT_NULL(
ins[0], platform::errors::NotFound(
" The first input of concat should not be null."));
PADDLE_ENFORCE_NOT_NULL(ins[0],
platform::errors::NotFound(
"The first input tensor is not initalized."));
auto axis = ctx.Attr<int>("axis");
bool need_resize_out_dims = false;
if (ctx.HasInput("AxisTensor")) {
......@@ -116,7 +116,9 @@ class ConcatKernel : public framework::OpKernel<T> {
platform::errors::Unimplemented(
"The lod level of all input LoDTensors should be same. "
"Maybe different lod level of input LoDTensors can concat,"
" it is not supported currently."));
"it is not supported currently. The lod level of %dth input "
"is %d and first input is %d.",
i, ins[i]->lod().size(), lod_size_0));
} else {
lod_size = 0;
break;
......@@ -181,9 +183,9 @@ class ConcatGradKernel : public framework::OpKernel<T> {
}
}
}
PADDLE_ENFORCE_NOT_NULL(
ins[0], platform::errors::NotFound(
"The first input of concat should not be null."));
PADDLE_ENFORCE_NOT_NULL(ins[0],
platform::errors::NotFound(
"The first input tensor is not initalized."));
auto axis = ctx.Attr<int>("axis");
if (ctx.HasInput("AxisTensor")) {
......
......@@ -32,9 +32,9 @@ class LoDResetOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_GT(
static_cast<int64_t>(level0.size()), 0,
platform::errors::InvalidArgument(
"If Input(Y) not provided, the target lod should be "
"specified by attribute `target_lod`. But the size of "
"`target_lod` is 0."));
"If Input(Y) is not provided, the output's LoD should be "
"specified by attribute 'target_lod'. But the size of "
"'target_lod' is 0."));
} else if (ctx->IsRuntime()) {
ctx->ShareLoD("Y", "Out");
}
......
......@@ -41,10 +41,10 @@ class LoDResetKernel : public framework::OpKernel<T> {
PADDLE_ENFORCE_EQ(
static_cast<int64_t>(last_level.back()), in->dims()[0],
platform::errors::InvalidArgument(
"The last value of `Y`'s last level LoD should be equal "
"to the first dimension of `X`. But received the last value of "
"`Y`'s last level LoD is %d, the first dimension of `X` is "
"%d. ",
"The last value of Input(Y)'s last level LoD should be equal "
"to the first dimension of Input(X). But received the last "
"value of Input(Y)'s last level LoD is %d, the first dimension "
"of Input(X) is %d.",
static_cast<int64_t>(last_level.back()), in->dims()[0]));
out->set_lod(y_lod);
return; // early return, since lod already set
......@@ -75,19 +75,16 @@ class LoDResetKernel : public framework::OpKernel<T> {
PADDLE_ENFORCE_EQ(
static_cast<int64_t>(level0.back()), in->dims()[0],
platform::errors::InvalidArgument(
"The last value of `Target LoD`'s last level LoD should be equal "
"to the first dimension of `X`. But received the last value of "
"`Target LoD`'s last level LoD is %d, the first dimension of `X` "
"is "
"%d. ",
static_cast<int64_t>(level0.back()), in->dims()[0]));
"The last value of 'Target LoD''s last level LoD should be equal "
"to the first dimension of Input(X). But received the 'Target LoD' "
"is %s, Input(X)'s shape is is %s.",
framework::make_ddim(level0), in->dims()));
for (size_t i = 0; i < level0.size() - 1; ++i) {
PADDLE_ENFORCE_GE(
level0[i + 1], level0[i],
platform::errors::InvalidArgument(
"Target LoD should be an ascending vector. But the %s element is "
"%s and the %s element of Target LoD is %s.",
i + 1, level0[i + 1], i, level0[i]));
PADDLE_ENFORCE_GE(level0[i + 1], level0[i],
platform::errors::InvalidArgument(
"'Target LoD' should be an ascending "
"vector. But received the Target LoD is %s.",
framework::make_ddim(level0)));
}
// cast level0 to size_t
......
......@@ -30,15 +30,15 @@ __global__ void WhereCUDAKernel(const int N, const bool* cond, const T* x,
}
template <typename T>
__global__ void WhereGradCUDAKernel(const int N, const T* out, const bool* cond,
T* x, T* y) {
__global__ void WhereGradCUDAKernel(const int N, const T* dout,
const bool* cond, T* dx, T* dy) {
int idx = blockDim.x * blockIdx.x + threadIdx.x;
for (; idx < N; idx += blockDim.x * gridDim.x) {
if (x != nullptr) {
x[idx] = out[idx] * (cond[idx] ? 1. : 0.);
if (dx != nullptr) {
dx[idx] = cond[idx] ? dout[idx] : 0.;
}
if (y != nullptr) {
y[idx] = out[idx] * (cond[idx] ? 0. : 1.);
if (dy != nullptr) {
dy[idx] = cond[idx] ? 0. : dout[idx];
}
}
}
......
......@@ -194,7 +194,7 @@ from .tensor.search import argmax #DEFINE_ALIAS
# from .tensor.search import has_nan #DEFINE_ALIAS
# from .tensor.search import masked_select #DEFINE_ALIAS
# from .tensor.search import topk #DEFINE_ALIAS
# from .tensor.search import where #DEFINE_ALIAS
from .tensor.search import where #DEFINE_ALIAS
from .tensor.search import index_select #DEFINE_ALIAS
from .tensor.search import index_sample #DEFINE_ALIAS
from .tensor.search import nonzero #DEFINE_ALIAS
......
......@@ -6196,10 +6196,12 @@ def lod_reset(x, y=None, target_lod=None):
out.dims = [6, 1]
Args:
x (Variable): Input variable which could be a Tensor or LoDTensor.
y (Variable|None): If provided, output's LoD would be derived
from :attr:`y`.
target_lod (list|tuple|None): One level LoD which should be considered
x (Variable): Input variable which could be a Tensor or LoDTensor.
The data type should be int32, int64, float32 or float64.
y (Variable, optional): If provided, output's LoD would be derived from :attr:`y`.
If y's lod level>0, the data type can be any type.
If y's lod level=0, the data type should be int32.
target_lod (list|tuple, optional): One level LoD which should be considered
as target LoD when :attr:`y` not provided.
Returns:
......@@ -6221,11 +6223,9 @@ def lod_reset(x, y=None, target_lod=None):
helper = LayerHelper("lod_reset", **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
if y is not None:
if y.lod_level > 0:
check_variable_and_dtype(
y, 'y', ['float32', 'float64', 'int32', 'int64'], 'lod_reset')
else:
check_variable_and_dtype(y, 'y', ['int32', 'int64'], 'lod_reset')
check_type(y, 'y', (Variable), 'lod_reset')
if y.lod_level == 0:
check_variable_and_dtype(y, 'y', ['int32'], 'lod_reset')
helper.append_op(
type="lod_reset", inputs={'X': x,
'Y': y}, outputs={'Out': out})
......@@ -6261,9 +6261,11 @@ def lod_append(x, level):
x.dims = [6, 1]
Args:
x (Variable): Input variable which could be a tensor or LoDTensor.
level (list|tuple|Variable): The LoD level to be appended into LoD of x.
x (Variable): Input variable which could be a tensor or LoDTensor.
The data type should be int32, int64, float32 or float64.
level (list|tuple|Variable, optional): The LoD level to be appended into LoD of x.
If level is variable and its lod level>0, the data type can be any type.
If level is variable and its lod level=0, the data type should be int32.
Returns:
Variable: Output variable with new LoD level.
......@@ -6283,6 +6285,9 @@ def lod_append(x, level):
if (not isinstance(level, Iterable)) and (not isinstance(level, Variable)):
raise ValueError("Input(level) must be list, tuple or Variable.")
check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
'lod_append')
helper = LayerHelper("lod_append", **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
......@@ -6291,6 +6296,8 @@ def lod_append(x, level):
if isinstance(level, Variable):
inputs['Y'] = level
if level.lod_level == 0:
check_variable_and_dtype(level, 'level', ['int32'], 'lod_append')
else:
attrs['target_lod'] = level
helper.append_op(
......
......@@ -3033,7 +3033,7 @@ class TestBook(LayerTest):
z = layers.lod_reset(x=x, y=y)
self.assertTrue(z.lod_level == 2)
# case 2
lod_tensor_in = layers.data(name='lod_in', shape=[1], dtype='int64')
lod_tensor_in = layers.data(name='lod_in', shape=[1], dtype='int32')
z = layers.lod_reset(x=x, y=lod_tensor_in)
self.assertTrue(z.lod_level == 1)
# case 3
......
#Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.fluid.core as core
from paddle.fluid import compiler, Program, program_guard
from paddle.fluid.op import Operator
from paddle.fluid.backward import append_backward
class TestLoDAppendAPI(unittest.TestCase):
def test_api(self, use_cuda=False):
main_program = Program()
with fluid.program_guard(main_program):
x = fluid.layers.data(name='x', shape=[6], dtype='float32')
level = fluid.layers.data(
name='level', shape=[3], dtype='int32', lod_level=0)
result = fluid.layers.lod_append(x, level)
x_i = np.array([1.0, 1.0, 1.0, 1.0, 1.0, 1.0]).astype("float32")
level_i = np.array([0, 2, 6]).astype("int32")
for use_cuda in [False, True]:
if use_cuda and not fluid.core.is_compiled_with_cuda():
return
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
exe = fluid.Executor(place)
[out] = exe.run(fluid.default_main_program(),
feed={'x': x_i,
'level': level_i},
fetch_list=[result],
return_numpy=False)
self.assertEqual(out.recursive_sequence_lengths(), [[2, 4]])
class TestLodAppendOpError(unittest.TestCase):
def test_error(self):
# The input(x) must be Variable.
x1 = np.array([0.9383, 0.1983, 3.2, 1.2]).astype("float64")
level1 = [0, 2, 4]
self.assertRaises(TypeError, fluid.layers.lod_append, x1, level1)
#The input(level) must be Variable or list.
x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
self.assertRaises(ValueError, fluid.layers.lod_append, x2, 2)
# Input(x) dtype must be float32 or float64 or int32 or int64
for dtype in ["bool", "float16"]:
x3 = fluid.layers.data(name='x3_' + dtype, shape=[4], dtype=dtype)
level3 = fluid.layers.data(
name='level3' + dtype, shape=[4], dtype='int32', lod_level=2)
self.assertRaises(TypeError, fluid.layers.lod_append, x3, level3)
# Input(level) dtype must be int32 when lod_level=0
for dtype in ["bool", "float16", "float32", "float64", "int64"]:
x4 = fluid.layers.data(
name='x4' + dtype, shape=[4], dtype='float32')
level4 = fluid.layers.data(
name='level4_' + dtype, shape=[4], dtype=dtype, lod_level=0)
self.assertRaises(TypeError, fluid.layers.lod_append, x4, level4)
if __name__ == "__main__":
unittest.main()
......@@ -16,6 +16,7 @@ from __future__ import print_function
import unittest
import numpy as np
import paddle.fluid as fluid
from op_test import OpTest
from paddle.fluid import Program, program_guard
......@@ -136,28 +137,26 @@ class TestLodAppendOpByAttr(OpTest):
class TestLodResetOpError(unittest.TestCase):
def test_errors(self):
with program_guard(Program(), Program()):
def test_Variable():
# The input must be Variable.
x1 = fluid.create_lod_tensor(
np.ones([6]), [3, 3], fluid.CPUPlace())
y1 = fluid.create_lod_tensor(
np.ones([6]), [2, 2, 2], fluid.CPUPlace())
self.assertRaises(TypeError, fluid.layers.lod_reset, [x1, y1])
def test_type():
# dtype must be float32 or float64 or int32 or int64
x2 = fluid.layers.data(shape=[4], dtype='uint8', name='x2')
# The input must be Variable.
x1 = np.array([0.9383, 0.1983, 3.2, 1.2]).astype("float64")
target_lod = [2, 2]
self.assertRaises(TypeError, fluid.layers.lod_reset, x1, target_lod)
# Input(x) dtype must be float32 or float64 or int32 or int64
for dtype in ["bool", "float16"]:
x2 = fluid.layers.data(
name='x2' + dtype, shape=[4], dtype=dtype)
y2 = fluid.layers.data(
shape=[4], dtype='uint8', name='x2', lod_level=2)
self.assertRaises(TypeError, fluid.layers.lod_reset, [x2, y2])
name='y2' + dtype, shape=[4], dtype='int32', lod_level=2)
self.assertRaises(TypeError, fluid.layers.lod_reset, x2, y2)
def test_type2():
# dtype must be int32 or int64
x3 = fluid.layers.data(shape=[4], dtype='float32', name='x3')
# Input(y) dtype must be int32 when lod_level=0
for dtype in ["bool", "float16", "float32", "float64", "int64"]:
x3 = fluid.layers.data(
name='x3' + dtype, shape=[4], dtype='float32')
y3 = fluid.layers.data(
shape=[4], dtype='float32', name='x3', lod_level=0)
self.assertRaises(TypeError, fluid.layers.lod_reset, [x3, y3])
name='y3' + dtype, shape=[4], dtype=dtype, lod_level=0)
self.assertRaises(TypeError, fluid.layers.lod_reset, x3, y3)
if __name__ == '__main__':
......
......@@ -16,9 +16,9 @@ from __future__ import print_function
import unittest
import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.tensor as tensor
import paddle.fluid.core as core
from op_test import OpTest
from paddle.fluid import compiler, Program, program_guard
......@@ -60,61 +60,64 @@ class TestWhereOp3(TestWhereOp):
class TestWhereAPI(unittest.TestCase):
def test_api(self, use_cuda=False):
main_program = Program()
with fluid.program_guard(main_program):
x = fluid.layers.data(name='x', shape=[4], dtype='float32')
y = fluid.layers.data(name='y', shape=[4], dtype='float32')
x_i = np.array([0.9383, 0.1983, 3.2, 1.2]).astype("float32")
y_i = np.array([1.0, 1.0, 1.0, 1.0]).astype("float32")
cond_i = np.array([False, False, True, True]).astype("bool")
result = tensor.where(x > 1, x=x, y=y)
def setUp(self):
self.init_data()
for use_cuda in [False, True]:
if use_cuda and not fluid.core.is_compiled_with_cuda():
return
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
exe = fluid.Executor(place)
out = exe.run(fluid.default_main_program(),
feed={'x': x_i,
'y': y_i},
fetch_list=[result])
assert np.array_equal(out[0], np.where(cond_i, x_i, y_i))
def init_data(self):
self.shape = [10, 15]
self.cond = np.array(np.random.randint(2, size=self.shape), dtype=bool)
self.x = np.random.uniform(-2, 3, self.shape).astype(np.float32)
self.y = np.random.uniform(-2, 3, self.shape).astype(np.float32)
self.out = np.where(self.cond, self.x, self.y)
def test_grad(self, use_cuda=False):
main_program = Program()
with fluid.program_guard(main_program):
x = fluid.layers.data(name='x', shape=[4], dtype='float32')
y = fluid.layers.data(name='y', shape=[4], dtype='float32')
for x_stop_gradient, y_stop_gradient in [[False, False],
[True, False],
[False, True]]:
x.stop_gradient = x_stop_gradient
y.stop_gradient = y_stop_gradient
x_i = np.array([0.9383, 0.1983, 3.2, 1.2]).astype("float32")
y_i = np.array([1.0, 1.0, 1.0, 1.0]).astype("float32")
cond_i = np.array([False, False, True, True]).astype("bool")
result = tensor.where(x > 1, x=x, y=y)
x_mean = layers.mean(x)
append_backward(x_mean)
y_mean = layers.mean(y)
append_backward(y_mean)
for use_cuda in [False, True]:
if use_cuda and not fluid.core.is_compiled_with_cuda():
return
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
exe = fluid.Executor(place)
out = exe.run(
fluid.default_main_program(),
feed={'x': x_i,
'y': y_i},
fetch_list=[result, x.grad_name, y.grad_name])
x_grad = [0.25] * 4
y_grad = [0.25] * 4
assert np.array_equal(out[0], np.where(cond_i, x_i, y_i))
assert np.array_equal(out[1], x_grad)
assert np.array_equal(out[2], y_grad)
def ref_x_backward(self, dout):
return np.where(self.cond == True, dout, 0)
def ref_y_backward(self, dout):
return np.where(self.cond == False, dout, 0)
def test_api(self, use_cuda=False):
for x_stop_gradient in [False, True]:
for y_stop_gradient in [False, True]:
with fluid.program_guard(Program(), Program()):
cond = fluid.layers.data(
name='cond', shape=self.shape, dtype='bool')
x = fluid.layers.data(
name='x', shape=self.shape, dtype='float32')
y = fluid.layers.data(
name='y', shape=self.shape, dtype='float32')
x.stop_gradient = x_stop_gradient
y.stop_gradient = y_stop_gradient
result = paddle.where(cond, x, y)
append_backward(layers.mean(result))
for use_cuda in [False, True]:
if use_cuda and not fluid.core.is_compiled_with_cuda():
break
place = fluid.CUDAPlace(
0) if use_cuda else fluid.CPUPlace()
exe = fluid.Executor(place)
fetch_list = [result, result.grad_name]
if x_stop_gradient is False:
fetch_list.append(x.grad_name)
if y_stop_gradient is False:
fetch_list.append(y.grad_name)
out = exe.run(
fluid.default_main_program(),
feed={'cond': self.cond,
'x': self.x,
'y': self.y},
fetch_list=fetch_list)
assert np.array_equal(out[0], self.out)
if x_stop_gradient is False:
assert np.array_equal(out[2],
self.ref_x_backward(out[1]))
if y.stop_gradient is False:
assert np.array_equal(
out[3], self.ref_y_backward(out[1]))
elif y.stop_gradient is False:
assert np.array_equal(out[2],
self.ref_y_backward(out[1]))
def test_api_broadcast(self, use_cuda=False):
main_program = Program()
......@@ -124,9 +127,7 @@ class TestWhereAPI(unittest.TestCase):
x_i = np.array([[0.9383, 0.1983, 3.2, 1.2]]).astype("float32")
y_i = np.array([[1.0, 1.0, 1.0, 1.0],
[1.0, 1.0, 1.0, 1.0]]).astype("float32")
cond_i = np.array([[False, False, True, True],
[False, False, True, True]]).astype("bool")
result = tensor.where(x > 1, x=x, y=y)
result = paddle.where(x > 1, x=x, y=y)
for use_cuda in [False, True]:
if use_cuda and not fluid.core.is_compiled_with_cuda():
......@@ -137,7 +138,7 @@ class TestWhereAPI(unittest.TestCase):
feed={'x': x_i,
'y': y_i},
fetch_list=[result])
assert np.array_equal(out[0], np.where(cond_i, x_i, y_i))
assert np.array_equal(out[0], np.where(x_i > 1, x_i, y_i))
class TestWhereDygraphAPI(unittest.TestCase):
......@@ -149,7 +150,7 @@ class TestWhereDygraphAPI(unittest.TestCase):
x = fluid.dygraph.to_variable(x_i)
y = fluid.dygraph.to_variable(y_i)
cond = fluid.dygraph.to_variable(cond_i)
out = tensor.where(cond, x, y)
out = paddle.where(cond, x, y)
assert np.array_equal(out.numpy(), np.where(cond_i, x_i, y_i))
......@@ -161,7 +162,7 @@ class TestWhereOpError(unittest.TestCase):
cond_i = np.array([False, False, True, True]).astype("bool")
def test_Variable():
tensor.where(cond_i, x_i, y_i)
paddle.where(cond_i, x_i, y_i)
self.assertRaises(TypeError, test_Variable)
......@@ -169,7 +170,7 @@ class TestWhereOpError(unittest.TestCase):
x = fluid.layers.data(name='x', shape=[4], dtype='bool')
y = fluid.layers.data(name='y', shape=[4], dtype='float16')
cond = fluid.layers.data(name='cond', shape=[4], dtype='int32')
tensor.where(cond, x, y)
paddle.where(cond, x, y)
self.assertRaises(TypeError, test_type)
......
......@@ -388,9 +388,9 @@ def where(condition, x, y, name=None):
Examples:
.. code-block:: python
import paddle
import numpy as np
import paddle.fluid as fluid
import paddle.tensor as paddle
x_i = np.array([0.9383, 0.1983, 3.2, 1.2]).astype("float32")
y_i = np.array([1.0, 1.0, 1.0, 1.0]).astype("float32")
......@@ -417,8 +417,7 @@ def where(condition, x, y, name=None):
return core.ops.where(condition, x, y)
else:
helper = LayerHelper("where", **locals())
dtype = helper.input_dtype()
out = helper.create_variable_for_type_inference(dtype)
out = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(
type='where',
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册